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Abstract
In this paper, we present the results of an empirical evaluation investigating how recommendation
algorithms are affected by popularity bias. Popularity bias makes more popular items to be recommended
more frequently than less popular ones, thus it is one of the most relevant issues that limits the fairness
of recommender systems. In particular, we define an experimental protocol based on two state-of-the-
art datasets containing users’ preferences on movies and books and three different recommendation
paradigms, i.e., collaborative filtering, content-based filtering and graph-based algorithms. In order to
evaluate the overall fairness of the recommendations we use well-known metrics such as Catalogue
Coverage, Gini Index and Group Average Popularity (ΔGAP). The goal of this paper is: (i) to provide a
clear picture of how recommendation techniques are affected by popularity bias; (ii) to trigger further
research in the area aimed to introduce methods to mitigate or reduce biases in order to provide fairer
recommendations.
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1. Introduction

Recommender Systems (RSs) guide the users in a personalized way to interesting or useful
objects in domains where a large space of possible options are available [1]. Basically, such
systems acquire information about users’ needs, interests and preferences and tailor their
behavior based on such information, by supporting people in several decision-making tasks [2].
Nowadays, it is acknowledged that RSs have a huge influence on consumers’ behaviors. Indeed,
many people use these systems to listen to music on Spotify, to watch videos on YouTube or to
buy products on Amazon. As shown in [3], such algorithms have a significant impact on both
sales volumes and clickthrough rates. As an example, 35% of Amazon’s revenues are generated
through its recommendation engine1.
Although RS research traditionally focused on providing users with accurate recommenda-

tions, that is to say, recommendations that match user interests, recent studies have assessed
the importance of additional factors for evaluating the perceived quality and usefulness of rec-
ommendation lists. As an example, several works evaluated to what extent a recommendation
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algorithm is able to expose a user with diverse, novel or serendipitous recommendations [4, 5, 6].
The metrics that allow to quantitatively assess the aforementioned properties of recommenda-
tions are typically referred to as beyond-accuracy metrics [7, 8]. An example of beyond-accuracy
metric which recently gained more and more attention is the fairness. Abstractly, by referring to
AI methods and techniques, fairness means to not discriminate against individuals or groups [9].
As for classification algorithms, a behavior is defined as fair if the outcome of the algorithm (e.g.,
a binary answer to an applicant seeking a loan) is not influenced by personal characteristics of
the user, such as gender or race [10].
As for recommendation algorithms, the concept of fairness becomes more complex and

multi-sided [11], since it can refer to both users and items. The first sense follows the general
definition already introduced for classification algorithms, since a recommender system is
fair w.r.t. users if their personal characteristics do not influence the behavior of the RS. On the
other side, an algorithm is fair w.r.t. items if the recommendation list contains items whose
characteristics reflect the preferences of the user. As discussed in [12], if a user has liked 7
romance and 3 action movies, a fair recommendation list should contain 70% romance and 30%
action movies. Similarly, if a user typically likes niche items, that is to say, poorly popular items,
her recommendation list should contain a majority of niche items as well.

However, such an ideal behavior is far from being real, since several factors negatively affect
the fairness of recommendation lists. One of the most popular issues that affect the fairness is
commonly known as popularity bias: indeed, as shown by several studies [12], users mostly
provide feedback on popular items rather than on niche ones. This introduces a bias towards
popular items that tend to be recommended more frequently w.r.t. niche ones, and this is a clear
obstacle for the generation of fair recommendation lists.
Even though the problem has been largely discussed in literature [13], to the best of our

knowledge the analysis of how the different recommendation paradigms are affected by popular-
ity bias (and consequently provide unfair recommendations) is under-investigated. Accordingly,
through this paper we aim to fill in this gap and provide a benchmark for the fairness of the
popular recommendation paradigms based on the suggestions they provide. In particular, we
analyze several implementations of collaborative filtering, content-based and graph-based RSs
and we evaluate them in terms of metrics for assessing the fairness of the algorithms, such as
catalogue coverage, Gini Index and Group Average Popularity.

The rest of the paper is organized as follows: in Section 2, we briefly introduce other works
discussing the impact and the benefits of fairness in recommendation algorithms. Next, in
Section 3 we present the recommendation algorithms we evaluated in our experimental protocol
described in Section 4. In Section 5 we discuss the results of our benchmark and we sketch
the main findings of this work. Finally, Section 6 draws the conclusions and summarizes some
ideas for future research in the area.

