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Abstract
Mathematical models building is widely used in different branches of human activity to describe statistical
data obtained during observation of various phenomena. The main tool for this problem solution is
approximation theory, especially ordinary least squares method. Basic goal during approximation is
minimizing deviation between observed and estimated data. Analysis showed that providing given
accuracy is possible based on usage of segmented regression models. Such models contain one or more
switching points for segments connection. This paper deals with a problem of calculation of optimal
values of switching point abscissa for segmented regression. Analytical expression for segmented
regression was obtained using the Heaviside function. Switching point’s determination is based on
the usage of multidimensional optimization paraboloid. Paper presents the methodology for optimal
segmented regression building. Simulation results and example of data processing proved increasing the
accuracy of approximation in case of using the proposed methodology.
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1. Introduction

The mathematical models are used in many applications. Such models give the possibility to
determine the mathematical relationship (formulas, logical dependency) for real world objects
and phenomena. The one of the main motives to build mathematical models is: a) a greater
understanding of researched phenomena, b) to analyze the object mathematically, c) to provide
experimentation with model using simulation methods [1, 2].

The mathematical models building starts with experimental investigations and obtaining
observations of some system, object or phenomenon. These operations form input data for
model. According to these data, at the second stage mathematical formulations are carried out,

CS&SE@SW 2021: 4th Workshop for Young Scientists in Computer Science & Software Engineering, December 18, 2021,
Kryvyi Rih, Ukraine
" valeriyikuzmin@gmail.com (V. M. Kuzmin); maximus2812@ukr.net (M. Yu. Zaliskyi); odarchenko.r.s@ukr.net
(R. S. Odarchenko); panijulia.p@gmail.com (Y. V. Petrova)
� 0000-0003-4461-9297 (V. M. Kuzmin); 0000-0002-1535-4384 (M. Yu. Zaliskyi); 0000-0002-7130-1375
(R. S. Odarchenko); 0000-0002-3768-7921 (Y. V. Petrova)

© 2022 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

106

mailto:valeriyikuzmin@gmail.com
mailto:maximus2812@ukr.net
mailto:odarchenko.r.s@ukr.net
mailto:panijulia.p@gmail.com
https://orcid.org/0000-0003-4461-9297
https://orcid.org/0000-0002-1535-4384
https://orcid.org/0000-0002-7130-1375
https://orcid.org/0000-0002-3768-7921
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


and after those computational simulations are performed. Output data of simulation are used
for model validation [3].

During mathematical models building, different models can be utilized. Researcher always
tries to choose the best of them [4]. To do this the following criteria can be used: simplicity
of mathematical equation with the given level of error, minimum number of coefficients in
the mathematical equation, minimum sum of squared deviations between the predicted and
empirical values and others [5].

The main algorithmic tool that is used to obtain information from mathematical models
contains methods of linear algebra, data analysis, probability theory and mathematical statistics,
functional analysis and others [6]. The mathematical models based on statistical data-driven
approach can be built using the techniques of the approximation theory [7]. In case of approxi-
mation, spline functions or different polynomials are often used [8].

2. Literature review and problem statement

Nowadays, regression analysis becomes popular research tool for mathematical models building
[9]. It allows to develop mathematical expressions to describe the behavior of some dependent
random variable [10]. Regression analysis can be used to predict the value of dependent variable
based on information of its previous realization trend.

The mathematical models building based on regression analysis can be used in different
branches of human activity and scientific research:

• in econometrics: to analyze economics behavior for certain country or city dependent on
one or more factors [11, 12];

• in biology: to obtain regional models of biological processes [13];
• for electrical engineering: to describe realizations of electrical signals and parameters of

electronic devices [14, 15];
• in reliability theory: to build the mathematical model for trends of reliability parameters

and diagnostics variables [16, 17];
• in aviation system: to build the mathematical model for Unmanned Aerial Vehicle (UAV)

and aircraft flight routes [18, 19], to analyze the possibilities of UAV cyber security hazards
[20], to calculate the efficiency of functioning of aviation equipment [21, 22], and others;

• for radar and navigation systems: to solve the problem of efficient target detection [23]
and for approximation and prediction of data trends [24, 25, 26];

• during equipment operation: to calculate the optimal maintenance periodicity [27, 28]
and to estimate the efficiency of diagnostics process [29, 30];

• for control systems: to find the correlation between statistical data for inertial stabilized
platforms of ground vehicles [31] and to analyze possible control actions in case of aircraft
departures and arrivals delays [32].

