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ABSTRACT

Progressive Visual Analytics (PVA) is a recent paradigm in
the realm of visualization. PVA is closely related to appro-
ximate query processing and streaming applications with a
focus on real-time interactivity and features supporting a
fluid and insightful experience for data analysts working on
unknown data sources in an exploratory way. We want to ob-
serve the paradigm of progressive data science through the
lens of database systems, more specifically considering exis-
ting technologies which can be exploited to support progres-
sive systems. In this paper we briefly investigate the simila-
rities of PVA to approximate query processing and present
an indexing strategy which can be utilized in approxima-
te and progressive environments without conflicting with its
intrinsic requirements.
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1. INTRODUCTION

Progressive Visual Analytics (PVA) [4, 17] is a relatively
new paradigm in the realm of visualization. It’s main objec-
tive is to develop algorithms and infrastructure to support
analysts in exploratory ad hoc data analysis. This means
each query should return an (approximate) result within an
upper time bound, so that data exploration can be consi-
dered a real-time process. Additionally, the analyst should
be able to steer the query by tuning parameters of the com-
putation. The key principle of the progressive paradigm is
to instantly return an approximate result which is (progres-
sively) updated in the background. Ideally some notion of
(partial) re-use of earlier results that intersect with a live
query should be in place to keep a certain continuity in a
computation and further reduce the response time of later
queries. Many recent papers on PVA ([3, 7, 8, 10]) have
put the focus on features and requirements of progressive
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algorithms and have investigated potentials and future chal-
lenges of the paradigm.

Turkay et al. have discussed potentials and challenges of a
progressive data science approach in the field of Machine
Learning, Data Base Systems and Visualization [18]. They
identify the following relevant areas of (recent) research in
the DB community:

e Approximate Query Processing

e re-use of (partial) results and sampling that takes into
account rare subpopulations

e self-adapting (data organization, indexing, etc.) data
structures

e speculative query processing
e (progressive) data wrangling and cleaning

In this paper, we want to take a more detailed look at
the application of progressive indexing [13] in the context of
PVA. In particular, we will focus on a self-adapting index,
touching the areas of approximate querying and sampling
to support the requirements of progressive analysis tasks.
The main contributions of the paper is to demonstrate the
synergy between approximate (and by similarity of the con-
cepts progressive) querying approaches and progressive in-
dexing. Additionally, we present a sampling and indexing
strategy useful in realizing systems for progressive query en-
vironments. The outline of our paper is as follows: First we
want to give an overview about the paradigm of PVA and
take a look at which existing data base technologies can be
utilized to support the progressive paradigm. In sectiion 3
we present our approach of combining a strategy involving
approximate query processing and construction of a progres-
sive index to support aspects of "progressiveness’regarding
fast, reliable intermediate results. We then present an eva-
luation of our efforts and in section 4. We close the paper
with a conclusion and outlook on future work.

2. RELATED WORK AND BACKGROUND

The iterative nature of the progressive computation can
be found in a number of already existing computational con-
cepts. The most similar concepts that come to mind are
Streaming, Online, and Iterative algorithms. In the realm of
data base applications, the concept of Online Aggregation is
closely related [9, 12]. Essentially, the field of PVA does not
introduce a completely new computational paradigm, but
describes a set of features a computational process should



fulfill to to be classified as progressive, Stolper, Aupetit, and
Fekete et al. [7] comprised a definition of features a progres-
sive computation must possess. The computation should:

1. Be bounded on time and data.

2. Report intermediate outputs: a result, and measures
of quality and progress.

3. Be bounded on latency.
4. Converge towards the true result.
5. Be controllable by a user during execution.

From the perspective of data base systems, this leads to
the following "progressive”requirements for a system or in-
frastructure designed for analytical components that adhere
to the design goals mentioned above.