2. Related Work

The problem of popularity bias is connected to the well-known phenomenon of the long-tail
[14]. This concept, which refers to the way data are distributed and observed, is based on Zipf’s
law [15, 16] and holds for several scenarios, ranging from wealth distribution to use of terms



in a particular language. Zipf’s law states that, if a collection of items is ranked by popularity,
the second item will have around half the popularity of the first one, and the third item will
have about a third of the popularity of the first one, and so on. Accordingly, the long tail theory
shows that a tiny amount of objects receives a huge amount of observations (e.g., clicks, likes,
purchases. depending on the context), while the majority of the objects (the long tail) receives a
smaller amount of observation.

As previously stated, the problem also holds for RSs, since just a few objects receive most of
the feedbacks provided by the users. The phenomenon has been largely observed by Jannach
et al. [17], who presented a detailed analysis of what recommenders recommend. As shown in
the article, due to the long tail (and, in turn, to the popularity bias) popular items are more
frequently recommended, and this leads to the undesired blockbuster effect [18]. It is not by
chance that recommending popular items represents a very strong baseline in offline evaluations
with respect to accuracy measures [19, 20], Unfortunately, as previously stated, this limits the
overall fairness of the recommendation lists. Indeed, as shown in [21], it is important that RSs
achieve a good balance between popular and less-popular items.
The nature of the popularity bias and the challenges it poses are discussed in several works.

This has been done by both analyzing users’ rating behavior [22] as well as by proposing new
algorithms to control the bias and better reward items in the long tail [21, 13, 23]. Similarly, the
concept of fairness in recommendation received a lot of attention [24]. As an example, Zhu et al.
[25] proposed an approach to remove discrimination based on demographic features. Similarly,
in [26] a method to provide a fair exposure to recommendation items is presented.
In this work we follow the protocol presented in [13], and we focus on the fairness of

recommendations with respect to users’ expectations. In other terms, we aim to analyze to
what extent the items in the recommendation lists follow the distribution of the actual interests of
users with respect to how many popular items they expect to see in the recommended list. A
similar attempt is presented in [27], where an empirical analysis in music domain is carried out,
and in [12], where the author proposed the idea of calibration: the recommendations should be
consistent with the average popularity of the items rated by the users. However, differently
from these pieces of work, in this paper we analyze the behavior of different recommendation
paradigms, i.e., collaborative filtering, content-based recommender systems and graph-based
recommendations, in order to analyze how different algorithms are affected by popularity bias.

3. Recommendation Paradigms

In this section, we briefly introduce the recommendation paradigms we analyzed in this work.
A thorough analysis of strengths and weaknesses of each group of algorithms goes beyond
the scope of the paper, and we suggest to refer to [1] for a complete overview of the topic. In
the following, we will introduce the basics of collaborative filtering techniques, followed by
content-based and graph-based recommender systems.

3.1. Collaborative Filtering Algorithms

Collaborative filtering (CF) algorithms represent themost popular and probably widely available
implementation of a recommendation algorithm [28]. The basic idea of CF algorithms is that



users who shared the same interests in the past (e.g., viewed the same movies or bought the
same books) will also like similar items in the future. Generally speaking, CF systems generate
recommendations for the target user based on the preferences expressed by similar users. The
concept of similarity is based on users’ previous behaviors. In a nutshell, if they liked or they
bought the same items, they are similar [29]. Such an intuition is concretely implemented by
means of a user-item matrix, where users are put in the rows, items are put in the columns, and
the feedback provided by the user on that item (e.g., bought, rated, viewed, etc.) is encoded at
the cross of row and column.
These algorithms have been popularized by the well-known Netflix prize [30], where the

winning approach exploited a more sophisticated version of CF [31] based on the factorization
of the user-item matrix [32]. As shown in [33], these methods are still very popular [34]
and also extended to neural approaches [35]. However, as shown by Lops et al. [36], CF
algorithms are strongly affected by sparsity issues and cold-start, i.e., they can not provide good
recommendations if just a few ratings is available. As a consequence, the research also started
investigating content-based and hybrid approaches [37].

As wewill show in the next section, as CF algorithmswe considered: (i) basic implementations
of standard techniques, such as item-to-item and user-to-user collaborative filtering techniques;
(ii) matrix factorization (MF) techniques, such as Biased MF, FunkSVD and other methods.

