
Design Considerations Towards AI-Driven Co-Processor
Accelerated Database Management

Anh Trang Le
Gabriel Campero Durand
Otto-von-Guericke-Universität

Magdeburg, Germany
firstname.lastname@ovgu.de

Bala Gurumurthy
David Broneske

Otto-von-Guericke-Universität
Magdeburg, Germany

firstname.lastname@ovgu.de

Christoph Steup
Gunter Saake

Otto-von-Guericke-Universität
Magdeburg, Germany

firstname.lastname@ovgu.de

ABSTRACT
Adopting AI techniques for query optimization is an on-
going research interest in the database community. Current-
ly, the search space for the best plan increases drastically,
with the growing heterogeneity of the target hardware, the
novel tuning choices offered, and co-processing. Hence, the
need for AI techniques to identify such a best plan in a
reasonable time-frame is imminent. Though AI-based solu-
tions for improving query processing exist, there is still a
need for principled system designs able to incorporate the
different innovations, leverage synergy effects, and keep with
production-readiness expectations when using AI. In this pa-
per, we propose a series of seven ideal design characteristics
we envision for such systems. We then make the case for
revisiting the traditional Mariposa system, to consider its
market concepts as a useful starting point for new system
designs to support the identified characteristics. Altogether,
we expect that this short paper could be a modest contri-
bution towards AI-driven heterogeneous processing, empha-
sizing the practical aspects of a supportive and principled
overall design.

Keywords
AI for DBMS, Self-driving DBMS, Heterogeneous query pro-
cessing, Hardware-accelerated query processing

1. INTRODUCTION
In the recent decade, computer systems composed of

multiple heterogeneous processors have quickly become the
norm, rather than the exception [27]. Along with this ra-
pid growth, we also witness an increasing adoption of hy-
brid processor database systems that circumvent the ’power
wall’ [3] and show great potentials for speeding up query
processing [24]. However, without tailored optimization stra-
tegies, these systems cannot achieve the best performance
gains. In fact, studies show that some GPU-accelerated sys-
tems with better operator-level implementations than their

32nd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), September 01-03, 2021, Munich, Germany.
Copyright © 2021 for this paper by its authors. Use permitted under Crea-
tive Commons License Attribution 4.0 International (CC BY 4.0).

CPU counterparts still have poor performance for overall
query processing in analytical benchmarks [28]. This is part-
ly explained by the fact that optimizing query processing for
such systems encounters numerous intrinsic challenges cau-
sed by the diversity of tuning techniques per device , the
uncertainty (given such techniques) in accurately modelling
real-world performance impact factors (through parametric
cost models), the influence of workloads, as well as the need
to support scalability to more devices, data and new tu-
ning choices [6]. All these aspects create a huge optimizati-
on space, which is hard to evaluate [17], turning the task of
establishing a uniform research prototype for their detailed
study into a tough nut to crack.

In this paper, we propose an early vision for a princi-
pled system architecture with the goal of exposing and ea-
sing query optimization in a co-processor accelerated data
system. In traditional systems, optimization decisions are
commonly addressed with hard-corded rules and heuristics.
Such systems, can result in weaknesses for generalizing to
unknown workloads or devices, as well as difficulties for ex-
tending the heuristics and their maintenance.

Throughout the last decade, there has been a shift to-
wards employing AI techniques in handling these tasks more
efficiently, alleviating the mentioned drawbacks of traditio-
nal methods. In the database community, there is a strong
research trend that studies how AI can benefit database op-
timizations [20, 14, 21, 29, 4]. Though the prospect is bright,
there are several obstacles coming from AI itself, especially
in the deployment of AI solutions [13, 19]. Hence, adopting
them in the co-processing domain forces us to solve a du-
al challenge: enhancing the performance of hybrid processor
databases, as well as maintaining the AI, and specially ma-
chine learning (ML) models in production.

