
Towards Porting Hardware-Oblivious Vectorized Query
Operators to GPUs

Johannes Fett, Annett Ungethüm, Dirk Habich, Wolfgang Lehner
Database Systems Group, Technische Universität Dresden, Dresden, Germany

{johannes.fett,annett.ungethuem,dirk.habich,wolfgang.lehner}@tu-dresden.de

ABSTRACT
Nowadays, query processing in column-store database sys-
tems is highly tuned to the underlying (co-)processors. This
approach works very well from a performance perspective,
but has several shortcomings from a conceptual perspective.
For example, this tuning introduces high implementation as
well as maintenance cost and one implementation cannot be
ported to other (co-)processors. To overcome that, we deve-
loped a column-store specific abstraction layer for hardware-
driven vectorization based on the Single Instruction Multiple
Data (SIMD) parallel paradigm. Thus, we are able to im-
plement vectorized query operators in a hardware-oblivious
manner, which can be specialized to different SIMD instruc-
tion set extensions of modern x86-processors. To soften the
limitation to x86-processors, we describe our vision to inte-
grate GPUs in our abstraction layer by interpreting GPUs
as virtual vector engines in this paper. Moreover, we present
some initial evaluation results to determine a reasonable vir-
tual vector size. We conclude the paper with an outlook on
our ongoing research in that direction.

1. INTRODUCTION
Analytical database queries typically access a small num-

ber of columns, but a high number of rows and are, thus most
efficiently answered by column-store database systems [1].
Since the amount of data is still growing, these systems con-
stantly adapt to novel hardware features to satisfy the requi-
rements of high query throughput and low query latency [2,
3, 4]. From the hardware perspective, we see that Moore’s
Law is still valid and the transistors on a chip double about
every two years [5]. Unfortunately, we also see an end of
Dennard scaling, so that not all transistors can be active
due to power constraints [5]. To deal with that, vectorizati-
on, parallelization, specialization and heterogeneity are key
approaches for hardware designers [5].

For this reason, vectorization based on the Single Instruc-
tion Multiple Data (SIMD) parallel paradigm has establis-
hed itself as a core query optimization technique in column-

32nd GI-Workshop on Foundations of Databases (Grundlagen von Daten-
banken), September 01-03, 2021, Munich, Germany.
Copyright © 2021 for this paper by its authors. Use permitted under Crea-
tive Commons License Attribution 4.0 International (CC BY 4.0).

store systems [1, 6, 7]. SIMD increases the single-thread per-
formance by executing a single operation on multiple data
elements in a vector register simultaneously (data paralle-
lism) [8]. Such SIMD capabilities are common in today’s
mainstream x86-processors using specific SIMD instruction
set extensions, whereas a current hardware trend is that the-
se extensions are growing not only in terms of complexity of
the provided instructions but also in the size of the vector
registers (number of data elements in parallel). To tackle
the evolving SIMD-specific diversity, we developed a novel
abstraction layer called Template Vector Library (TVL) for
in-memory column-stores [6]. Using that TVL, we are ab-
le to implement hardware-oblivious vectorized query opera-
tors, which can be specialized to different SIMD instruction
set extensions at query compile-time [6].

Besides vectorization, hardware also shifts from homoge-
neous x86-processors towards heterogeneous systems with
different computing units (CU) [5]. In this context, there
is already a huge number of research works that deal with
the use of different CUs such as GPUs or FPGAs for an
efficient analytical query processing [2, 3, 4, 9, 10, 11]. In
general, these works have shown the great potential, but
all these approaches have a common shortcoming. For each
CU, a separate hardware-conscious and hand-tuned code-
base for query operators has to be implemented and main-
tained using different programming concepts. From a perfor-
mance perspective, this approach works very well, but the
efforts for implementation and maintenance often outweigh
the benefits. To overcome that, our overall vision is to en-
hance our SIMD abstraction layer TVL to cover different
heterogeneous CUs as well.

