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Abstract
We introduce the notion of MV-tropical polynomial starting from the language of semiring reducts of

an MV-algebra. We show, in the one-variate case, how MV-tropical polynomial functions can be used

to describe some classes of neural networks.
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1. Introduction

Propositional many-valued logics have been proposed in the last decades as a mathematical

tool to formalize fuzzy logic. In particular, among all the possible many-valued logics, the so

called Łukasiewicz logic is of special interest both for its !exible semantics and for the rich

mathematical structure associated with it, namely MV-algebras. Indeed, a prototypical example

of MV-algebra is given by the set of functions in [0, 1] that are continuous and piecewise linear

with integer coe"cients, that can be considered as truth functions of formulas of the in#nite-

valued logics of Łukasiewicz. Starting from [9] (see also [10]), MV-algebras have been compared

with semirings and in particular with tropical geometry: this line of research is still in its early

steps but it is very promising, since it would permit a logical approach to a new kind of algebraic

geometry based on linear pieces, putting together the many results obtained for MV-algebras

with the ones of tropical geometry.

In this paper we focus in particular on the connection between tropical geometry and neural

networks, as in [22]. As also shown in [16], there is a strict connection between convex geometry

(hence in particular tropical geometry) and Optimal Transport theory that in turns is related with

machine learning and deep neural networks. In this paper we consider the case of multilayer

perceptrons with a linear activation function, but independently from the type of networks

that we consider, our aim is to show how to use MV-semirings to give a formal and logical

interpretation of networks. See also [17].

We suggest indeed a logical representation of neural networks that could widen the inter-

pretability, amalgamability and reuse of these objects. Many-valued logic has been proposed
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in [7] to model neural networks: it is shown there that, by taking as activation function ψ the

identity truncated to zero and one (i.e., ψ(x) = (1 ∧ (x ∨ 0))), it is possible to represent the

corresponding neural network as a combination of propositions of Łukasiewicz calculus (and

vice versa). Further, in [4] it is shown that neural networks whose activation function is the

identity truncated to zero and one, can be fully interpreted as logical objects, since they are

equivalent to (equivalence classes of) formulas of Rational Łukasiewicz logic.

Other mathematical structures have been proposed to model neural network, as for example

the tropical semiring that is a structure on the real numbers that mimics the usual ring operations

of sum and multiplication, by replacing them with supremum and sum, respectively. Starting

from such a structure, de#nitions of polynomials can be given that corresponds to piecewise

linear functions. In [22] the authors establish connections between feedforward neural networks

with real valued, linear activation functions, and tropical geometry and they show that the

family of such neural networks is equivalent to the family of tropical rational maps.

In this paper we deal with polynomials written in the language of the semiring reducts of

the MV-algebra [0, 1]. We characterize the associated formulas in the one variable case, and we

state some results about their geometry. Further, following [22], we de#ne rational functions for

MV-semirings and compare them with the whole class of generalised McNaughton functions

corresponding to MV-polynomials (see [6]). We then show how MV-polynomials can be used

to describe functions associated with a special class of neural networks.

2. Semirings and Semimodules

In this section we recall some basic de#nitions and properties of semirings and semimodules

over them. Most of this material can be found in [15].

De!nition 2.1. A semiring is an algebraic structure 〈S,+, ·, 0, 1〉 such that

(S1) 〈S,+, 0〉 is a commutative monoid;

(S2) 〈S, ·, 1〉 is a monoid;

(S3) · distributes over + from either side;

(S4) 0 · a = 0 = a · 0 for all a ∈ S.

A semiring S is called

• commutative if so is the multiplication,

• idempotent if so is the sum, i. e. if it satis#es the equation x+ x = x,

• a semi"eld if 〈S \ {0}, ·, 1〉 is an Abelian group.

Many relevant examples of semirings are known, among which we recall the (commu-

tative) one of natural numbers 〈N,+, ·, 0, 1〉. Further let R = R ∪ {−∞}. The structure

〈R,max,+,−∞, 0〉 is an idempotent semi#eld, sometimes called the tropical semiring.