In order to confront this situation, we consider that prin-
cipled designs are needed for heterogeneous hardware data-
base systems, which can facilitate the inclusion of learning
from the ground-up, to address the different challenges in
these systems. More precisely we propose seven characteri-
stics we deem as essential for the system: C1) task modula-
rization, C2) collaborative agents as building blocks, C3) ex-
changeability of optimizers, C4) the separation of represen-
tation and policies, C5) concepts for database administrators
(DBAs) to manage AI components, C6) ease of adaptation
to training scenarios, and C7) learning from demonstrations.
Overall, we propose that all these characteristics would con-
tribute to improve the solutions for heterogeneous database
query processing, while simultaneously addressing the needs
for AI production readiness.



In more detail, our core contributions in this paper are:

• We present to the community a first proposal of se-
ven ideal features that we deem as central to building
and maintaining a practical AI-based DBMS for co-
processor systems.

• We propose an early high-level design that builds on
the ideas of the market components of the classical
Mariposa system developed by Stonebraker et al. [26],
while seeking to support the ideal system features we
identified.

The remainder of this paper is structured as follows: Sec. 2,
points out various challenges in incorporating AI com-
ponents to support co-processor database management.
Sec. 3 outlines our proposed design needs, it also describes
the high-level architecture of a system able to serve these
needs. This section covers the system features, as well as the
main workflow. Sec. 4, formalizes research questions that we
aim to address with our proposed system design. Sec. 5, pro-
vides context to the design we consider, by reviewing related
work. Finally, Sec. 6, wraps-up this paper with a summary
and points for future work.

2. CHALLENGES OF HETEROGENEOUS
DATA MANAGEMENT

In developing an AI-driven DBMS for heterogeneous pro-
cessors, the literature suggests several challenges.

Storage Engine Design: From the perspective of a sto-
rage engine, the trade-off between consistency, availabili-
ty and partition-tolerance, for a given workload, is a fo-
remost concern [22]. Addressing availability, some challen-
ges are: mechanisms to efficiently use scale-out processing
to an increasing number of heterogeneous processors, while
keeping in mind aspects such as different data transfer ra-
tes [1]. Up front data distribution strategies, such as hard-
ware islands [24] or layered designs [28] for hot-cold data
are commonly adopted, but exploration of alternatives is li-
mited in the domain (e.g., [16]). Furthermore, co-processor-
friendly data structures and storage optimization adapted to
the diversity of application scenarios, devices, and data cha-
racteristics (e.g., increasing relevance of textual and semi-
structured data), remains important for availability. Addres-
sing consistency, strong mechanisms for supporting isolation
level guarantees are necessary for increasing system maturi-
ty.

Summary: Relevant directions for storage technologies to
enhance their co-processing efficiency, while keeping with
consistency constraints, include: workload-tuned data dis-
tribution, transfer-aware processing, the ease for incorpora-
ting alternative processor-specific data optimizations (e.g.,
layouts, or compression), and finally the ability to seamlessly
share data structures across processors.

Query Engine Design: The processing of single queries over
heterogeneous hardware offers numerous optimization choi-
ces, as compared to the case of homogeneous hardware (e.g.
just-in-time code generation to fuse pipelined operators into
unified kernels, more diversity of operator variants, or oppor-
tunities for resource sharing of concurrent kernels). Further-
more, there are many variants for a single operator present
depending on the underlying device [3, 5]. This number of
choices only increases when considering distributing single

plans across multiple devices, or optimizing groups of que-
ries at-a-time (which results pertinent for high parallelism
devices). Other than that, many relevant performance fac-
tors (e.g. device saturation, query expression complexity) or
implementation details (e.g. cache consistency) could result
in difficulties to model accurately for cost estimations.

Summary: For efficient query processing over varied hard-
ware, it is important to consider methods that are able to
deal with large-scale optimization, and to work with uncer-
tain models for performance factors.

AI Adoption: It might be conceptually simple to alter a
certain computer system task (e.g. magic number selection,
to build a hash function), replacing hard-coded rules with
an AI-friendly interface that provides experience for a mo-
del, to eventually master the task. However, in practice it
is far from trivial to build and maintain such models at the
highest production-readiness levels [13]. In essence, unlike
traditional software components, AI models can be harder
to test and can fail in unexpected ways, specially for deep
learning. Models can often be black boxes, or require copious
training to be efficiently used. Machine learning models, spe-
cifically, consist of an entirely particular lifecycle going from
data management tasks (including data collection and fea-
ture engineering), model learning (and tuning), validation
and deployment, with challenges and cross-cutting concerns
all through this lifecycle [19]. Some common challenges are:
insufficient data, concept drift, and adversarial attacks.