3.2. Content-based Recommender Systems

The social nature of collaborative filtering algorithms makes CF poorly suitable when few
ratings are available. This issue is completely put aside by content-based recommender systems
(CBRS) [5], which typically recommend items that are similar to the ones the user liked in the
past. As an example, if a user has positively rated a movie that belongs to the comedy genre,
then it is likely that the system will suggest other movies labeled with this genre.
Generally speaking, the recommendation process is based on the estimation of how similar

the recommended item is w.r.t. the profile of the user. Such a similarity, which is based on
popular and well-known measures (e.g., cosine similarity, Euclidean distance, etc.), is calculated
based on the attributes associated to both the item and the profile of the user. Basically, the
more the overlap between the attributes, the higher the similarity.

In some cases, attributes are simple keywords that are extracted from the item descriptions,
such as the content of a news or the plot of a movie. However, more sophisticated approaches
that exploit more accurate and advanced techniques based on natural language processing also
exist. As stated in [5], semantics-aware techniques which learn a representation of the items based
on the meaning of the attributes (rather than on simple keywords) recently gained attention
thank to the good accuracy they provide [38]. As an example, Ozsoy et al. [39] proposed the
use of Word2Vec to learn word embeddings representing items and user profiles. Moreover, in
[40] Doc2Vec is used to learn an embedding representing a news article, based on the text and
the title of the news, while FastText is used in [41] in a content-based recommendation scenario.
Other shreds of evidence concerning semantics-aware recommendation methods exploiting
word embeddings [42, 43] definitely confirm these claims.

As for CBRS, in this paper we will both take into account: (i) early CBRS implementations,
based on a vector space representation of users and items with TF-IDF weighting; (ii) semantics-



aware methods, i.e., based on Doc2Vec [44], Word2Vec [45], and LSI.

3.3. Graph-based Recommender Systems

Graphs provide a very natural and straightforward representation model to encode all the
entities involved in the recommendation process. Indeed, users, items and attributes can be all
modeled as nodes, while an edge can be created whenever a user likes a particular item or an
item is described by a particular attribute (e.g., genre, directory, etc.).
Based on this intuition, several approaches exploiting a graph-based representation have

been proposed in literature. Generally speaking, these approaches typically fall into the class
of hybrid recommender systems, since different entities are modeled in the same graph. In a
nutshell, the approaches presented in the area of graph-based recommendations can be roughly
split into two classes: (i) approaches that exploit spreading activation techniques; (ii) approaches
inspired by PageRank (PR) and random walk [46].

The use of spreading activation for recommendations purposes is investigated from the early
2000s [47] and is still adopted [48, 49] thanks to the good predictive accuracy it provides. As
for the use of PR and random walk, one of the early work in the area is due to Hotho et al. [50],
who used PR for tag recommendation [51]. Similar intuitions were proposed in other domains
as well [52, 53]. Recently, hybrid approaches combining graph-based representations and deep
learning also emerged [54, 55].

However, in this work we only focused on PR and Personalized PageRank (PPR) run over the
simple graph-based data model, without any other processing and without the application of any
other algorithm. This choice is motivated by the findings emerging from previous research [56],
where it is shown that recommendation strategies based on PPR can provide state-of-the-art
recommendation accuracy.

4. Experimental Protocol

In the current work we follow the protocol presented in [13]. In particular, we focus on the
fairness of recommendations with respect to users’ expectations. In other terms, we aim to
analyze to what extent the items in the recommendation lists follow the distribution of the actual
interests of users with respect to howmany popular items they expect to see in the recommended
list.

Datasets. To carry out the experiments, we exploited two state-of-the-art datasets which are
commonly used to evaluate RS performance. In particular, we used MovieLens-1M, focusing on
movie recommendations, and GoodBooks, focusing on book recommendations. Statistics of
the datasets are provided in Table 1. As shown in the table, GoodBooks contains more ratings
and it is more unbalanced towards positive opinions, but it is more sparse as well (i.e., a higher
amount of non-voted items).

Algorithms. As recommendation algorithms we exploited some available implementations
of collaborative filtering, content-based and graph-based techniques. As for CF, we used the im-



MovieLens-1M GoodBooks

Users 6,040 53,424
Items 3,883 10,000
Ratings 1,000,209 6,000,000
%Positive 57.51% 68.97%
Sparsity 96.42% 99.82%