Our Contribution and Outline. In this paper, we de-
scribe our vision and present some initial steps to integrate
GPUs in our abstraction layer by interpreting GPUs as vir-
tual vector engines. Generally, GPUs use a Single Instructi-
on Multiple Thread (SIMT) execution model which can be
also interpreted as SIMD combined with multi-threading.
Based on that, GPUs seem like a perfect match for our TVL
to soften the limitation to x86-processors. Thus, our contri-
butions are the following in this paper:

1. We start with an introduction in our SIMD abstraction
layer TVL as well as with an architectural description
of NVIDIA GPUs in Section 2.

2. Then, we present our general idea of SIMDization of
GPUs in Section 3. To interpret a GPU as virtual vec-
tor engine, we have to determine a reasonable virtual
vector size, which can be most efficiently processed in
parallel. The vector size is important because it is an



(a) Template Vector Library (TVL) (b) NVIDIA GPU Architecture

Figure 1: Architectures of the Template Vector Library (TVL) and of NVIDIA GPUs.

essential part of SIMD and an integral part of our TVL.
For that, we present some TVL-oriented experiments.
Based on the results, we derive a virtual vector size.

3. In Section 4, we summarize our lessons learned and
describe our ongoing activities in that direction.

4. We close the paper with related work in Section 5 and
a short summary in Section 6.

2. BACKGROUND
In this section, we introduce our Template Vector Library

as SIMD abstraction layer for column-stores. Moreover, we
briefly describe the GPU architecture and execution model.

2.1 Template Vector Library
Vectorization is a state-of-the-art query optimization tech-

nique in in-memory column-stores, because all recent x86-
processors offer powerful SIMD extensions [1, 7, 12, 13, 14].
SIMD provides data parallelism by executing a single in-
struction on multiple data elements simultaneously [8]. To
achieve the best performance, explicit vectorization using
SIMD intrinsics is still the best way [6, 13, 14], whereas int-
rinsics are functions wrapping the underlying machine calls.
However, these SIMD extensions are increasingly diverse in
terms of (i) the number of available vector instructions, (ii)
the vector length, and (iii) the granularity of the bit-level
parallelism, i.e., on which data widths the vector instruc-
tions are executable [6]. To hide this heterogeneity, we de-
veloped a specific abstraction layer called Template Vector
Library (TVL) for column-stores [6].

Our abstraction approach follows a separation of concerns
concept as shown in Fig. 1(a). On the one hand, it offers
hardware-oblivious but column-store specific primitives,
which are similar to intrinsics. The primitives are derived
from state-of-the-art vectorized columnar query operators.
We organized these primitives in seven self-descriptive
classes like load/store (L/S) or an arithmetic class for
a better organization including a unified interface per
class [6]. On the other hand, our TVL is also responsible
for mapping the provided hardware-oblivious primitives
to different SIMD extensions. For this mapping, our TVL
includes a plug-in concept and each plug-in has to provide
a hardware-conscious implementation for all primitives.

From an implementation perspective, our abstraction con-
cept is realized as a header-only library, where the hardware-
oblivious primitives abstract from SIMD intrinsics. These
primitives are generic functions representing a unified inter-
face for all SIMD architectures. In addition to the primitives,
we introduced generic data types:

base t: The base type can be any scalar type.
vector t: The vector type contains one or more values of

the same base type.
mask t: A mask is a scalar value, which is large enough to

store one bit for each element in a vector.
Using the provided primitives and the data types, we

can implement columnar query operators in a hardware-
oblivious way. For the hardware-conscious mapping, we use
template metaprogramming requiring hardware-conscious
implementations for all primitives and for all underlying
SIMD extensions. This function template specialization has
to be implemented, whereby the implementation depends
on the available functionality of the SIMD extension. In the
best case, we can directly map a TVL primitive to a SIMD
intrinsic. However, if the necessary SIMD intrinsic is not
available, we are able to implement an efficient workaround
in a hardware-conscious way. This implementation is
independent of any query operator and must be done only
once for a specific SIMD extension.