In practice, researchers apply simple linear regression [33] and more realistic nonlinear
regression [34]. Considering nonlinear regression, it should be pointed that quadratic, cubic,
exponential, segmented and even logistic regressions are widely used [35, 36]. Different software
to implement such models was developed [37, 38].
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As there are different types of regression curves, let 𝑓𝑘(𝑥𝑖,
−→𝑎 𝑚,𝑘) is set of 𝑘 one-dimensional

functions, any of them depends on vector −→𝑎 𝑚,𝑘 of 𝑚 parameters and gives the estimate valuê︀𝑦𝑖 for initial data in for two-dimensional array (𝑥𝑖, 𝑦𝑖) with sample size 𝑛. According to existing
results [9, 10, 33, 36], regression model with one independent variable can be presented as
follows

𝑌 = 𝑓𝑘(𝑋,−→𝑎 𝑚,𝑘) + 𝜖,

where 𝑌 and 𝑋 are the dependent and independent variables, 𝜖 is an error of evaluation.
For simple linear regression model 𝑓1(𝑋,−→𝑎 𝑚,1) = 𝑎0,1 + 𝑎1,1𝑋 , where 𝑎0,1 and 𝑎0,1 are

parameters that must be determined [9].
To increase the accuracy of model, on the one hand, researchers use segmented regression

techniques with several linear or parabolic sections for approximation empirical data [33]. On
the other hand, additional analysis for heteroskedasticity in observed data trend is carried
out [39, 40]. Literature analysis showed that unfortunately not enough attention is paid to
another way of increasing the accuracy of model that is associated with calculation of optimal
switching points (breakpoints or changepoints) between regression segments. To estimate
the parameters of regression (including switching points), the maximum likelihood estimator
(MLE) can be used [41, 42]. Moreover, paper [42] concentrates on replacing the traditional
nonsmooth model with another that transitions smoothly at the switching point. Another
approach can be based on Bayesian changepoint models [43, 44]. In some publications, there are
attempts to solve this problem based on: 1) statistical simulation results using sequential search
[45], 2) inverted F test confidence interval estimate for large sample sizes and bootstrapped
confidence intervals estimate for small sample sizes [46]. Analysis of mentioned techniques for
calculation of optimal switching points showed: a) MLEs require prior information on error
distribution and approximate range of switching point, b) MLEs have bias of estimate, c) in
some modifications MLE is the most computationally expensive, both in setup time and in run
time, d) Bayesian estimators are more robust for difficult cases, but require additional prior
limitations for model parameters. Moreover, the exact mathematical equations for optimal value
of switching points in literature are not considered.

The aim of this paper is to develop a new approach to switching points optimization in case of
segmented regression usage for mathematical models building. The calculation of the optimal
values of abscissas of the switching points will give the possibility to increase the approximation
accuracy and the possibility to improve the predictive properties.

From mathematical point of view, such problem can be considered as follows. At the first
stage, it is necessary to choose the segmented approximation function 𝑓𝑘(𝑥𝑖,

−→𝑎 𝑚,𝑘) in such a
way to minimize standard deviation 𝜎 between real values 𝑦𝑖 and estimates ̂︀𝑦𝑖

𝑘 = 𝑖𝑛𝑓(𝑠∀𝑗 : 𝜎(𝑓𝑠(𝑥𝑖,−→𝑎 𝑚,𝑠)) ≤ 𝜎(𝑓𝑗(𝑥𝑖,
−→𝑎 𝑚,𝑗))). (1)

At the second stage, it is necessary to carry out optimization of switching points abscissas
𝑥𝑠𝑤 and to find the corresponding values

(𝑥𝑠𝑤𝑜𝑝𝑡1 , 𝑥𝑠𝑤𝑜𝑝𝑡2 , ..., 𝑥𝑠𝑤𝑜𝑝𝑡𝑟) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2 , ..., 𝑥𝑠𝑤𝑟), (2)

where 𝑟 is quantity of switching points in case of 𝑟 + 1 segments for regression usage.
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3. Methodology

The best preferred statistical data processing algorithms can be used in the conditions of
aprioristic uncertainty [47]. In this research some limitations about aprioristic information was
made.