Table 1
Statistics of the datasets

plementations available in LensKit2 of user-to-user CF, item-to-item CF and matrix factorization
techniques such as FunkSVD and Implicit MF. As for CBRS, we used the implementations avail-
able in Gensim3 of basic TF-IDF recommender system as well as some implementation of the
embedding-based methods Word2Vec, Doc2Vec and LSI. Finally, as for PageRank, we exploited
NetworkX library4 that included an implementation of both PageRank (PR) and Personalized
PageRank (PPR). For all the algorithms default parameters were used. In particular, as for CF
algorithm the number of neighbors is set to 100, while the latent factors of MF algortithms are
set to 50. As for PR and PPR, we used 0.85 as damping factor. As future work, we will perform
further experiments with different parameter settings for the algorithms.
Data Models. As for CF algorithms, no particular processing was needed since all the

available ratings were used to build the user-item matrix or to learn the factorization models.
As for CBRS, to feed content-based recommendation algorithms, we used tags, structured
descriptive attributes of the items (i.e., actor, director, author, genre, etc.) as well as unstructured
features obtained by processing textual content (i.e., description of the book and plot of the
movie) through natural language processing libraries. When embedding methods such as
Word2Vec are used, we exploited pre-trained embeddings. Finally, as for PR and PPR, structured
properties were used as attributes of the items and encoded in the graph.
Evaluation Metrics. Metrics were calculated on the top-10 recommendation list returned

by each algorithm for each user, and finally averaged over all the users. As evaluation metrics,
we adopted standard methods used to evaluate the fairness of the algorithms. In particular, we
adopted: (i) catalogue coverage; (ii) Gini Index; (iii) ΔGAP.
In the following, we briefly introduce the different metrics:

1. Catalogue Coverage measures the amount of items in the catalogue which are recom-
mended to at least one user, and it is obtained by merging all the recommendation lists
produced for all the users by an algorithm and by counting the amount of different items
contained in the merged list. Of course, the higher the coverage, the higher the fairness of
the algorithm., since a larger number of the items available in the catalogue are included
in the recommendation lists.

2. Gini Index measures how unbalanced (in terms of frequency) is the distribution of the
recommendations to all the users. This metric assumes values in the range [0,1], where
0 indicates a balanced (and more fair ) distribution of the recommendations, while 1

2https://lenskit.org/
3https://radimrehurek.com/gensim/
4https://networkx.org/
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represents the worst value (not balanced recommendations), i.e. recommendations con-
centrated on a single item.

3. The Group Average Popularity (GAP) measures the average popularity of the items in a
certain group. In our case, we define 𝐺𝐴𝑃(𝑔)𝑝, which measures the average popularity
of the items in the user profiles 𝑝 of a specific group 𝑔 and 𝐺𝐴𝑃(𝑔)𝑟, which measures
the average popularity of the items in the recommendation list 𝑟 of a specific group 𝑔.
Popularity is calculated as the amount of ratings expressed by the users on a particular
item. Based on the protocol presented in [13], three different groups of users are defined:
blockbuster buster (whether they majority of the items liked by the user are in the top-20%
most rated items), niche users (majority of liked items in the less-20% most rated items)
and diverse users (the remaining).
For each algorithm and user group, we are interested in the change in GAP (i.e., ΔGAP),
which shows how the popularity of the recommended items differs from the expected
popularity of the items in the user profiles. Formally:

Δ𝐺𝐴𝑃(𝑔) =
𝐺𝐴𝑃(𝑔)𝑟 − 𝐺𝐴𝑃(𝑔)𝑝

𝐺𝐴𝑃(𝑔)𝑝
(1)

The interpretation of such metric is straightforward. Δ𝐺𝐴𝑃 = 0 would indicate fair rec-
ommendations in terms of item popularity, where fair means that the average popularity
of the recommendations a user receives matches the average popularity in the user’s
profile. Conversely, if ΔGAP is higher than 0, the algorithm overestimates the popularity
required by the user, based on her previous likes. Conversely, if ΔGAP is lower than 0 an
underestimation occurs.

5. Results

In this section we present the results of our experiments and we comment the findings emerging
for each evaluation metric and for each dataset.