1. Suitable sampling algorithms with outlier detection.
2. Fast approximate algorithms.

3. Efficient (partial) reuse to bring continuity into a stee-
red computation.

4. Metrics on quality and progression of the computation.

5. Guarantees on user given time-bounds to the first re-
sult and to new results.

6. Supporting structures to aid data analysts (Indexes,
Meta Data, etc.).

In the context of this paper, we focus on requirements
1, 2, and 6: Sampling with outlier detection, approximate
querying approaches, and indexing techniques to support
progressive exploration tasks. More specifically, we propo-
se a progressively built index which is constructed while a
user poses fast approximate queries in a real time fashion.
By real time we mean, that queries should return a result
below the interactivity threshold of 500ms, as proposed by
Liu et al [15]. For our approach, we investigated the work
of Holanda et al. [13], which describes an index which is
built progressively while querying a data base, and aim to
integrate this indexing technique with Approximative Query
Processing (AQP). Generally, there are two major categories
of AQP approaches. online aggregation [12] and sampling [1].
Sampling approaches (e.g. BlinkDB [2], AQUA [16]) requi-
re preprocessing to deliver statistically significant results on
lower populations, which clashes with the dynamic nature
of exploratory data analysis. Online aggregation (e.g. CON-
TROL [11], DBO [14]) struggles to give reliable approxima-
tions for rare subpopulations of a large data set. To remedy
these weaknesses, we studied the work of Galakatos et al.
[9] who employs uniform sampling in tandem with rare sub-
population detection to amount for data skew and outliers.
We use a similar approach, but combine it with parallel pre-
processing to collect distributional metadata of the data set
to be explored in order to improve later samples. We bridge
the non-interactive preprocessing gap with uniform samp-
ling (which requires no initial preprocessing), refined with
rare subpopulation detection. As such, we are able to quick-
ly answer queries with rare populations and data skew taken
into account, while samples taken later accurately represent
the real data.
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Figure 1: Original Indexing Approach of Holanda et al. The
entries are all tuples which will be returned for a running
query. [13]

On a basic level, the indexer by Holanda et al. takes a frac-
tion ¢ of the data of and adds them to a growing index (see
Figure 1). The cost of index creation is 8meared outdver the
run time of queries issued to the data base. For a standard
query environment, this means that initially queries will ta-
ke rather long, as early inquiries to the data base can not
benefit from indexes and have to scan all tuples sequentially.

More precisely, Holanda’s approach is divided into three
phases. In the Creation Phase a (standard, non approxima-
te) query first performs an index lookup on the fraction of
indexed data (p). Now, the not-yet-indexed 1 — p fraction of
the original column is scanned while expanding the index by
a chosen fraction § of the column size. For the index creati-
on Holanda et al. use one of four sorting algorithms: Quick-
sort, Bucketsort, Radixsort (MSD), and Radixsort (LSD).
Depending on the utilized Indexing method, the partial in-
dex performs better for different querying scenarios. Once
all data is indexed the approach enters the Refinement Pha-
se. There, queries can be performed without scanning any
non-indexed data. Additionally, the existing, rough index is
refined, progressively converging towards a fully ordered in-
dex. Lastly, in the Consolidation Phase the ordered index
is now progressively converted to a B+ tree for query effi-
ciency. For an example, please refer to Figure 2 for a short
overview of the quicksort indexing appproach of Holanda et
al.

While useful in an exact, non approximate querying set-
ting, Holanda states that progressive indexing techniques
most likely will synergize well with approximate querying
techniques, since the problem of initially longer running que-
ries can be remedied by settling for faster, approximate re-
sults before an index structure exists.

3. PROGRESSIVE INDEXING IN THE CON-
TEXT OF APPROXIMATE QUERY PRO-
CESSING.

The premise of progressive indexing is to iteratively crea-
te a database index on a previously unknown data sour-
ce and Bmear out”the cost of doing so over several running
queries. We want to explore if progressive indexing can be
used alongside and/or benefit from a progressive querying
approach. Since building a complete index can take a long
time, doing so is kind of antithetical for an ad-hoc explora-
tory query session where fast (approximate) results on an
unexplored and unprepared data source are the focus. The
progressive indexing will incrementally build an index in par-
allel to interactive query sessions, speeding up certain que-
ries, and also preparing the data base for queries requiring an
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Figure 2: Example of progressive Indexing using Quicksort
showing the Creation, Refinement, and Consolidation phases.
13]