Summary: The incorporation of AI components might af-
fect the guarantees that a system can provide. To overcome
this, it is fundamental that the system is made safe to criti-
cal AI errors with fall-back mechanisms, and finally that an
easy-to-use interface is offered for administrators to engage
with AI metrics and model lifecycle management.

3. DEVELOPING AN AI-ENABLED
CO-PROCESSOR ACCELERATED
DATABASE PROTOTYPE

In order to overcome the identified challenges of scalabi-
lity as well as the need for adaptability and support for the
AI/ML lifecycle, a principled design for building a system is
required. To date, similar designs have already been consi-
dered by researchers in other areas, already offering design
principles. In this section, we consider briefly some of such
design concepts from a general, to a more specific case, which
we then use to propose the series of ideal characteristics, that
become the basis of our system design.

From a general application perspective, university cour-
ses1 and textbooks already study good practices for building
systems that incorporate machine learning [9]. Furthermore,
there are several papers that highlight intrinsic challenges
which require designs to adapt to them [25]. They usual-
ly refer to difficulties such as modularization, or to specific
problems of an ML approach (e.g., [7]).

Moving to a more specific application, the authors of
the AutoSys framework [18] suggest 4 principles organized
around the goals of making systems learnable, and making
the learning manageable: exposing system behavioral featu-
res for learning through well-defined interfaces (P1), careful
monitoring of model behavior (P2), modularization of the

1For example, SE4AI offered by Christian Kästner at CMU:
https://github.com/ckaestne/seaibib

https://github.com/ckaestne/seaibib


learning to scope complexity (P3), and resource manage-
ment for system exploration and maintenance (P4). In fur-
ther work, authors report experience in applying their fra-
mework, providing further practical advice.

Similar design considerations have a long history in the
community that studies self-driving data management, al-
beit not often coupled with AI (e.g., Babu et al. have argued
for experiment-driven adaptive tuning by having replicated
test databases [2]); most recently Kossmann and Schlosser
also highlight the importance of modular designs and the
plug-and-play nature of optimizations in designing such ad-
aptive systems [11]. Furthermore, authors identify co-related
tasks as a core challenge to efficient modularization, propo-
sing and testing a linear programming framework that ena-
bles them to deal with such complication.

In recent years, research in AI-based databases has pro-
posed designs tailored to the needs in the area. Due to space
limitations, we discuss in the following a few key ideas from
a limited set of them: Pavlo et al. [20] build a system desi-
gned with a principled distinction between workload mode-
ling (i.e., representation learning) and system control (i.e.,
policies). In further work, they continue their approach whi-
le distinguishing between externally and internally coupled
intelligent mechanisms [21], illustrated by their work in Ot-
terTune and NoisePage, respectively. Within the research
scope of SageDB, Kraska et al. [12] present and evaluate a
comprehensive vision for how common database components
can be replaced with AI. Among their core ideas, authors de-
velop the concept of instance optimality, which posits that
a learned model for a database needs only to be provably
optimal to the intended workload and system configuration.
Finally, the authors of XuanYuan [14] present a broad high-
level design that focuses on identifying what are the learna-
ble components of current databases, considering task mo-
dularization, and categorizing tasks according to the func-
tionality they offer to the overall system (e.g., self-healing,
self-assembling, self-optimizing).

Based on this preceding work, and on the challenges iden-
tified for heterogeneous co-processing, we propose the fol-
lowing seven characteristics we deem that an AI-based da-
tabase should reasonably offer for this domain. We should
note that these characteristics might not be exhaustive, but
aim to serve as a starting point towards a principled design.

C1- Task Modularization: The growing hardware heteroge-
neity increasingly expands the space of all possible optimi-
zation choices for DBMSs. Already query optimizers for such
systems employ staging, wherewith optimizations are confi-
gured into stages and at each one there are specific sets of
rules and mechanisms that can be adopted. Concerning ML
components, employing a single, monolithic model to learn
such a complex space and address the optimizing at a sin-
gle shot can escalate the learning cost and complexity. Task
modularization is a good alternative, since the optimizati-
on problems to be tackled can be decomposed and solved
separately, resulting easier to learn.