De!nition 2.2. Let S be a semiring. A (left) S-semimodule is a commutative monoid 〈M,+, 0〉
with an external operation with coe"cients in S, called scalar multiplication, · : (a, x) ∈
S ×M 7−→ a · x ∈M , such that the following conditions hold for all a, b ∈ S and x, y ∈M :



(SM1) (ab) · x = a · (b · x),

(SM2) a · (x+ y) = (a · x) + (a · y),

(SM3) (a+ b) · x = (a · x) + (b · x),

(SM4) 0S · x = 0M = a · 0M ,

(SM5) 1 · x = x.

Right S-semimodule are de#ned in an analogus way.

Example 2.3. Let S be a semiring and X be an arbitrary non-empty set. We can consider the

monoid 〈SX ,+,0〉 of all functions from X to S, where 0 is the 0S-constant function from X to

S and

(f + g)(x) = f(x) + g(x) for all x ∈ X and f, g ∈ SX .

Then we can de"ne a scalar multiplication in SX as follows:

· : (a, f) ∈ S × SX 7−→ a · f ∈ SX ,

with the map a · f de"ned as (a · f)(x) = af(x) for all x ∈ X .

It is clear that SX is a left S-semimodule. The semimodule SX can be de"ned also forX = ∅,

in which case we obtain, up to an isomorphism, the one-element semimodule {0}.

Remark 2.4. In all the de#nitions and results that can be stated both for left and right semi-

modules, we will refer generically to “semimodules” — without specifying left or right — and

we will use the notations of left semimodules.

3. MV-semirings and MV-semimodules

In [5] and [9] semirings were studied in connection with MV-algebras — the algebraic semantics

of Łukasiewicz in#nite-valued propositional logic. In this section we recall the de#nition of

MV-algebra and, brie!y, some of the contents of the aforementioned papers; for a comprehensive

study of MV-algebras we refer the reader to [8].

De!nition 3.1. An MV-algebra is an algebra 〈A,⊕,∗ , 0〉 of type (2, 1, 0) such that 〈A,⊕, 0〉
is a commutative monoid, and, for all x, y ∈ A,

(MV1) (x∗)∗ = x;

(MV2) x⊕ 0∗ = 0∗;

(MV3) (x∗ ⊕ y)∗ ⊕ y = (y∗ ⊕ x)∗ ⊕ x.

Since De#nition 3.1 can be formulated in the language of Universal Algebra by means of

equations, MV-algebras form a variety. Congruences and homomorphisms are de#ned in an

obvious way, namely, as equivalence relations that are compatible with ⊕ and ∗ and functions

that preserve the operations and the constant 0 respectively.

On every MV-algebra A it is possible to de#ne another constant 1 = 0∗ and the operation ⊙
by x⊙ y = (x∗ ⊕ y∗)∗; moreover, for all x, y ∈ A, the following well-known properties hold:



- 〈A,⊙,∗ , 1〉 is an MV-algebra;

- ∗ is an isomorphism between 〈A,⊙,∗ , 1〉 and 〈A,⊕,∗ , 0〉;

- 1∗ = 0;

- x⊕ y = (x∗ ⊙ y∗)∗;

- x⊕ 1 = 1 (reformulation of (MV2));

- x⊕ x∗ = 1.

For any MV-algebra A and x, y ∈ A, we write x ≤ y if and only if x∗ ⊕ y = 1. It is well-
known that ≤ is a partial order on A, called the natural order of A. Moreover, the natural order

determines a structure of bounded distributive lattice on A [8, Propositions 1.1.5 and 1.5.1],

with 0 and 1 respectively bottom and top element, and ∨ and ∧ de#ned by

x ∨ y = (x⊙ y∗)⊕ y,

x ∧ y = (x∗ ∨ y∗)∗ = x⊙ (x∗ ⊕ y).