5.1. Catalogue Coverage and Gini Index

Results concerning the evaluation of catalogue coverage are presented in Table 2. Beyond the
recommendation paradigms we previously introduced, we also evaluate two baseline recommen-
dation algorithms, i.e., random algorithm and popularity-based algorithm. The first provides
each user with a set of randomly generated recommendations, while the second one provides
all the users with a set of items randomly picked among the most popular ones. In our setting,
they represent the upper and the lower bounds of our experiment, since random algorithm
provides with the maximum coverage of the catalogue, while a popularity-based algorithm, by
definition, is the one that is mostly affected by popularity bias.
As shown in the Table 2, different outcomes emerged for the different datasets. As for

MovieLens 1M, Biased MF emerged as the technique that is able to better cover the whole
catalogue of items, while Word2Vec emerged as best technique on GoodBooks. These results
can be explained in light of the different characteristics of the datasets. As shown in Table 1,



MovieLens 1M Goodbooks
Paradigm Technique Catalogue Cov. Coverage % Catalogue Cov. Coverage %

Baseline
Random 3,688 94.98% 10,000 100%
Popular 67 1.63% 43 0.43%

CF

User-to-User CF 296 7.62% 2,210 22.10%
Item-to-Item-CF 471 12.13% 2,819 28.19%

Biased MF 547 14.09% 1,830 18.30%
FunkSVD 276 7.11% 546 5.46%

CBRS

TF-IDF 444 11.43% 2,622 26.22%
Word2Vec 492 12.67% 3,081 30.81%
Doc2Vec 476 12.26% 2,987 29.87%

LSI 443 11.41% 2,799 27.99%

Graphs
PR 15 0.38% 11 0.11%
PPR 36 0.92% 22 0.22%

Table 2
Results of the experiments concerning Catalogue Coverage. The best-performing technique for each
paradigm is emphasized in bold, while the overall best-performing techniques for each dataset is also
underlined.

MovieLens has a lower sparsity than GoodBooks, that is to say, a higher percentage of items is
known (and rated) by the users. Accordingly, a less sparse matrix leads to a better coverage
of the catalogue of items, thus it is not surprising the collaborative filtering techniques obtain
the best results on MovieLens. Conversely, when the sparsity is higher, CF techniques are not
able to cover (recommend) a sufficient portion of the catalogue and content-based methods
emerged as more effective and more stable. Indeed, in this case Word2Vec obtained the best
overall results.
By also comparing standard techniques such as User-to-User CF or TF-IDF content-based

recommendations with more advanced strategies, it emerges that the adoption of more sophisti-
cated models based on matrix factorization or on semantics-aware word embedding techniques
leads to a slight improvement of the catalogue coverage. As for content-based techniques, this
holds for both the datasets. Indeed, both Word2Vec and Doc2Vec provide a larger coverage
w.r.t. standard TF-IDF-based recommendations. As for collaborative filtering, the role of the
sparsity emerged again, since a higher sparsity (as on GoodBooks) leads to a decrease in terms of
coverage when matrix factorization techniques are adopted. This means that when most of the
ratings are unknown, factorization techniques are not able to learn the relationships between
latent features and cover just a little portion of the catalogue.
Finally, an interesting behavior also emerged for graph-based techniques, which emerged

as the paradigm that is more prone to popularity bias. Indeed, PR recommends just a tiny
portion of the catalogue of items on both the datasets, and the adoption of a personalized
variant as PPR does not significantly improve the overall behavior. To conclude, we can state
that this first experiment provided us with interesting findings, since the results showed the
importance of adopting more sophisticated techniques based on artificial intelligence as well as
the fundamental role of sparsity in the selection of the most effective algorithm.
However, it should be pointed out that the overall catalogue coverage of all the algorithms



Paradigm Technique
Dataset

MovieLens-1M GoodBooks

Baseline
Random 0.185 0.334
Popular 0.995 0.998

CF

User-to-User CF 0.989 0.973
Item-to-Item-CF 0.990 0.986

Biased MF 0.984 0.987
FunkSVD 0.997 0.998

CBRS

TF-IDF 0.990 0.961
Word2Vec 0.985 0.956
Doc2Vec 0.987 0.959

LSI 0.988 0.958

Graphs
PR 0.996 0.999
PPR 0.995 0.998

Table 3
Results of the experiments concerning Gini Index. The best-performing technique for each paradigm is
emphasized in bold, while the overall best-performing techniques for each dataset is also underlined.

is not particularly satisfying, since the best-performing algorithm obtained around 14% on
MovieLens and around 30% on GoodBooks. Accordingly, a huge part of the catalogue is still out
of the recommendation lists of the users. These experimental outcomes further strengthen the
idea of developing strategies to mitigate popularity bias and include a larger number of items of
the long tail in the recommendation lists.
Next, results concerning the evaluation of Gini Index are reported in Table 3. Due to space

reasons, we can’t provide a thorough discussion of the findings emerged by this evaluation
metric. However the outcomes follow those already discussed for catalogue coverage, since
Word2Vec and Biased MF emerged as best-performing techniques on GoodBooks and MovieLens,
respectively. As we already noted for catalogue coverage, CF techniques tend to perform better
when the sparsity is lower, while CBRS appeared as more effective when a lower number of
ratings is available. Overall, we note again that all the scores are very close to 1. As we explained
in the previous section, this means that recommendation lists are very concentrated on a small
portion of (popular) items, thus all the algorithms emerged again as very prone to popularity
bias. This leaves a lot of room for work to develop novel methods and strategies to mitigate this
bias and return more balanced recommendation lists.