C2- Collaborative agents as building blocks: The best models
for a given task on a selected device are only required to be
instance optimal (i.e, their strategies do not need to generali-
ze to other devices). Hence, as much as possible, it might be
beneficial for designs to strive towards supporting device-
specific simple instance-optimal models by decomposing a
task (e.g., a single query optimization) into parts that can

be solved in a collaboration among agents (e.g., sub-query
selection and optimization per device). To this end, clean
abstractions for the task and communication protocols are
required. This characteristic seeks to address the storage en-
gine challenge for high device adaptability.

C3- Exchangeability of optimizers: Similar to current databa-
ses that already employ alternative optimizers in tasks like
join order optimization, for a research-oriented prototype it
becomes essential to support the use of alternative optimi-
zers/models in a plug-and-play manner for dealing with a
specifically modularized task. To the point, extending opti-
mizers (with new features), and integrating new optimizers
should also be supported with ease, to facilitate the evolu-
tion of the overall system.

C4- The separation of representation and policies: Following
related work [20], we propose that a smart separation bet-
ween representation learning (i.e., how a model decides to
represent an entity) and policies (i.e., the decisions made
by a model, for a task, given a representation), will be of
value. This separation would facilitate representation re-use
(transfer learning) across tasks that work on similar entities
(e.g., a query) and the analysis of alternative multi-modal
solutions for a task which could provide benefits on different
scenarios (e.g., a query can be represented as multi-sets of
traditionally encoded predicates, joins, tables; but it can al-
so be represented as a graph of such features). As different
policies can benefit from stable compact learned representa-
tions, this characteristic seeks to help in the aforementioned
query engine challenges for large-scale optimization.

C5- Concepts for DBAs to manage AI components: In consi-
deration of the many steps requiring human management in
the ML lifecycle, we envision that the role of the DBA could
be extended to incorporate a degree of actions to manage
this lifecycle. To support this, novel services exposing ML
management with clearly-defined interfaces will be needed
in the database context.

C6- Ease of adaptation to training scenarios: Different user
scenarios will create different alternatives for training the
ML models. It might be that some scenarios accept live trai-
ning in the background for a given task, while other scenarios
might require collecting experience data for offline learning
at a later stage. Some scenarios might allow for ample large-
scale training, while training on other scenarios might be
severely resource-constrained. In either case, the design for
the system components in charge of scheduling model trai-
ning, with its intrinsic resource management, should be able
to cater to such variations. The ability of models to schedule
self-training should also be supported.

C7- Learning from demonstrations: The final feature that we
believe is essential for successful adoption of AI models to
solve computer system tasks has to do with robustness. In
order for the model to be able to replace a current strategy,
an efficient and reasonable solution would be starting with
the model by being pre-trained on experience collected from
the current strategy. Hence, mechanisms for creating and
using demonstrations for training are important.

After listing these ideal system characteristics, we can now
present a tentative design that can be adopted to fulfill them.

To be precise, we make the case for a design based on the
Mariposa system – a market-based distributed DBMS [26],
which we will discuss further in Sec. 5. In general, Maripo-
sa operates the query processing in a decentralized manner



that allows for local autonomy regarding query execution
in each site contained within a network, instead of centrali-
zed management. Mariposa’s working mechanism primarily
bases itself on an economic paradigm, focusing on two sepa-
rate markets, for data and query distribution, respectively.
In our research, we argue for building on Mariposa’s market
concepts, in two key ways: First, by considering an architec-
ture with heterogeneous processing capabilities. Second, by
investigating how AI-based solutions can augment the pro-
posed markets. In this regard, we take as a hypothesis that
the modularization of the optimization mechanisms presen-
ted in Mariposa (C1, C2) serve to scope the complexity of
the learning tasks, serving as a workable basis for incorpo-
rating technological innovations as well as the production
readiness. Figure 1 envisions a general architecture of our
proposed design, which employs the market concepts from
the Mariposa system as a starting point.