A subset I of an MV-algebra A is called an ideal if it is a downward closed submonoid of

〈A,⊕, 0〉, i. e. if it satis#es the following properties:

• 0 ∈ I ;

• I is downward closed, that is, b ≤ a implies b ∈ I for all a ∈ I and b ∈ A;

• a⊕ b ∈ I for all a, b ∈ I .

Example 3.2. Consider the interval [0, 1] of R with the operations ⊕ and ∗ de"ned, respectively,

by x ⊕ y := min{x + y, 1} and x∗ := 1 − x. Then structure 〈[0, 1],⊕,∗ , 0〉 is an MV-algebra,

often called the standard MV-algebra. The reason for such a name is the fact (which is perfectly

equivalent to Theorem 3.3 below) that the algebra [0, 1] generates the whole variety ofMV-algebras,

namely, every MV-algebra can be obtained as a quotient of a subalgebra of a Cartesian power

[0, 1]κ (with pointwise de"ned operations) for some cardinal κ.
In the standard MV-algebra the order relation (and therefore the lattice structure) is the usual

one of real numbers; the product ⊙ is de"ned by x⊙ y := max{0, x+ y − 1}.

Theorem 3.3. An equation holds in [0, 1] if and only if it holds in every MV-algebra.

Example 3.4. Let 〈G,+,−, 0,∨,∧〉 be a lattice-ordered Abelian group, let u be a "xed positive

element of G and [0, u] = {x ∈ G | 0 ≤ x ≤ u}. Now let us de"ne, for all x, y ∈ [0, u],
x⊕ y := (x+ y)∧ u and x∗ := u− x. Then it is easy to check that the structure 〈[0, u],⊕,∗ , 0〉
is an MV-algebra.

Example 3.5. For any Boolean algebra 〈B,∨,∧,′ , 0, 1〉, the structure 〈B,∨,′ , 0〉 is anMV-algebra.

Boolean algebras form a subvariety of the variety of MV-algebras. They are precisely the MV-

algebras satisfying the additional equation x⊕ x = x.

For the proof of the following result we refer the reader to [9, Proposition 3.6].

Proposition 3.6. LetA be anMV-algebra. ThenA∨⊙ = 〈A,∨,⊙, 0, 1〉 andA∧⊕ = 〈A,∧,⊕, 1, 0〉
are semirings. Moreover, the involution ∗ : A −→ A is an isomorphism between them.



Remark 3.7. Thanks to Proposition 3.6, we can limit our attention to one of the two semiring

reducts of A; therefore, whenever not di$erently speci#ed, we will refer only to A∨⊙, all the

results holding also for A∧⊕ up to the application of ∗.

We recall the following de#nition from [5].

De!nition 3.8. AnMV-semiring is a commutative, additively idempotent semiring 〈A,∨, ·, 0, 1〉
for which there exists a map ∗ : A −→ A — called the negation — satisfying, for all a, b ∈ A,
the following conditions:

(i) a · b = 0 i$ b ≤ a∗ (where a ≤ b i$ a ∨ b = b);

(ii) a ∨ b = (a∗ · (a∗ · b)∗)∗.

Proposition 3.9. For any MV-algebra 〈A,⊕, 0〉, both the semiring reducts A∨⊙ and A∧⊕ are

MV-semirings. Conversely, if 〈A,∨, ·, 0, 1〉 is an MV-semiring with negation ∗, the structure

〈A,⊕,∗ , 0〉, with
a⊕ b = (a∗ · b∗)∗ for all a, b ∈ S,

is an MV-algebra.

When A = [0, 1] we speak of MV-tropical semiring.

4. MV-tropical polynomials and McNaughton functions

We shall now de#ne tropical polynomials on MV-semirings and see their connection with

McNaughton functions and — therefore — with free MV-algebras.

Given an MV-semiring 〈A,∨,⊙, 0, 1〉, a (∨,⊙)-MV-monomial in n variablesX1, . . . , Xn and

with coe"cients in A, is an expression of the form

a⊙Xj1
1

⊙ . . .⊙Xjn
n ,

with a ∈ A and j1, . . . , jn nonnegative integers, with the assumption that X0

i = 1.
A (∨,⊙)-MV-polynomial is a semilinear combination of monomials:

m∨

i=0

ai ⊙Xj1i
1

⊙ · · · ⊙Xjni

n .