Figure 2 illustrates how a hardware-oblivious vectorized
operator using our TVL looks like and how it can be cal-
led. We show a simple aggregation (summation) operator
consisting of four TVL primitives:
set1: fills a vector register with a given value
load: loads multiple consecutive data elements into a vector

register
add: executes an element-wise addition on data elements in

two vector registers
hadd: executes an horizontal addition on data elements in

one vector register
The aggregation operator assumes that the number of data
elements is a multiple of the number of elements per vector
and works as follows: One vector register called resVec is
filled with zeros. Afterwards, the operator iterates over the
input column in and loads a number of consecutive data
elements into a second vector register called dataVec. Then,
the data elements in both vector registers are added element-
wise and the result is stored in resVec. When all elements of
the input column have been processed, the horizontal aggre-
gation hadd is carried out to determine the final sum result.

To specialize this hardware-oblivious operator implemen-
tation during query compile-time, we use three template pa-
rameters called processingStyle (ps): (i) the vector exten-
sion (e.g., SSE, AVX, NEON, or scalar), (ii) the vector size
in bit, and (iii) the base data type with bit granularity (e.g.,
int8, int64, float). The definition of ps is shown in Figure 2,
which is used to call the aggregation-operator.

2.2 GPUs



// Aggregation operator definition.
template<class ps> // processing style
base_t agg(const base_t * in , size_t elCount) {

// For simplicity , we assume that elCount is a multiple of the number of data elements
// per vector register.
const size_t vecCount = elCount / ps::vector_element_count;

// Initialize running sum to zero.
vector_t resVec = tvl::set1<ps , ps::vector_base_t_granularity> (0);

// Add all input data elements to running sum.
for(size_t i = 0; i < vecCount; ++i) {

vector_t dataVec = tvl::load<ps , tvl::ALIGNED , ps::vector_size_bit>(in);
resVec = tvl::add<ps , ps::vector_base_t_granularity>(resVec , dataVec);
in += ps::vector_element_count;

}

// Calculate final sum using horizontal summation of the vector elements.
return tvl::hadd<ps , ps::vector_base_t_granularity>(resVec);

}

// Calling the operator.
using ps = tvl::avx2<tvl::v256<uint64_t>>; // for example
size_t count = 1024;
uint64_t * array = generate_data(count);
uint64_t sum = agg<ps>(array , elemCount);

Figure 2: A simple sum-aggregation operator using the TVL [6].

Graphics Processing Units (GPUs) are increasingly used
for large-scale query processing in database systems [2, 3,
4, 15]. Specifically, their hardware parallelism and memo-
ry access bandwidths contribute to considerable speedups.
Figure 1(b) depicts a simplified architecture of an NVIDIA
GPU. Generally, a modern GPU consists of (i) a large glo-
bal main memory with a memory bandwidth of up to 1.2
TB/s and (ii) a number of compute units called Streaming
Multiprocessors (SMs). Each SM has a number of simplistic
cores, a fixed set of registers, and shared memory. This sha-
red memory serves as scratchpad and can be accessed by all
cores in the SM. Moreover, the GPU has an on-chip L2 ca-
che, which is shared across all SMs and optionally, each SM
may have a local L1 cache. The number of SMs, and cores
per SM, the size of global memory, the size of the L2 cache,
etc. varies across GPU products.

The execution model of GPUs is called Single Instructi-
on Multiple Threads (SIMT), whereas SIMT is very similar
to SIMD. While multiple data are processed by a single in-
struction in SIMD, multiple threads are processed by a single
instruction in lock-step. That means, each thread in SIMT
executes the same instruction, but on different data. While
a thread switch is very costly on CPUs, GPUs can handle
thread switching with more ease. GPUs feature a fast thread
switching based on groups of 32 threads called warps. The
warp scheduler issues instructions to warps available on an
SM beyond the number of physical cores to hide latency
[16]. Thus, it is encouraged to create more threads than are
available as physical cores. Then, this overload can be used
to schedule threads for execution, while others wait for a me-
mory transfer. This is especially important since databases
are more likely I/O-bound, not CPU-bound, and it is thus
one of the most important features for implementing query
operators on GPUs [4].