exact result. The synergy with approximate querying largely
stems from the fact, that approximate / progressive queries
don’t have to scan the complete data base for a query which
is fired against a data base with no index whatsoever. If only
a subset of tuples is retrieved initially, the indexing can be
done in a more dynamic manner alongside of a fluid "real ti-
meiiser interaction from the start. To explore this venue, we
built a prototype comparing the suitability of various samp-
ling / indexing techniques based on Holanda’s work in the
scope ([19]) of approximate querying applications. Rough-
ly explained, our approach first enters a preparatory stage
in which facilities for the progressive index are created and
meta-data to ensure statistically significant samples is col-
lected. After this initial stage the partial index is in place
and populated in parallel to approximate querying sessions.
To keep the system interactive, during the preparatory sta-
ge queries can be answered in parallel, albeit not with data
skew or outliers taken into account.

The following features are our main contributions which
differentiate our approach to the work of Holanda et al. First,
we keep an absolute number s of tuples instead of a certain
fraction & of the complete data set to determine how many
tuples to index, since we have no clue how many rows the
data set to be inspected has. Also, not only do we partially
index the complete set per query, we also employ approxima-
te query processing and trade accuracy of results for speed
concerning the answering of queries during all stages of que-
rying. In the same vein, we supplement our sampling approa-
ches with rare population indexing to improve the statistical
significance of samples taken from the original data.

For a high-level overview of the architecture of the query
and sampling engine, please refer to Figure 3.

3.1 Initial Sampling and Preprocessing

Since in an approximate environment the cardinality of
the complete data base is unknown, it is impossible to just
determine some fraction § of the complete data set which
should be indexed per query. Since for our case we always
take (increasing) samples of the complete data, we index s
many tuples, where s is the size of the sample (See Figure 4).
A nice side effect of this approach is, that an initial partial
index is available much earlier, as the query only processes
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Figure 3: Flowchart of the interaction between query engine

and sampler.
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Figure 4: Modified Indexing Approach of Holanda et al. To
account for Approximate Querying Techniques.

a subset of the complete data set and does not have to scan
the complete data set.

Approximate results require a random sample to be sta-
tistically relevant. Taking just the first § rows as a sample
like in the original implementation would not return good
results. As Galakatos et al. point out [6], we require some
initial knowledge about a data set to be able to reach some
modicum of statistical significance with standard sampling
methods (like the total row count for example). To solve
this dilemma, we utilize Reservoir Sampling [20] to create
the first sample. Since reservoir sampling misses any skew
or outliers in the data, we combine the Reservoir Sampling
technique with preprocessing of the data to be streamed to
make the following samples more representative of the real
data set. We count the number of rows of the data set as and
record the count of attribute groups to get meta data about
a columns distribution and the replacement probability for
each row, as shown in Algorithm 1. While a preprocessing
step might seem to go against to the requirements of the
progressive paradigm, we deem it acceptable as queries can
already be answered during the preprocessing, albeit with
less accurate results.

3.1.1 Rare Population Indexing

Together with the reservoir sample, we build another sam-
ple that takes rare attribute values into account. To do this,
we designate a certain fraction 6 as a threshold for a value
to count as rare. For this we use the current row count and
attribute distribution gained during the reservoir preproces-
sing. Any attribute appearing for a fraction of less than 6
of the row count will be sampled separately. Since the row



count increases during iteration, we have to continuously
check if we still consider an attribute rare. Once an attribu-
te is deemed rare, it will be removed from the rare sample
pool if it appears more often than (6*2) x current rowcount.
Using this method will provide sufficient entries in the sam-
ple for rare groups and thus more interesting results, even in
the early phases of sampling. The rare samples however will
be discarded when the system switches to static sampling to
guarantee the correct distribution and proper randomness
(See Algorithm 1).

Algorithm 1: Modified Reservoir Sampling

Input: Data stream to record distribution from.
Output: Random uniform sample of dataset, random
samples from rare populations.