The set A[X1, . . . , Xn] of (∨,⊙)-MV-polynomials is an A-semimodule in an obvious way,

due to the distributivity of ∨ and ⊙.

Every (∨,⊙)-MV-polynomial p in n variables with coe"cients in A de#nes a function p̃ :
An −→ A by setting X̃i as the i−th projection and then proceeding by structural induction. In

particular, ifA = [0, 1] is the standardMV-semiring then MV-polynomials are calledMV-tropical

polynomials and it is immediate to verify that p̃ veri#es the following properties:

P1 p̃ : [0, 1]n → [0, 1] is a continuous function

P2 p̃ is piecewise linear and each linear piece has locally the form a0 +
∑n

i=1
aixi, where

ai ∈ N for i > 0 and a0 ∈ R



P3 p̃ is convex.

We focus now on the case of one-variable MV-tropical polynomials. Recall that, for every

x ∈ [0, 1] and n ∈ N, we have

x⊙ · · · ⊙ x
︸ ︷︷ ︸

n times

= xn = ((nx− (n− 1)) ∨ 0) ∧ 1 .

Proposition 4.1. A function [0, 1] −→ [0, 1] is continuous, convex and piecewise linear in which
each piece has the form ax+ b with a ∈ Z, a ≥ 0 and b ∈ R if and only if it has a representation

as a (∨,⊙)-MV-polynomial of the form
∨

i ci ⊙Xdi for ci ∈ [0, 1] and di ∈ N.

Proof. By a simple structural induction argument, we can prove that any function associated

with a polynomial
∨

i ci ⊙Xdi has the properties of the Proposition.

Reciprocally, suppose f : [0, 1] −→ [0, 1] is continuous, convex and piecewise linear in which

each piece has the form ax+ b with a ∈ Z, a ≥ 0 and b ∈ R. Since f is convex and piecewise

linear, then it can be written as the supremum of linear pieces of the form ax+ b with a ∈ Z,

a ≥ 0 and b ∈ R. We are going to write monomials associated to each truncated function

1 ∧ (0 ∨ (ax+ b)) in order to prove the claim. Indeed, consider the following cases:

• if a+ b ∈ [0, 1] then by a direct calculation one can show that letting p = Xa ⊙ (a+ b)
we have p̃ : x ∈ [0, 1] → 1 ∧ (0 ∨ (ax+ b)) and p is an MV-tropical polynomial.

• if a + b < 0 then for every x ∈ [0, 1], ax + b < a + b < 0, hence we can consider the

polynomial p = X ⊙ 0.

• if a+ b > 1 then a > 1− b hence (1− b)/a < 1 and the function 1 ∧ (0 ∨ (ax+ b)) is
equal to 1 for some c < 1. Then two cases are possible: either (1 − b)/a ≤ 0 and the

function 1 ∧ (0 ∨ (ax+ b)) is constantly equal to 1 in [0, 1], hence we can consider the

polynomial p = X0. Or 0 < (1− b)/a < 1, hence the function is not constant and it is

truncated at 1, but this is against the hypothesis of convexity.

As a consequence of properties in Proposition 4.1 we have:

Proposition 4.2. If p is an MV-polynomial with one variable, then the function p̃ is such that:

• p̃(1) = a < 1 if and only if p̃ is constantly equal to a.

• p̃(x) = 1 for some x < 1 if and only if p̃ is the constant function 1.

Corollary 4.3. Let p be an MV-tropical polynomial with one variable and let Z(p) = {x ∈
[0, 1] | p̃ = 1}. Then either Z(p) = [0, 1] (i# p̃ is the constant function 1), or Z(p) ⊆ {1}. In the

latter case, Z(p) = ∅ i# p̃ is a constant function di#erent from 1.