For the GPU implementation, general purpose parallel
programming models such as CUDA [17] or OpenCL [18]
have to be used, whereas CUDA generate better performan-

ce results. The CUDA programming model consists of two
code parts: host code and GPU code. The host code runs
on a CPU process and is responsible for setting up the en-
vironment, memory transfers between CPU and GPU and
executing kernels on the GPU. On the GPU, a function cal-
led kernel is executed in parallel with a number of threads
and blocks. Blocks consist of a number of threads and are
assigned to one streaming multiprocessor. Threads are assi-
gned to a block. Thus, executing a kernel requires at least
2 parameters. The first parameter defines how many blocks
will be spawned. The second parameter sets the number of
threads per block. The total number of GPU threads is the
product of both parameters. Depending on the data size and
the number of GPU threads, the number of elements pro-
cessed per threads can vary.

3. GPU-SIMDIZATION EXPERIMENTS
Our overall vision is to fully support GPUs in our TVL

as shown in Figure 1(a). For that, we have to create a
GPU-specific hardware-conscious implementation of the
hardware-oblivious interface. To achieve that, we interpret
GPUs as virtual vector engines and call this interpretation
SIMDization. For an optimal SIMD processing, we have
to find a reasonable vector size. This vector size is virtual
because we want to interpret regular arrays as virtual
vector registers. For example, on Intel x86-processors, the
different SIMD instruction set extensions either have a
vector length of 128-, 256- or 512-bit. If we assume 64-bit
per data element, we can simultaneously process 2 elements
in a vector register of the size 128-bit. The wider the vector
registers, the more data can be processed in parallel. We are
not aware of any work that has ever determined a vector
size for GPUs.

3.1 Vector Length Evaluation
To determine a reasonable virtual vector size for our SIM-

Dization approach for GPUs, several experiments were exe-
cuted. A first set of experiments were conducted on an NVI-



Figure 3: Evaluation of element-wise primitive add.

DIA RTX Quadro 8000 GPU. This GPU has a global main
memory size of 48 GiB, a memory bandwidth of 672 GB/s,
an L2 cache with a size of 6 MiB, and 72 SMs. Each SM has
64 cores resulting in a total of 4,608 cores.

For the hardware-conscious implementation, we can dis-
tinguish three different main groups of hardware-oblivious
SIMD primitives across all TVL classes: (i) load/store pri-
mitives, (ii) element-wise primitives, and (iii) horizontal pri-
mitives. Element-wise primitives are characterized by the
feature that they do not introduce dependencies between
the elements of the same vector register, e.g., element-wise
arithmetic, comparisons, or boolean logic. In contrast to
that, horizontal primitives do not treat the elements of a
vector independently. An example is the horizontal additi-
on. As shown in our example sum-aggregation operator (cf.
Figure 2), different primitives from all groups are used to
implement a vectorized query operator. In this operator, we
use an element-wise and a horizontal add primitive.

In our first experiments, we evaluated the element-wise
and horizontal addition on the GPU. For that, we imple-
mented simple vectorized CUDA kernels and executed these
kernels using different vector sizes. For the horizontal additi-
on, we use the function cub::DeviceReduce from the CUDA
SDK 11.2 as most efficient implementation as foundation.
Since our GPU has 4,608 cores and usually more threads
than cores are used for good performance, we investigated
vector sizes in the range from 256 KiB to 1 GiB. In terms of
number of elements, we evaluated the range from 213, .., 227

number of 64-bit data elements. For each vector size, diffe-
rent CUDA configurations with blocks and threads per block
are possible and we tested a large number of different confi-
gurations in a systematical way.

Element-wise Addition: This kernel was performed on
two input columns A and B. Each column was a sequence
of unsigned randomly generated 64-bit integer values with
a size of 1 GiB. The result was written back into column
B. Within a loop, our vectorized kernel is called until the
whole columns have been processed. Figure 3 shows the best
achieved throughput over all configurations for each vector
size. As we can see, small vector sizes negatively affect the
performance. For a vector size of 256 KiB, a throughput of
248.87 GiB/s is achieved. The best performance is gained by
using a vector size of 1 GiB. This results in a throughput of
530.99 GiB/s. A vector size of 8 MiB is 3.8% slower than a
vector size of 1 GiB. We conclude, higher vector sizes lead
to higher throughput and in the best case, the vector size
corresponds to column size.