After observation of random phenomenon, the two-dimensional array (𝑥𝑖, 𝑦𝑖) with sample
size 𝑛 is collected. Initial data are plotted in two-dimensional space in form of dependence.
Based on visual analysis of data, researcher can identify geometrical structure of data trend and
choose the appropriate approximation function. Assume that only segmented functions can be
used. Such function contains two or more segment without discontinuities. The segments are
connected in the switching points. The quantity 𝑟 of switching points or the quantity 𝑟 + 1
of segments is determined by researcher according to the analysis of geometrical structure of
plotted data.

At the first step, type of segmented regression for data approximation is chosen. In authors
opinion, it is enough to use one of three types of segmented regression:

1. Segmented linear regression

𝑓1(𝑋) = 𝑎0,1 + 𝑎1,1𝑋 +
𝑟∑︁

𝑖=1

𝑎𝑖+1,1(𝑋 − 𝑥𝑠𝑤𝑖)ℎ(𝑋 − 𝑥𝑠𝑤𝑖), (3)

where ℎ(𝑋 − 𝑥𝑠𝑤𝑖) is Heaviside step function.
In case of two segments usage, functional dependence (3) contains one switching point and

three unknown coefficients. Equation (3) can be presented as follows

𝑓1(𝑋) = 𝑎0,1 + 𝑎1,1𝑋 + 𝑎2,1(𝑋 − 𝑥𝑠𝑤1)ℎ(𝑋 − 𝑥𝑠𝑤1).

Unknown coefficients 𝑎0,1, 𝑎1,1 and 𝑎2,1 are calculated according to ordinary least squares
method in such a way

𝑎 = 𝑊−1𝐵, 𝑎 =

⎛⎝ 𝑎0,1
𝑎1,1
𝑎2,1

⎞⎠ , 𝐵 =

⎛⎝ ∑︀𝑛
𝑖=1 𝑦𝑖∑︀𝑛

𝑖=1 𝑥𝑖𝑦𝑖∑︀𝑛
𝑖=1(𝑥𝑖 − 𝑥𝑠𝑤1)𝑦𝑖ℎ1

⎞⎠ , ℎ1 = ℎ(𝑥𝑖 − 𝑥𝑠𝑤1),

𝑊 =

⎡⎣ 𝑛
∑︀𝑛

1 𝑥𝑖
∑︀𝑛

1 (𝑥𝑖 − 𝑥𝑠𝑤1)ℎ1)∑︀𝑛
1 𝑥𝑖

∑︀𝑛
1 𝑥

2
𝑖

∑︀𝑛
1 (𝑥𝑖 − 𝑥𝑠𝑤1)𝑥𝑖ℎ1∑︀𝑛

1 (𝑥𝑖 − 𝑥𝑠𝑤1)ℎ1
∑︀𝑛

1 (𝑥𝑖 − 𝑥𝑠𝑤1)𝑥𝑖ℎ1
∑︀𝑛

1 (𝑥𝑖 − 𝑥𝑠𝑤1)
2ℎ1

⎤⎦ .

2. Segmented parabolic regression

𝑓2(𝑋) = 𝑎0,2 + 𝑎1,2𝑋 + 𝑎2,2𝑋
2 +

𝑟∑︁
𝑖=1

𝑎𝑖+2,1(𝑋 − 𝑥𝑠𝑤𝑖)
2ℎ(𝑋 − 𝑥𝑠𝑤𝑖). (4)

In the case of two segments usage, functional dependence (4) contains one switching point
and four unknown coefficients. Equation (4) can be presented as follows

𝑓2(𝑋) = 𝑎0,2 + 𝑎1,2𝑋 + 𝑎2,2𝑋
2 + 𝑎3,2(𝑋 − 𝑥𝑠𝑤1)

2ℎ(𝑋 − 𝑥𝑠𝑤1).
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Unknown coefficients 𝑎0,2, 𝑎1,2, 𝑎2,2 and 𝑎3,2 are calculated according to ordinary least
squares method in such a way