At a high level, four components are involved:
Global Optimizer: This component maps SQL queries to

actual plans. It is in charge of global query optimization
including: the generation of global plans, partial splitting of
the plans (to distribute among devices), decision support for
selection of plans returned from the device processor class
optimizer, and (optionally) requests for data re-distribution.

Storage Manager: This component provides a centralized
collection of statistics about devices and a tracking mecha-
nism of data distribution schemes. It enables user-facing con-
figurations of the overall storage, including schema manage-
ment, index selection and coarse-grained partitioning. It also
is intended to provide the DBA with an interface to the AI
components, including learning from demonstration. Hence,
this component realizes C5 and C7.

Device Processor Class Optimizer: This is the key com-
ponent for decentralized modularized data management. As
we could propose a component per processor, or per compu-
te node/device (i.e., irrespective of the co-processor variety
included), we find that a component per type of processor
serves as a workable middle-ground. This component is in
charge of local data fragmentation, local query optimization
(and pricing), algorithm selection and the actual execution
of queries. It is also responsible for autonomous data sharing.

AI Support System: This element encompasses the func-
tionality required to support the ML lifecycle. It includes
model management, model training, among others. It is in-
tended to facilitate C6 and C7.

Our architecture enables the distribution of query and
sub-query plans for cost estimation on the device processor
class optimizers; besides the distribution of data driven by
the device-specific component, in addition to (partial input
from) the global optimizer.

Query Processing: At the start, a group of queries enters
the system at a given time step, and at the global optimizer,
they are ranked by their importance to overall performance
goals. Second, they are globally partitioned and subsets of
their plans are shipped to the devices, for pricing. In third
place, the different device processor class optimizers provide
a set of optimizations and prices for the queries requested.
To do this, they featurize the query plans (C4), and sug-
gest different combinations of sub-queries to execute with
different costs (for this they consider local data statistics
and learned models for algorithm selection). The prices are
then returned, in a fourth step, to the global optimizer, so
this optimizer can select among the bids until all queries are

served. Once choices are made, finally queries can be execu-
ted on the devices. This scheme describes a query market,
as the proposed by Stonebraker et al. [26]. By framing the
problem in economic terms, this approach helps decentrali-
zed coordination and favors local strategies for optimization
(C2). Some optimization choices include: variant selection,
operator merging into unified kernels, different sub-query
splitting and pipelining strategies, parallelism tuning with
morsel-driven execution, locality awareness, intermediate re-
sults reuse and operator sharing across queries.

Data Management: The data distribution lifecycle, which
occurs in the background, can be understood as follows: On
system start, given the lack of information for distributing
the data, some assumptions can be made by the storage ma-
nager to achieve fragmentation and distribute the data for
load balancing. In general, data can be grouped into frag-
ments that are commonly co-accessed and that provide a
given utility. While the system is online there are two ways
in which data can be redistributed: First, when an optimal
plan for a query cannot be found, global requests for data re-
organization can be made by the global optimizer (with some
pre-designed mechanism). Following these requests, the de-
vice optimizers can organize autonomously how to serve the
global hints. Second, device optimizers themselves are re-
sponsible for tracking the utility derived from a given data
fragment (i.e., depending on the queries that can be ser-
ved by such fragment). This enables devices to have metrics
to be able to assess how much utility can be derived from
fragments that are not locally available. Hence, by using in-
formation from the storage manager, device optimizers can
participate in a data market. In this market, devices buy
copies of fragments, and delete local copies of fragments,
while keeping with some constraints (e.g., for co-location or
availability). The market formulation is expected to facili-
tate adaptivity and work distribution (C2). Some learning
tasks to be tackled with this system include: local algorithm
selection, local query optimization, global plan selection, lo-
cal fragment partitioning, data sharing, global management
for data redistribution, query classification/prioritization.

Altogether, the proposed design is intended to realize the
ideal characteristics we set as goals (C1-C7). To achieve this,
the characteristics of the original Mariposa design are lever-
aged (C1,C2). Furthermore, the design seeks to facilitate
the use of alternative optimizers or models for a task (C3),
to provide chances for reusing representations across com-
ponents (e.g., of queries with respect to the device optimi-
zers), which that can then adopt different policies (C4), and
to create opportunities for components to have flexible AI
training engaging the DBA with the process, and enabling
to learn from demonstration data (C5-C7).