1 rowcount < 0;

2 rareThreshold < 0;

3 groupCounts < initialize dictionary;

4 sample < initialize sample;

5 for each row in datastream do

6 groupCounts < occurenec of att. value;

7 rowCount += 1;

8 if length of sample < max. sample size then

9 ‘ add row to sample;

10 else

11 replacement prob. < sample size / rowcount;

12 if value gets replaced then

13 replacedRow < rand. row in curr. sample;

14 replace row with new row;

15 if replacedRow is rare then

16 resample replaced row in separate
sample

17 end

18 else

19 if row is a rare entry then

20 ‘ resample row in separate sample

21 end

22 end

23 end

24 rareThreshold < rowCount * 6;

25 end

3.2 Early Query Executions

Early queries encompass all queries that are executed be-
fore any index is built. The set of tuples these queries are
executed on is a combination of the existing random uni-
form reservoir sample and parts of the random samples for
rare populations. If the tuples of the reservoir sample con-
tain too few of any rare attribute value, tuples contained
in the separate index of rare populations will be randomly
added so that they are not overlooked. This will produce
more reliable results than straight reservoir sampling, even
if they are somewhat biased. Mind this mode of querying is
only temporary, as it is only included to bridge the time nee-
ded to preprocess the data set and create the initial index
structure which incorporates a stratified sampling approach
to take into account data skew and rare populations.

3.3 Index Generation

After having created an initial random sample and a full
pass over the data to collect distributional metadata, a par-
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Figure 5: Creation of the Adjusted Stratified Sample based
on the distribution of the age column

tial index tree is created. For this we have implemented the
Progressive Radixsort (MSD) method, similar to Holanda
et al. [13]. From the initial preprocessing, we create a B+
tree index structure for each column in accordance of the
amount of different attribute instances we observed. Into
this index tree the original reservoir sample is then inserted.
Now, this index tree will bee populated with more samples
over time, utilizing any down-time during a user session. As
mentioned earlier in this section, we collected metadata du-
ring the initial sampling step about the distribution of the
data. Thus, all future samples which are used to populate
the index structure can be chosen so that they reflect the
distribution of the original data using a stratified sampling
[5] approach. Data samples are thus pulled randomly from
their respective groups and not just randomly overall. Once
an (approximate) query is issued, the progressive indexing
is paused, and the query is only answered by tuples already
indexed. If an extreme skew is present, it can easily happen
that samples would include less than one entry to reflect the
correct distribution. We opt to include at least one of the-
se very rare datapoints with each sample as illustrated in
Figure 5, since outliers often are a point of interest for ex-
ploratory data analysis. The distribution in the index is thus
slightly off in the beginning, but since the implementation
keeps pulling samples continuously, this error will correct
itself quickly over time. This also guarantees that enough
rare entries are available early to create meaningful appro-
ximations. When the samples are generated, they are pul-
led and indexed sequentially until the data is exhausted. At
this point, the index is fully built and all future queries will
run with the full index. Note, that while later approxima-
te queries take longer due to the ever increasing number of
stratified tuples entered into the index, the gain in result
accuracy is usually worth it. While Holanda’s original ap-
proach only refines the coarse index into a B+ tree after all
data has been indexed, we chose to refine the index immedia-
tely after indexing a new fragment of the original data. The
small overhead of immediate refinement to a full B+ tree
allows for much faster queries than on a coarse index. The-
re queries would quickly reach undesirable delays if issued
over large indexes. If the index becomes too large that que-
rying it completely becomes too costly, we can resort either
to querying only a statistically relevant sample of the index
or to pruning the index to a subset of the original data. To
keep these approximate queries or pruned indexes statisti-
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Figure 6: Distribution of the age value of the test data set.
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cally relevant, we reference the distributional metadata to
create an appropriate approximation of the original data. It
should be obvious, that at this point, the index structure is
not only useful for approximate queries, but will also serve
in scenarios where exact results are required.

4. EVALUATION

Since it is not really interesting if the queries themselves
are faster for an approximate setting instead of a contempo-
rary setting, we will focus on comparing the time until the
progressive indexing converges to a full query compared to
the approach of Holanda et al., and how well the stratified
index manages to account for data skew while uncompleted.

4.1 Setup

For the evaluation, we have implemented the system in
Python version 3.8.3. The experiments were run on a ma-
chine with an Intel 6700k processor at 4.4GHz and 32GB of
DDR4 RAM at 2133MHz.