𝑎 = 𝑊−1𝐵, 𝑎 =

⎛⎜⎜⎝
𝑎0,2
𝑎1,2
𝑎2,2
𝑎3,2

⎞⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎝
∑︀𝑛

1 𝑦𝑖∑︀𝑛
1 𝑥𝑖𝑦𝑖∑︀𝑛
1 𝑥

2
𝑖 𝑦𝑖∑︀𝑛

1 𝑡
2
𝑖 𝑦𝑖ℎ1

⎞⎟⎟⎠ , 𝑡𝑖 = 𝑥𝑖 − 𝑥𝑠𝑤1

𝑊 =

⎡⎢⎢⎣
𝑛

∑︀𝑛
1 𝑥𝑖

∑︀𝑛
1 𝑥

2
𝑖

∑︀𝑛
1 𝑡

2
𝑖ℎ1∑︀𝑛

1 𝑥𝑖
∑︀𝑛

1 𝑥
2
𝑖

∑︀𝑛
1 𝑥

3
𝑖

∑︀𝑛
1 𝑡

2
𝑖𝑥𝑖ℎ1∑︀𝑛

1 𝑥
2
𝑖

∑︀𝑛
1 𝑥

3
𝑖

∑︀𝑛
1 𝑥

4
𝑖

∑︀𝑛
1 𝑡

2
𝑖𝑥

2
𝑖ℎ1∑︀𝑛

1 𝑡
2
𝑖ℎ1

∑︀𝑛
1 𝑡

2
𝑖𝑥𝑖ℎ1

∑︀𝑛
1 𝑡

2
𝑖𝑥

2
𝑖ℎ1

∑︀𝑛
1 𝑡

4
𝑖ℎ1

⎤⎥⎥⎦ .

3. Segmented linear-parabolic regression

𝑓3(𝑋) = 𝑎0,3 + 𝑎1,3𝑋 + 𝑎2,3𝑋
2𝑝(𝑋) +

𝑟∑︁
𝑖=1

𝑎𝑖+2,1(𝑋 − 𝑥𝑠𝑤𝑖)
𝑝(𝑋)+1ℎ(𝑋 − 𝑥𝑠𝑤𝑖), (5)

where 𝑝(𝑋) is sign function. This function is equal to zero, if the segment is linear, and is equal
to one, if the segment is parabolic.

In the case of two segments usage with first parabolic and second linear segment, functional
dependence (5) contains one switching point and three unknown coefficients. Equation (5) can
be presented as follows

𝑓3(𝑋) = 𝑎0,3 + 𝑎1,3𝑋 + 𝑎2,3𝑋
2 − 𝑎2,3(𝑋 − 𝑥𝑠𝑤1)

2ℎ(𝑋 − 𝑥𝑠𝑤1).

Unknown coefficients 𝑎0,3, 𝑎1,3 and 𝑎2,3 are calculated according to ordinary least squares
method in such a way

𝑎 = 𝑊−1𝐵, 𝑎 =

⎛⎝ 𝑎0,3
𝑎1,3
𝑎2,3

⎞⎠ , 𝐵 =

⎛⎝ ∑︀𝑛
1 𝑦𝑖∑︀𝑛

1 𝑥𝑖𝑦𝑖∑︀𝑛
1 𝑥

2
𝑖 𝑦𝑖 −

∑︀𝑛
1 𝑡

2
𝑖 𝑦𝑖ℎ1

⎞⎠ ,

𝑊 =

⎡⎣ 𝑛
∑︀𝑛

1 𝑥𝑖
∑︀𝑛

1 𝑥
2
𝑖 −

∑︀𝑛
1 𝑡

2
𝑖ℎ1∑︀𝑛

1 𝑥𝑖
∑︀𝑛

1 𝑥
2
𝑖

∑︀𝑛
1 𝑥

3
𝑖 −

∑︀𝑛
1 𝑥𝑖𝑡

2
𝑖ℎ1∑︀𝑛

1 𝑥
2
𝑖 −

∑︀𝑛
1 𝑡

2
𝑖ℎ1

∑︀𝑛
1 𝑥

3
𝑖 −

∑︀𝑛
1 𝑥𝑖𝑡

2
𝑖ℎ1

∑︀𝑛
1 𝑥

4
𝑖 +

∑︀𝑛
1 (𝑡

4
𝑖 − 2𝑥2𝑖 𝑡

2
𝑖 )ℎ1

⎤⎦ .

At the second step, the quantity 𝑟 of switching points and the range of possible values of
abscissas of switching points is selected subjectively based on visual analysis of observed data.
For this approach, it is necessary to choose at least five possible values for each switching
point. So matrix of vectors of possible abscissa values is generated in the following form
(−→𝑥 𝑠𝑤1 ,

−→𝑥 𝑠𝑤2 , ...,
−→𝑥 𝑠𝑤𝑟).