4. OPEN QUESTIONS
Based on our proposed design, in this section we turn to

open questions we envision our design to be able to help
address. These questions relate to query engine (Q1-Q2),
storage engine (Q3) or machine learning (Q4-Q5) challenges.
Q1: What building blocks for intelligent and collaborative
query processing are necessary to achieve improvements on
heterogeneous processors, considering single-query optimi-
zation –focusing on algorithm selection, parallelism tuning,
splitting, merging and pipelining of operators; compared to
strong baselines?
Q2: What strategic designs for intelligent and collaborative



Query Prioritization

Global Plan Partitioning

Global Plan Selection

Global Management for 
Data Redistribution

Configurations Logging Fragment 
Tracking

Access 
Paths

Indexes and 
Views

Device 
Monitor and 

Info

Manager for 
AI 

Components Global Optimizer

Storage Manager

Local Storage Manager Local Query Optimizer

Device Processor Class Optimizer

Executor

Query market 
interface (bidding)

Data market interface (bidding)

Workload-level 
Performance Goal

SQL Query 
Interface

System Administration 
Interface

Fragment 
formation

Fragment 
valuation 

and 
Statistics

Global 
Storage 

Info

Data 
sharing

Algorithm/
Variant 

Selection

Local query 
optimization

Intermediate 
Results Views

AI
Support
System

Figure 1: General Architecture of our Proposed System

query processing lead to performance gains on heterogeneous
processors, considering multi-query optimization (MQO) –
with a focus on intermediate results reuse and operator sha-
ring? To what degree do intelligent methods compete with
non AI-based alternatives?
Q3: What precise contributions are brought from different
applications of AI, to the efficiency of data sharing across
co-processors; contrasted with competitive baselines?
Q4: How do AI-based approaches perform in robustness
tests, compared to heuristic baselines, with respect to
changing assumptions such as novel processors or unseen
workloads/kinds of queries? What level of improvements
does curricula management bring regarding robustness and
sample-efficiency?
Q5: What techniques from learning management (such as
learning from demonstrations, or transfer optimization) or
from database implementation contribute the most to an
efficient integration of the AI components into the lifecy-
cle of data management? Do these techniques contribute to
trade-off management between approaches? To what extent
do these techniques improve the overall readiness of our so-
lution over baseline choices?

5. RELATED WORK

5.1 AI-based database systems
Incorporating AI components to traditional systems, for

improving the overall system performance, is a significant
topic that is currently catching great attention from resear-
chers, in both theoretical and applied aspects. On one hand,
multiple studies investigate the strategies for an overall co-
design of systems and AI, fitting for general applications [18]
and more specific ones in databases [21]. On the other hand,
many research zooms into the particular problems that can
benefit from using suitable AI techniques. Those, in data-
bases, range from cost and cardinality estimation assisted
by deep neural networks [10], join order selection or parti-
tioning supported by reinforcement learning [15, 4, 8], and
many more [29, 14]. In a bigger scope, other recent literature
also studies complete database management system assisted

by machine intelligence, instead of focusing on only one or
some certain tasks within it. Some highlighted work, which
can be considered to be in a relative early stage, include
Peloton [20], SageDB [12] and GaussDB2.

5.2 Market-based distributed database
systems

In economics, a market is defined as any structure that
enables trading activities among its participants, for any ty-
pes of goods, services or information, following a pricing me-
chanism that aims for optimal distribution and allocation of
resources. Interestingly, this concept has been reformulated
to efficiently solve the problems of query optimization in
many distributed data management systems. To help with
some of our ideal design characteristics (C2), we consider
this concepts to be relevant.