4.2 Data

We have generated a dataset with five million rows contai-
ning data about the age, salary and received tips of waiters.
To test the indexing prototype, we made sure to integrate
different value distributions and amount of skew into the
data. The tip tuples are uniformly distributed. The distri-
bution of the age and salary values (see Figures 6 and 7) is
each skewed towards a particular value range.

4.3 Time until Index Convergence

For this experiment, we implemented progressive indexing
in a similar fashion as Holanda et al. demonstrated in their
approach (specifically the Radix MSD variation in its base
form) and ran it on the same data set. Only one index on the
‘age’ column was constructed. Each second we repeatedly is-
sued a simple query (age > 32) until the index converged.
We did not implement the adaptive indexing budget pro-
posed by Holanda et al., but instead set the to-be-indexed
fraction with each query to 10%. The sample size for our
version was again set to 5000. In Figure 8 we can see that
a progressive indexing approach greatly benefits from ap-
proximate querying techniques. The base version takes 404
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Figure 7: Distribution of the salary value of the test data set.
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Figure 8: Duration for the B+ index reaching full convergence
while repeatedly issuing the simple query (age > 32).

seconds to a fully converted index, while our approach only
takes 18 seconds. We thus reach index convergence roughly
22 times faster than the original approach. This is mostly
due to the fact that the original approach relies on queries
always ranging over the complete data base to further gene-
rate the index. As a result, the index cannot be constructed
further until the current query has finished processing all
tuples. Our solution on the other hand utilizes the much
shorter time to return of approximate queries to be able to
quickly construct an index.

4.4 Accounting for Data Skew

In this experiment, we looked at how well our sampling ap-
proach can handle data skew. For this, we ran a count (’age’)
query run once with an initial reservoir sample generated in
the first step before a stratified index is built, and after-
wards on a reservoir sample including rare subpopulation
sampling. The sample size for this test was 5000. Figure 9
shows the pitfall of standard reservoir sampling. Since the
values 25 and 26 represent the bulk of the entries, other ent-
ries are easily missed. Especially the rare outliers are excee-
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Figure 10: Distribution of a sample of salary values taken with
stratified sampling.

dingly unlikely to be included in the initial sample. Figure
10 shows the impact rare population sampling strategy can
have on a sample of the same size. Even exceedingly rare
outliers (age 30-36) are included in the sample. While not
correct, this sample composition is a much better represen-
tation of the real data set. Here we can see the advantage
of including rare population sampling in addition to reser-
voir sampling until we have a true stratified sample. When
the stratified index structure is built later, data skew largely
stops being a problem as we now know the distribution of
values. As shown in Figure 5, the distribution is not exact
simply because we can not include fractions of tuples, but
good enough to give a quite accurate picture of the complete
data.

S.  CONCLUSION AND OUTLOOK

For this work we prototyped a progressive indexing ap-
proach usable in an approximate querying environment in-
spired by a Progressive Indexing approach by Holanda et
al. [13]. The AQP environment leads to significantly lower
query execution times, even when the data is not fully in-
dexed. To make these approximate results more significant,
we combined reservoir sampling, meta data collection (rare
population sampling) and a stratified sampling approach to
remedy for the intrinsic inaccuracy of approximate queries.
Our evaluation results confirm Holanda’s assumption that
the progressive indexing approach benefits greatly from the
much faster time to return of approximate queries on non-
indexed data. For future work on this topic, we identified two
major areas of potential improvements: Including an inde-
xing budget, and expanding the stratified sampling strategy.
In the original approach by Holanda et al., an indexing bud-

get was used to automatically adjust how much of the query
time should be used for indexing. We could imagine a simi-
lar solution for automatically determining the sample size for
the progressive index in an approximate query environment.
For the stratified sampling, we chose a very simple solution
to determine how the samples should be generated by just
relying on the skew of one column. In a real environment,
this might not be viable since other columns might be just
as interesting. Creating a more refined scheme to account
for skew found in several attributes would further increase
the reliability of the partial results returned by approximate
queries with our proposed indexing strategy.
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