At the third step, regression coefficients and standard deviations 𝜎 between real values 𝑦𝑖 and
estimates ̂︀𝑦𝑖 for all segmented regression types are calculated. Standard deviation is determined
according to the equation

𝜎 =

⎯⎸⎸⎷ 1

𝑛− 𝑙

𝑛∑︁
𝑖=1

(𝑦𝑖 − ̂︀𝑦𝑖)2, (6)
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where 𝑙 is a degree of freedom for selected model.
The standard deviation is calculated for all combinations of possible values of switching point

abscissa. So at this step, the 𝑟-dimensional dependence of 𝜎(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2 , ..., 𝑥𝑠𝑤𝑟) is obtained.
At the fourth step, the obtained dependence is approximated by 𝑟-dimensional paraboloid

based on ordinary least squares method. The general equation of 𝑟-dimensional paraboloid

𝑧(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2 , ..., 𝑥𝑠𝑤𝑟) = 𝐴0 + 𝑠𝑢𝑚𝑟
𝑖=1𝐴𝑖𝑥

2
𝑠𝑤𝑖

+
𝑟∑︁

𝑖=1

𝐵𝑖𝑥𝑠𝑤𝑖 +
∑︁
𝑖<𝑗

𝐶𝑖,𝑗𝑥𝑠𝑤𝑖𝑥𝑠𝑤𝑗 , (7)

where 𝐴𝑖, 𝐵𝑖, 𝐶𝑖,𝑗 are unknown coefficients need to be estimated, the sum is calculated only
for 𝑖 < 𝑗.

To simplify the calculation, it can be assumed that 𝐶𝑖,𝑗 = 0 and equation (7) will take a form

𝑧(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2 , ..., 𝑥𝑠𝑤𝑟) = 𝐴0 +

𝑟∑︁
𝑖=1

𝐴𝑖𝑥
2
𝑠𝑤𝑖

+

𝑟∑︁
𝑖=1

𝐵𝑖𝑥𝑠𝑤𝑖 . (8)

In this case unknown coefficients can be found according to the following equation

𝑎 = 𝑊−1𝐵, 𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐴0

𝐴1

𝐵1

...
𝐴𝑟

𝐵𝑟

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎝

∑︀𝑣
1 ...

∑︀𝑣
1 𝑧𝑖1,𝑖2,...,𝑖𝑟∑︀𝑣

1 ...
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖1

𝑧𝑖1,𝑖2,...,𝑖𝑟∑︀𝑣
1 ...

∑︀𝑣
1 𝑥𝑠𝑤1𝑖1𝑧𝑖1,𝑖2,...,𝑖𝑟

...∑︀𝑣
1 ...

∑︀𝑣
1 𝑥

2
𝑠𝑤1𝑖𝑟

𝑧𝑖1,𝑖2,...,𝑖𝑟∑︀𝑣
1 ...

∑︀𝑣
1 𝑥𝑠𝑤1𝑖𝑟𝑧𝑖1,𝑖2,...,𝑖𝑟

⎞⎟⎟⎟⎟⎟⎟⎠ , 𝑔 = 𝑣𝑟−1

𝑊 =

⎡⎢⎢⎢⎢⎣
𝑣𝑟 𝑔

∑︀𝑣
1 𝑥

2
𝑠𝑤1𝑖1

𝑔
∑︀𝑣

1 𝑥𝑠𝑤1𝑖1 ... 𝑔
∑︀𝑣

1 𝑥𝑠𝑤𝑟𝑖1

𝑔
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖1

𝑔
∑︀𝑣

1 𝑥
4
𝑠𝑤1𝑖1

𝑔
∑︀𝑣

1 𝑥
3
𝑠𝑤1𝑖1

... 𝑔
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖1

𝑥𝑠𝑤𝑟𝑖1

𝑔
∑︀𝑣

1 𝑥𝑠𝑤1𝑖1 𝑔
∑︀𝑣

1 𝑥
3
𝑠𝑤1𝑖1

𝑔
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖1

... 𝑔
∑︀𝑣

1 𝑥𝑠𝑤1𝑖1𝑥𝑠𝑤𝑟𝑖1

... ... ... ... ...
𝑔
∑︀𝑣

1 𝑥𝑠𝑤𝑟𝑖1 𝑔
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖1

𝑥𝑠𝑤𝑟𝑖1 𝑔
∑︀𝑣

1 𝑥𝑠𝑤1𝑖1𝑥𝑠𝑤𝑟𝑖1 ... 𝑔
∑︀𝑣

1 𝑥
2
𝑠𝑤1𝑖𝑟

⎤⎥⎥⎥⎥⎦ .

where 𝑣 is quantity of chosen points in the range of possible values of abscissas of switching
points.