Horizontal Additon: This kernel adds all elements in
a vector register together and the kernel is based on the
cub::DevideReduce function being shipped as part of the

Figure 4: Evaluation of horizontal primitive hadd.

Figure 5: Evaluation of Operator Aggregation.

CUDA SDK. For our evaluation, we generated different co-
lumns where the column size corresponds to the vector size.
Again, the data elements are 64-bit unsigned integer values.
Figure 4 shows the best achieved throughput over all con-
figurations for each vector size. Similar to the element-wise
addition, higher vector sizes lead to higher throughput.

Aggregation Operator: Based on these evaluations, we
could draw the conclusion that the best vector size should
be the column size. To validate our hypothesis, we evaluated
the sum-aggregation operator consisting of both primitives
as next. For this evaluation, we generated a single column
with a size of 1 GiB and varied the vector size from 256 KiB
to 1 GiB. As illustrated in Figure 5, we obtain a completely
different result. The throughput increases up to a vector size
of 2 MiB. Then, the throughput decreases and stabilizes at a
low level. The main difference to our previous experiments is
that a single vector register or array is now the main driver
of the processing. As shown in Figure 2, one vector register
resVec is filled with zeros at the beginning of the aggregati-
on operators. Afterwards, we repeatedly load into a second
vector dataV ec of the column and conduct an element-wise
add between both. The result is stored in resVec vector.
This resVec vector is frequently accessed, and thus, should
be kept in cache.

To evaluate the cache-fitting in more detail, we slightly
modified our experiment. We generated a new input column
of size 1,5 GiB containing 64-bit unsigned integers and varied
the vector size according to the on-chip L2 cache size: 1/4,
1/3, 1/2, 1, 2 times of the cache size. Figure 6 depicts the
resulting throughputs. As we can see, we obtain the best
performance when our vector size is a third of the L2 cache
size. Larger vector sizes lead to a lower throughput.

3.2 Comparing with Native CUDA
As shown above, we are able to determine a reasonable



Figure 6: Evaluation of cache size-fitting.

virtual vector size providing the best performance for our
vectorized aggregation on the GPU. In this section, we pre-
sent evaluation results comparing the vectorized aggregation
with the native CUDA aggregation. For that, we generated
various columns—sequences of 64-bit integer values—with
increasing sizes from 2 MiB to 8 GiB. For the vectorized
aggregation, we applied the best performing vector size of 2
MiB in all experiments. For the native CUDA aggregation,
we used the function cub::DevideReduce from the CUDA
SDK as already done for our horizontal aggregation.

The results are depicted in Figure 7. The throughput of
the native CUDA aggregation is slightly higher as for our
vectorized aggregation. This is especially true for large co-
lumns, which is not particularly surprising. Nevertheless, the
result is promising to specialize our hardware-oblivious vec-
torized query operators to GPUs and to obtain a reasonably
good performance. We hope to increase the throughput of
our vectorized execution with additional GPU-specific opti-
mization techniques as discussed in Section 4.

3.3 Validation
We also executed all our experiments on a second NVIDIA

GPU namely an NVIDIA GTX 1070 Ti. This GPU provides
a global main memory size of 8 GiB, a memory bandwidth of
256 GB/s, an L2 cache of 2 MB size, and 19 SMs. Each SM
has 128 cores resulting in a total of 2,432 cores. In general,
we observed a behavior similar as with the NVIDIA Qua-
dro RTX 8000. In particular, we executed the cache-fitting
experiment to determine the best virtual vector size for the
aggregation operator. In contrast to the RTX 8000 GPU, we
obtain the best performance when our vector size is a fourth
of the L2 cache (512 KiB) size as shown in Figure 8.

Figure 7: Comparing vectorized versus CUDA nati-
ve aggregation.

Figure 8: Validation on NVIDIA RTX 1070 Ti.