The system that we base our design on is Mariposa [26],
which adopts market concepts to achieve autonomous da-
ta sharing and query processing. In a wide-area network,
Mariposa allows each single site to take a full control over
its own resources, enabling it to decide on data objects to
buy or sell and queries for which to bid on, for execution.
A bidding protocol is defined to regulate the transactions
among all sites within the two markets: 1) Query Market :
each query Q enters the system with a budget B(t) indi-
cating the price that the user wants to pay for running Q
within time t. Also, Q is administered by a broker, which
sends out to bidder sites the requests for bids to execute
subqueries Q1, ..., Qn and then decides on the winning sites.
2) Data Market : each table included in the FROM clause of
a query can be split into a set of fragments. A site needs to
buy fragments referenced in the subquery that it wants to
bid on, and can sell its must-evicted fragments at any time
by conducting an auction, following the system pricing me-
chanism. The trading process runs continuously. Each site
makes decisions on storing, buying and selling fragments or
the replicas of fragments made by the site itself, aiming at
maximizing its profit per unit time.

2https://e.huawei.com/en/solutions/cloud-computing/big-
data/gaussdb-distributed-database



Another framework that is based on an economic para-
digm to acquire self-adaptive query allocation in large-scale
distributed systems is SQLB [23], in which the authors high-
light the importance of maintaining constantly the interests
of the participators throughout the ongoing market. The sys-
tem targets at preserving participants’ satisfaction on query
allocation/execution and guaranteeing query load balancing
within the system, which then helps in minimizing the re-
sponse time and maximizing system throughput.

NashDB [16] is a more recent framework that shows ef-
ficiency in autonomously handling data fragmentation, rep-
licas generation, allocation and cluster sizing to attain the
Nash equilibrium, i.e. supply-demand balance in markets.

6. CONCLUSION
The search space of traditional query optimizers is ve-

ry large. Such search space is further increased many folds
with the introduction of co-processors for query execution.
AI techniques are promising solutions in traversing such a
large search space, identifying the best plan in an effective
and time-efficient way. As a consequence, there is a growing
body of research devoted to AI-based solutions [29]. Howe-
ver, turning these solutions into a production-ready contri-
bution remains a challenge since AI, and machine learning
in specific, contain many intrinsic challenges that require
overall system considerations. In sum, systems builders are
placed in the difficult position of having to simultaneously
tackle a set of heterogeneous co-processing challenges, next
to a set of AI adoption challenges.

As a motivation for this work, we considered that a prin-
cipled system design could contribute to addressing the afo-
rementioned 2 sets of challenges, while at the same time
helping in the integration of different technological innovati-
ons. In order to contribute towards this goal, in this pa-
per we summarized a list of preceding work that helped
us to identify 7 design characteristics (C1-C7), addressing
needs for scoping complexity and difficulty of learning (C1,
C7), high adaptability/instance optimality (C2-C3), scale
(C4), and machine learning issues in general (C5-C6). Ba-
sed on this, we proposed an early overall system design, ba-
sed on concepts originally studied in the visionary Mariposa
system, specifically the economic concepts for a data and
query market. We propose this design to fulfill the design
characteristics, while offering an AI-based heterogeneous co-
processing database. To conclude, we listed open questions
that we would like to review, moving forward, by using our
proposed design.

7. ACKNOWLEDGMENTS
This work was partially funded by the DFG (grant no.: SA

465/51-1 and PI 447/9). The authors would like to thank
Marcus Pinnecke, Andrey Kharitonov, Rajatha Rao and
Yash Shah for collaborations related to this work.

8. REFERENCES
[1] I. Arefyeva, D. Broneske, G. Campero, M. Pinnecke, and

G. Saake. Memory management strategies in CPU/GPU
database systems: A survey. In BDAS. Springer, 2018.

[2] S. Babu, N. Borisov, S. Duan, H. Herodotou, and
V. Thummala. Automated experiment-driven management
of (database) systems. In HotOS, 2009.

[3] D. Broneske, S. Breß, M. Heimel, and G. Saake. Toward
hardware-sensitive database operations. In EDBT.
OpenProceedings.org, 2014.

[4] G. C. Durand, R. Piriyev, M. Pinnecke, D. Broneske,
B. Gurumurthy, and G. Saake. Automated vertical
partitioning with deep reinforcement learning. In ADBIS.
Springer, 2019.

[5] B. Gurumurthy, D. Broneske, M. Pinnecke, G. Campero,
and G. Saake. Simd vectorized hashing for grouped
aggregation. In ADBIS. Springer, 2018.