At the fifth step, the minimum of 𝑟-dimensional paraboloid is calculated to provide the
criterion (2). For this purpose, the theory of optimization is used [48]. To find the minimum, it
is necessary to solve the system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕𝑧(𝑥𝑠𝑤1 ,𝑥𝑠𝑤2 ,...,𝑥𝑠𝑤𝑟 )
𝜕𝑥𝑠𝑤1

= 0,
𝜕𝑧(𝑥𝑠𝑤1 ,𝑥𝑠𝑤2 ,...,𝑥𝑠𝑤𝑟 )

𝜕𝑥𝑠𝑤2
= 0,

...
𝜕𝑧(𝑥𝑠𝑤1 ,𝑥𝑠𝑤2 ,...,𝑥𝑠𝑤𝑟 )

𝜕𝑥𝑠𝑤𝑟
= 0.

(9)

In the case of 𝑟-dimensional paraboloid (7) usage, the system of equations (9) turns to the
system of 𝑟 linear equations that can be solved by one of known method. In case of simplified
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paraboloid (8) usage, the simple solution can be obtained in the following form

𝑥𝑠𝑤𝑖𝑜𝑝𝑡 =
−𝐵𝑖

2𝐴𝑖
. (10)

At the sixth step, coefficients of segmented regression (3), (4) or (5) are recalculated, and
resulting model is obtained.

4. Simulation results and numerical example

Consider the problem of analysis of proposed methodology implementation based on the results
of statistical simulation.

The statistical simulation starts with obtaining initial data set with two switching points. The
data set contains deterministic and random components. The deterministic component can be
presented as follows

𝑓1(𝑋) = 𝑎0,1 + 𝑎1,1𝑋 + 𝑎2,1(𝑋 − 𝑥𝑠𝑤1)ℎ(𝑋 − 𝑥𝑠𝑤1) + 𝑎3,1(𝑋 − 𝑥𝑠𝑤2)ℎ(𝑋 − 𝑥𝑠𝑤2).

This dependence is converted into discrete form at the range [1; 100] with sampling interval
𝛿 = 1 and sample size 𝑛 = 100. The initial parameters of deterministic model can be different,
but in this research, authors used the following initial numerical values: 𝑎0,1 = 500, 𝑎1,1 = 10,
𝑎2,1 = −25, 𝑎3,1 = 20, 𝑥𝑠𝑤1 = 20 and 𝑥𝑠𝑤2 = 50.

Random component is generated at each sample point as additive Gaussian noise with zero
expected value and standard deviation 𝜎 = 30. The number of procedures reiteration is 1000.

The example of one of data sets is given in table 1. The data in the table 1 present the values
of dependent variable 𝑌 that was measured at points 𝑋 separated by sampling interval 𝛿.

The graphical presentation of three examples of initial data set is shown in figure 1.
Visual analysis of data (figure 1) gives possibility to conclude that most convenient regression

type for these data approximation is segmented linear regression with two switching points.
Let 𝑟 = 5. The range of possible values of abscissas of switching points is

𝑥𝑠𝑤1 = (10, 15, 20, 25, 30),

𝑥𝑠𝑤2 = (40, 45, 50, 55, 60).

In this case it is necessary to calculate estimates of regression coefficients 𝑎0,1, 𝑎1,1, 𝑎2,1, 𝑎3,1
for all combinations of possible values of abscissas of switching points. After that, standard
deviation (6) is determined for each option. The results of standard deviation calculation are
given in table 2.