4. FUTURE WORK
Based on the previous section, we conclude that SIMD

processing using a virtual vector model is generally possible
on a GPU. Choosing the right vector size and configuration
is critical to achieve a good performance. Sub-optimal con-
figurations reduce the performance by more than one order
of magnitude. Overall, we obtain good performance which
is slower than native CUDA implementations. For the ag-
gregation operator using the ideal vector size, our approach
is 37.4% slower in the worst case for 8 GiB data size, and
10.8% slower in the best case for 8 MiB data size than a
native CUDA approach. By validating our approach on a
different GPU, we have also shown that our conclusions are
more generally applicable beyond a single GPU model. Mo-
reover, our hardware-oblivious query operators can be spe-
cialized to SIMD extensions as well as to GPUs in a unified
way.

To summarize, our results are promising and our ongoing
research in that direction will focus on the following aspects:

(1) Virtual Vector Size: To extend our work, we are
looking forward to evaluate other query operators. We seek
to explore if optimal vector sizes and configurations depend
on the query operators.

(2) Implementation: Completing the GPU TVL requi-
res to implement all primitives. To optimize the hardware-
conscious implementations, we want to explore the usage of
shared memory, registers, and persistent caching.

(3) Optimization: Besides an optimal hardware-
conscious implementation for GPUs, we want to investigate
more mapping strategies for a broader optimization.
Currently, the TVL has a 1:1 mapping of hardware-
oblivious primitives to hardware-conscious implementations.
As shown in our experiments, the CUDA native aggregation
outperforms the vectorized approach. To improve the
performance of our vectorized approach, an idiom-based
mapping strategy could be helpful. By replacing a vecto-
rized computation by a semantically equivalent but more
performant code at query compile-time, a speedup can
possibly be achieved. For that, it is necessary to identify
often used idioms that lose performance by vectorization
and replace them by idiomatic implementations.

5. RELATED WORK
To address the portability of code across heterogeneous

computing units, OpenCL [18] and Intel’s OneAPI [19]ge-
neral purpose parallel programming language approaches.
However, the genericity is a major drawback from a perfor-



mance point of view. In contrast, Pirk et al. [20] presented
a more database-specific approach called Voodoo to execu-
te single-source query operators on different (co-)processors.
Voodoo is a declarative intermediate algebra that abstracts
the detailed architectural properties of the hardware, wi-
thout losing the ability to generate highly tuned code. The
proposed algebra consists of a collection of declarative and
vector-oriented operations. Operators described in this al-
gebra are compiled to OpenCL. The drawbacks of this ap-
proach are: (i) operators have to be described with a new
algebra, (ii) a specialized compiler is required, and (iii) the
overhead of OpenCL. Another abstraction concept was pro-
posed by Heimel et al. [21]. They developed a hardware-
oblivious parallel library for query operators, so that these
operators can be mapped to a variety of parallel processing
architectures like many-core CPUs or GPUs. However, the
approach is mainly based on OpenCL and they do not sup-
port SIMD on CPUs.

In a recent work, Shanbhag et al. [15] introduced a new
processing model for an efficient query processing on GPUs
called tile-based execution model. This processing model
extends the SIMD-based processing on CPUs where each
thread processes a vector at a time to GPU. Based on that
SIMD extension concept, they introduced a CUDA-like
library called Crystal consisting of data processing primi-
tives that can be composed in order to implement queries
on the GPU. Thus, this approach has a lot in common
with our idea, but they are limited to GPUs. It would
be interesting to implement our TVL hardware-conscious
plug-in for GPUs using the Crystal library.

6. SUMMARY
In this paper, we evaluated the integration of GPUs in our

SIMD abstraction layer TVL by interpreting GPUs as virtu-
al vector engines. By conducting a number of experiments,
we have shown that our approach is promising. While the
observed throughput does not outperform CUDA native im-
plementations, it allows developers to use CUDA-based fast
GPU primitives without requiring knowledge of GPU im-
plementations. Our vectorized approach still achieves reaso-
nable performance that is not an order of magnitude slower
than native CUDA implementations. However, tuning the
primitives and operators by choosing the right virtual vector
size and configuration is critical for achieving good perfor-
mance.

Acknowledgments
This work was partly funded by the German Research Foun-
dation (DFG) within the RTG 1907 (RoSI).