[6] B. Gurumurthy, T. Drewes, D. Broneske, G. Saake, and
T. Pionteck. Adaptive data processing in heterogeneous
hardware systems. In GvDB, 2018.

[7] A. Haj-Ali, N. K. Ahmed, T. Willke, J. Gonzalez, et al. A
view on deep reinforcement learning in system
optimization. arXiv preprint arXiv:1908.01275, 2019.

[8] B. Hilprecht, C. Binnig, and U. Röhm. Learning a
partitioning advisor for cloud databases. In SIGMOD, 2020.

[9] G. Hulten. Building Intelligent Systems. Springer, 2019.

[10] A. Kipf, D. Vorona, J. Müller, T. Kipf, et al. Estimating
cardinalities with deep sketches. In SIGMOD. ACM, 2019.

[11] J. Kossmann and R. Schlosser. Self-driving database
systems: A conceptual approach. DAPD, 2020.

[12] T. Kraska, M. Alizadeh, A. Beutel, H. Chi, et al. SageDB:
A learned database system. In CIDR, 2019.

[13] A. Lavin, C. M. Gilligan-Lee, A. Visnjic, S. Ganju, et al.
Technology readiness levels for machine learning systems.
arXiv, 2021.

[14] G. Li, X. Zhou, and S. Li. Xuanyuan: An AI-native
database. IEEE Data Eng. Bull., 42(2), 2019.

[15] R. Marcus and O. Papaemmanouil. Deep reinforcement
learning for join order enumeration. In aiDM@SIGMOD.
Association for Computing Machinery, 2018.

[16] R. Marcus, O. Papaemmanouil, S. Semenova, and
S. Garber. NashDB: An end-to-end economic method for
elastic database fragmentation, replication, and
provisioning. In SIGMOD. Association for Computing
Machinery, 2018.

[17] A. Meister, S. Breß, and G. Saake. Toward GPU-accelerated
database optimization. Datenbank-Spektrum, 15(2), 2015.

[18] C.-J. Mike Liang, H. Xue, M. Yang, and L. Zhou. The case
for learning-and-system co-design. ACM SIGOPS
Operating Systems Review, 53(1), 2019.

[19] A. Paleyes, R.-G. Urma, and N. Lawrence. Challenges in
deploying machine learning: A survey of case studies.
arXiv, abs/2011.09926, 2020.

[20] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, et al. Self-driving
database management systems. In CIDR, volume 4, 2017.

[21] A. Pavlo, M. Butrovich, A. Joshi, L. Ma, et al. External vs.
internal: An essay on machine learning agents for
autonomous database management systems. IEEE Data
Eng. Bull., 42, 2019.

[22] M. Pinnecke, D. Broneske, G. C. Durand, and G. Saake.
Are databases fit for hybrid workloads on GPUs? A storage
engine’s perspective. In ICDE. IEEE, 2017.

[23] J.-A. Quiane-Ruiz, P. Lamarre, and P. Valduriez. SQLB: A
Query Allocation Framework for Autonomous Consumers
and Providers. 2007.

[24] A. Raza, P. Chrysogelos, P. Sioulas, V. Indjic, et al.
GPU-accelerated data management under the test of time.
In CIDR, 2020.

[25] I. Stoica, D. Song, R. A. Popa, D. Patterson, et al. A
berkeley view of systems challenges for ai. arXiv preprint
arXiv:1712.05855, 2017.

[26] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, et al.
Mariposa: A wide-area distributed database system. VLDB
Journal, 5(1), 1996.

[27] M. Zahran. Heterogeneous computing: Hardware and
software perspectives. ACM, 2016.

[28] Y. Zhang, Y. Zhang, J. Lu, S. Wang, et al. One size does
not fit all: Accelerating OLAP workloads with GPUs.
DAPD, 38, 2020.

[29] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets
artificial intelligence: A survey. TKDE, 2020.


	Introduction
	99993em.5Challenges of Heterogeneous Data Management
	Developing an AI-Enabled Co-Processor AcceleratedDatabase Prototype
	Open Questions
	Related Work
	AI-based database systems
	Market-based distributed database systems

	Conclusion
	Acknowledgments
	References