Data from table 2 are approximated by two-dimensional paraboloid based on ordinary least
squares methods. For paraboloid types (7) and (8) following equations were obtained

𝑧(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2) = 364.893−6.635𝑥𝑠𝑤1−10.012𝑥𝑠𝑤2+0.111𝑥2𝑠𝑤1
+0.09𝑥2𝑠𝑤2

+0.047𝑥𝑠𝑤1𝑥𝑠𝑤2 ,

𝑧(𝑥𝑠𝑤1 , 𝑥𝑠𝑤2) = 317.416− 4.261𝑥𝑠𝑤1 − 9.062𝑥𝑠𝑤2 + 0.111𝑥2𝑠𝑤1
+ 0.09𝑥2𝑠𝑤2

,

The obtained paraboloids are shown in figure 2 and figure 3, respectively.
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Table 1
Example of initial data set.

𝑋 𝑌 𝑋 𝑌 𝑋 𝑌 𝑋 𝑌 𝑋 𝑌

1 478.051 21 708.727 41 430.555 61 361.496 81 391.604
2 531.887 22 716.929 42 397.554 62 357.442 82 410.622
3 488.646 23 698.735 43 440.372 63 281.227 83 370.187
4 532.988 24 662.582 44 324.692 64 362.172 84 460.596
5 437.424 25 554.083 45 372.758 65 336.362 85 345.848
6 576.916 26 663.423 46 343.182 66 341.036 86 356.448
7 558.703 27 621.014 47 304.289 67 288.759 87 408.922
8 525.774 28 692.666 48 380.215 68 401.393 88 459.006
9 561.106 29 522.092 49 252.287 69 321.402 89 340.568
10 598.737 30 659.452 50 333.319 70 290.943 90 443.487
11 631.717 31 398.557 51 307.979 71 436.479 91 541.709
12 658.255 32 520.615 52 270.906 72 333.381 92 436.921
13 647.998 33 472.390 53 290.251 73 373.471 93 462.618
14 607.476 34 463.161 54 265.407 74 343.770 94 532.297
15 648.630 35 442.640 55 240.342 75 354.348 95 484.741
16 691.087 36 443.975 56 269.936 76 402.171 96 451.064
17 638.839 37 482.674 57 338.144 77 377.978 97 505.605
18 687.825 38 433.265 58 284.574 78 303.512 98 439.356
19 689.012 39 405.900 59 351.267 79 339.748 99 450.629
20 653.723 40 444.444 60 243.165 80 312.829 100 485.727

Table 2
Standard deviations.

Abscissas 𝑥𝑠𝑤1 = 10 𝑥𝑠𝑤1 = 15 𝑥𝑠𝑤1 = 20 𝑥𝑠𝑤1 = 25 𝑥𝑠𝑤1 = 30

𝑥𝑠𝑤2
= 40 72.179 62.257 56.561 58.777 66.45

𝑥𝑠𝑤2
= 45 63.561 53.526 49.227 53.585 62.128

𝑥𝑠𝑤2
= 50 57.41 48.362 46.246 52.425 61.318

𝑥𝑠𝑤2 = 55 56.026 49.361 49.677 56.532 64.713
𝑥𝑠𝑤2 = 60 59.484 55.562 57.516 63.941 70.661

In the case of paraboloid (7) usage, it is necessary to solve system of equations (9) that takes
a form ⎧⎨⎩

𝜕𝑧(𝑥𝑠𝑤1 ,𝑥𝑠𝑤2 )
𝜕𝑥𝑠𝑤1

= 0,
𝜕𝑧(𝑥𝑠𝑤1 ,𝑥𝑠𝑤2 )

𝜕𝑥𝑠𝑤2
= 0.

After derivatives calculation this system of equations turns to system of linear equations{︃
−6.635 + 0.222𝑥𝑠𝑤1𝑜𝑝𝑡 + 0.047𝑥𝑠𝑤2𝑜𝑝𝑡 = 0,

−10.012 + 0.047𝑥𝑠𝑤1𝑜𝑝𝑡 + 0.18𝑥𝑠𝑤2𝑜𝑝𝑡 = 0.

The solution of this system is
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Figure 1: The initial data sets (three realizations).

𝑥𝑠𝑤1𝑜𝑝𝑡 = 18.941,

𝑥𝑠𝑤2𝑜𝑝𝑡 = 50.812.

In the case of paraboloid (8) usage, the optimal values of abscissas of switching points are
calculated according to equation (10). The results of calculation

𝑥
/
𝑠𝑤1𝑜𝑝𝑡

= 19.113,

𝑥
/
𝑠𝑤2𝑜𝑝𝑡

= 50.532.