7. REFERENCES
[1] D. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and

S. Madden, “The design and implementation of
modern column-oriented database systems,” Found.
Trends Databases, vol. 5, no. 3, pp. 197–280, 2013.

[2] H. Funke, S. Breß, S. Noll, V. Markl, and J. Teubner,
“Pipelined query processing in coprocessor
environments,” in SIGMOD, 2018, pp. 1603–1618.

[3] T. Karnagel, D. Habich, and W. Lehner, “Adaptive
work placement for query processing on heterogeneous
computing resources,” Proc. VLDB Endow., vol. 10,
no. 7, pp. 733–744, 2017.

[4] Y. Yuan, R. Lee, and X. Zhang, “The yin and yang of
processing data warehousing queries on GPU devices,”
Proc. VLDB Endow., vol. 6, no. 10, pp. 817–828, 2013.

[5] H. Esmaeilzadeh, E. R. Blem, R. S. Amant,
K. Sankaralingam, and D. Burger, “Dark silicon and
the end of multicore scaling,” IEEE Micro, vol. 32,
no. 3, pp. 122–134, 2012.

[6] A. Ungethüm, J. Pietrzyk, P. Damme, A. Krause,
D. Habich, W. Lehner, and E. Focht,
“Hardware-oblivious SIMD parallelism for in-memory
column-stores,” in CIDR. www.cidrdb.org, 2020.

[7] J. Zhou and K. A. Ross, “Implementing database
operations using SIMD instructions,” in SIGMOD,
2002, pp. 145–156.

[8] C. J. Hughes, Single-Instruction Multiple-Data
Execution, ser. Synthesis Lectures on Computer
Architecture. Morgan & Claypool Publishers, 2015.

[9] M. Xue, Q. Xing, C. Feng, F. Yu, and Z. Ma,
“Fpga-accelerated hash join operation for relational
databases,” IEEE Trans. Circuits Syst. II Express
Briefs, vol. 67-II, no. 10, pp. 1919–1923, 2020.

[10] S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh,
“Improving main memory hash joins on intel xeon phi
processors: An experimental approach,” Proc. VLDB
Endow., vol. 8, no. 6, pp. 642–653, 2015.

[11] J. Pietrzyk, D. Habich, P. Damme, E. Focht, and
W. Lehner, “Evaluating the vector supercomputer
sx-aurora TSUBASA as a co-processor for in-memory
database systems,” Datenbank-Spektrum, vol. 19,
no. 3, pp. 183–197, 2019.

[12] D. J. Abadi, P. A. Boncz, and S. Harizopoulos,
“Column oriented database systems,” Proc. VLDB
Endow., vol. 2, no. 2, pp. 1664–1665, 2009.

[13] P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause,
D. Habich, and W. Lehner, “Morphstore: Analytical
query engine with a holistic compression-enabled
processing model,” Proc. VLDB Endow., vol. 13,
no. 11, pp. 2396–2410, 2020.

[14] O. Polychroniou and K. A. Ross, “VIP: A SIMD
vectorized analytical query engine,” VLDB J., vol. 29,
no. 6, pp. 1243–1261, 2020.

[15] A. Shanbhag, S. Madden, and X. Yu, “A study of the
fundamental performance characteristics of gpus and
cpus for database analytics,” in SIGMOD, 2020, pp.
1617–1632.

[16] Turing Tuning Guide: CUDA Toolkit documentation,
https://docs.nvidia.com/cuda/turing-tuning-guide/
index.html.

[17] CUDA C Programming Guide, https://docs.nvidia.
com/cuda/cuda-c-programming-guide/index.html.

[18] OpenCL, https://www.khronos.org/opencl/.

[19] OneAPI, https://www.oneapi.com.

[20] H. Pirk, O. R. Moll, M. Zaharia, and S. Madden,
“Voodoo - A vector algebra for portable database
performance on modern hardware,” Proc. VLDB
Endow., vol. 9, no. 14, pp. 1707–1718, 2016.

[21] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl, “Hardware-oblivious parallelism for
in-memory column-stores,” Proc. VLDB Endow.,
vol. 6, no. 9, pp. 709–720, 2013.