5.1.1. Group Average Popularity and ΔGAP.

Finally, Figure 1 and Figure 2 2 show the behavior of the different algorithms in terms of ΔGAP.
As previously stated, this value shows to what extent the items in the recommendation lists
follow the distribution of the items in the user profile in terms of popularity. Values close to 0
represent the ideal behavior, while higher and lower number represent and over-estimation and
an under-estimation of the average popularity.

As shown in the figures, the findings of this analysis mostly follow those previously discussed
in terms of catalogue coverage and Gini Index. As for MovieLens data, Biased MF, which
already emerged as the technique able to cover the largest part of the catalogue of items,



Figure 1: Comparison in terms of ΔGAP on MovieLens-1M data. To improve the readability, the score
obtained by the best-performing technique for each paradigm is explicitly reported in the plot.

obtained the overall best results on all the different categories of users (i.e., niche, diverse and
blockbusters). As for content-based methods, in this case the overall best results are obtained
by LSI, which slightly overcame the basic TF-IDF on all the groups. Finally, as already noted for
the previous analyses, graph-based algorithms (in particular in their non-personalized variant)
do not perform well, since they are not able to return a list of recommendations that reflects the
average popularity of the items in the profile of the user. Overall, we can state that we obtained
consisted findings w.r.t. those we previously presented, since the lower sparsity of the data
allows collaborative algorithms to generate recommendations that reflect the interests of the
users.

As for the general behavior of all the algorithms, it should be pointed out that all the strategies
provide a slight under-estimation of the average popularity, that is to say, recommended items
are less popular than those the user liked. Generally speaking, this is an encouraging behavior,
since it is likely that less popular items are included in the recommendation lists. Of course,
algorithms that are particularly prone to popularity bias (i.e., popularity-based algorithms and
PageRank) do not follow this trend, since their recommendations over-estimate the average
popularity required by the user.
As for GoodBooks data, the overall best results are obtained by content-based recommen-

dations exploiting Word2Vec. This reflects again the behavior we already noted in terms of
Gini Index and catalogue coverage. In this case, characterized by a higher sparsity of the data,
content-based techniques obtained better results w.r.t CF counterparts, on average. Moreover,
differently to what expected, FunkSVD and PPR, that do not perform particularly well on the
previous analysis, showed their ability to return a recommendation list in terms of ΔGAP.



Figure 2: Comparison in terms of ΔGAP on GoodBooks data. To improve the readability, the score
obtained by the best-performing technique for each paradigm is explicitly reported in the plot.

However, CBRS based on more advanced representations, such as Word2Vec and Doc2Vec, still
beat other algorithms on these data.

6. Conclusions

In this paper, we presented the results of an empirical evaluation investigating how recommen-
dation algorithms are affected by popularity bias. We considered two state-of-the-art datasets
for movie and book recommendations and several implementations of the three principal rec-
ommendation paradigms, i.e., collaborative filtering, content-based filtering and graph-based
algorithms. We used well-known metrics such as Catalogue Coverage, Gini Index and Group
Average Popularity (ΔGAP) in order to discuss how different recommendation techniques are
affected by popularity bias.
As shown in the paper, all the algorithms are strongly affected by popularity bias, since

just a small portion of the available items is included in the recommendation lists. This is a
common behavior that does not depend on the particular paradigm which is used to generate
recommendations. Accordingly, this work confirms the need for novel and more effective
strategies to mitigate popularity bias. As for the adherence of the items in the recommendation
lists to those in the user profiles in terms of average popularity, it emerged that content-based
techniques are more suitable when the sparsity of the data is higher, while collaborative filtering
obtained better results with less sparse data. Finally, graph-based techniques did not perform
particularly well in any of the experimental settings discussed in this work.

As future work, we will extend this analysis by also considering novel approaches based on



deep learning techniques (e.g., complex architectures [57, 58], pre-trained embedding such as
BERT [59], etc.) and based on different groups of features (e.g., Linked Open Data, as in [60]),
in order to further validate the behavior of the different paradigms.
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