Due to the distributivity of ⊙ over ∨, the set of MV-tropical polynomial functions coincides

with the set of functions associated to any term written in the language of semirings. On the

other hand, the same does not hold for general terms of MV-algebras (when also the negation is

involved), even when we consider in the language a constant symbol for every element in [0, 1],
as we explain in the following lines (we refer to [18, 20, 3] for details on MNaughton functions

and in particular [2] for the one variable case).



De!nition 4.4. A function f from [0, 1]n to [0, 1] is called a generalized McNaughton function

if it is continuous, piecewise linear and each piece has integer degree one coe"cients and real

degree zero coe"cient.

Di$erently from McNaughton functions that take {0, 1} values on {0, 1}n, generalized Mc-

Naugthon functions can attain any real value in [0, 1] when restricted to {0, 1}n. The set GMn

of generalized McNaughton functions from [0, 1]n to [0, 1], equipped with pointwise operations,

forms an MV-algebra. We can hence consider the semiring reduct of the MV-algebra GMn and

it is of course an MV-semiring.

According to Proposition 4.1, convex generalizedMcNaughton functions inGM1 are precisely

the MV-tropical polynomial functions with one variable.

De!nition 4.5. An MV-tropical rational function is the di$erence of two MV-tropical polyno-

mial functions f and g and can be described in the language of MV as

f ⊖ g = f ⊙ g∗

5. Neural Networks

Among the many possible neural networks typologies and structures, we focus our attention on

multilayer perceptrons. These are feedforward neural networks with one or more hidden layers.

A multilayer perceptron with l hidden layers, n inputs and one output can be represented as a

function F : [0, 1]n → [0, 1] such that F (x1, . . . , xn) =

ψ





n(l)
∑

k=1

ωokψ





n(l−1)
∑

j=1

ωkjψ

(

. . .

(
n∑

i=1

ωlixi + bi

)

. . .

)





 ,

where ψ : R → [0, 1] is a monotone-nondecreasing continuous function (referred to as

activation function), ωok is the synaptic weight from neuron k in the l-th hidden layer to the

single output neuron o, ωkj is the synaptic weight from neuron j in the (l − 1)-th hidden layer

to neuron k in the l-th hidden layer, and so on for the other synaptic weights.

In the simplest case, a multilayer perceptron has exactly one hidden layer. This network can

be represented as a function G : [0, 1]n → [0, 1]:

G(x1, . . . , xn) =

n∑

1=1

αiψ





n∑

j=1

wijxj + bi



 , (1)

where n̄ is the number of neurons in the hidden layer.

In the following we shall consider multilayer perceptrons where the activation function

is piecewise linear function ψ(x) = max(min(1, x), 0), and the synaptic weights are integer

values and we focus on the one-variable case.

Theorem 5.1. Let ψ : R 7−→ [0, 1] be de"ned as ψ(x) = (1 ∧ x) ∨ 0. Then:



(i) For all n̄ ∈ N, αi, wij ∈ Z, bi ∈ R, where i = 1, . . . , n̄, the function F : [0, 1] 7−→ [0, 1]
de"ned as:

F (x) =

n̄∑

1=1

αiψ (wix+ bi)

is an MV-tropical rational function

(ii) For any MV-tropical rational function f , there exist n̄ ∈ N and αi, wi ∈ Z, bi ∈ R, where

i = 1, . . . , n̄ and j = 1, . . . , n, such that

f(x) =
n̄∑

1=1

αiψ (wix+ bi)

6. Conclusions

In this paper, putting together the approaches in [4] and [22], we suggest a description of

functions calculated by a class of neural networks by means of functions corresponding to

formulas written in the language of MV-tropical semirings. The bene#t of such approach is to

have a logical representation of a neural network, in which the parameters of the network are

easily recognizable. Further, polynomials also provide a sort of normal forms for expressions in

a given language.

Already many results have been obtained in the context of tropical geometry from one side

and of Łukasiewicz logic and MV-algebras from another side. This paper is a further step in the

direction of showing that both tropical geometry and MV-algebras are an interesting tool for

the developing of the logic of algebraic geometry.
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