Analysis showed that for this particular case simplified paraboloid gives greater accuracy of
switching point’s abscissas estimates (relative error is 4.435 percent and 1.064 percent for the
first and second switching points, respectively).

Resulting segmented linear regressions for both optimization options (paraboloids (7) and
(8)) are

𝑓1(𝑋) = 484.143 + 11.397𝑋 − 25.025(𝑋 − 18.941)ℎ(𝑋 − 18.941)+

+18.021(𝑋 − 50.812)ℎ(𝑋 − 50.812),

𝑓1(𝑋) = 484.987 + 11.26𝑋 − 25.073(𝑋 − 19.113)ℎ(𝑋 − 19.113)+
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Figure 2: Obtained paraboloid (7) for data set from table 1.

+18.155(𝑋 − 50.532)ℎ(𝑋 − 50.532).

The standard deviation for the first and second optimization options is 46.038 and 46.040,
respectively. The results of approximation are shown in figure 4.

Resulting segmented linear regressions for both optimization options in figure 4 almost
coincide and have approximately equal standard deviation.

Consider the statistical simulation results for 1000 reiteration procedures. Such simulation
gives the possibility to build the probability density functions of estimates of switching point’s
abscissas. Figure 5 shows the histograms for estimate of abscissa of the first (figure 5a) and
second (figure 5c) switching point for paraboloid (7), the histograms for estimate of abscissa
of the first (figure 5b) and second (figure 5d) switching point for paraboloid (8). Statistical
characteristics (expected value, variance, minimum and maximum) of estimates for optimal
values of abscissas of switching points using paraboloids (7) and (8) are given in table 3.

Analysis showed that general paraboloid (7) in average has greater accuracy for switching
points abscissas estimation. In the case of the first switching points abscissas estimation, relative
error is 3.63 and 4.32 percents for paraboloid (7) and (8), respectively. In the case of second
switching points abscissas estimation, relative error is 0.968 and 1.376 percents for paraboloid
(7) and (8), respectively. In addition, paraboloid (7) has greater scattering of estimate.
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Figure 3: Obtained paraboloid (8) for data set from Table 1.

The simulation results give approximatly same efficiency of estimate and accuracy of mathe-
matical model. So to simplify the calculation, optimizational paraboloid (8) can be used as more
suitable during mathematical model building.

5. Conclusion

The paper considers new approach to switching point’s optimization for segmented regression
during mathematical model building. The analytical equations for segmented linear, parabolic
and linear-parabolic regressions are presented based on usage of Heaviside step function. To
find the optimal values of connection points between regression segments, multidimensional
optimization paraboloid is used for describing the dependence of standard deviation on possible
values of switching point’s abscissa. The proposed methodology, in contrast to the existing ones,
allows to obtain the accurate mathematical formula for calculating the abscissa of switching
points. Moreover, considered methodology has property of robustness for initial distribution of
errors and dataset. The analysis of proposed methodology is carried out based on statistical
simulation. The implementation of methodology is explained on numerical example for gener-
ated data set. Computations prove feasibility of proposed approach. The research results can be
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Figure 4: The initial data set and obtained optimal segmented linear regressions.

Table 3
Statistical characteristics of estimates for optimal values of abscissas of switching points using
paraboloids (7) and (8)

Statistical characteristic Paraboloid (7) Paraboloid (8)

Expected value for 𝑥𝑠𝑤1 20.726 20.864
Variance for 𝑥𝑠𝑤1

1.427 1.317
Minimum value for 𝑥𝑠𝑤1

15.892 16.929
Maximum value for 𝑥𝑠𝑤1

25.004 25.026
Expected value for 𝑥𝑠𝑤2 50.484 50.688

Variance for 𝑥𝑠𝑤2 1.314 1.188
Minimum value for 𝑥𝑠𝑤2

45.978 45.914
Maximum value for 𝑥𝑠𝑤2

54.883 55.062

used to increase the accuracy of data approximation in mathematical model building.
Further research directions will be associated with a comparative analysis of the effeciency

of the proposed methodology with other techniques for determining estimates of the abscissa
of switching points (in particular, MLE and estimates based on the Bayesian approach) in the
case of different limitations presence.
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Figure 5: The histograms of estimates of switching point’s abscissas.
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