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Abstract. Classification models learned from data streams often as-
sume the availability of true labels after predicting new examples, either
instantly or with some delay with respect to inference time. However,
in many real-world scenarios comprising sensors, actuators and robotic
swarms, this assumption may not realistically hold, since the supervision
of newly classified samples can be unfeasible to achieve in practice. The
extreme case where such a supervision is never available is referred to as
extreme verification latency. Furthermore, streaming data is also known
to undergo the effects of exogenous non-stationary phenomena, by which
patterns to be learned from the streams can evolve over time, thereby
requiring the adaptation of the classifier for its knowledge to match to
the prevailing concept. When these two circumstances (extreme verifi-
cation latency and concept drift) concur in a given scenario, adapting
the model to the evolving dynamics of stream data becomes a challeng-
ing task, as the lack of supervision requires rethinking this functionality
from a semi-supervised perspective. In this context we present SLAYER,
a semi-supervised learning approach capable of tracking the evolution of
concepts in the feature space, and analyzing their characteristics towards
alleviating the effects of concept drift in the classification accuracy. Be-
sides its continuous adaptation to evolving concepts, another advantage
of SLAYER is its resilience against the appearance and disappearance
of concepts over time, adapting its knowledge seamlessly when it occurs.
We assess the performance of SLAYER over several datasets and com-
pare it to that of state-of-the-art approaches proposed to deal with this
stream learning setup. The discussion on the obtained results is conclu-
sive: SLAYER offers a competitive behavior, performing best over several
of the datasets considered in the benchmark.

Keywords: Stream learning · extreme verification latency · semi-supervi-
sed learning · concept drift

1 Introduction

Nowadays increasing volumes of data are generated at unprecedented speeds,
pushing the derivation of new learning models suitable for data analysis under
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stringent computational constraints. In order to gain value from these data flows,
efficient analytical models are needed, which are at the core of research efforts
around the Big Data paradigm [13]. Among the technological Big Data land-
scape, real-time Big Data analytics aim to extract useful information from large
datasets, often produced in the form of data streams, namely, sequences of data
items that arrive fast and continuously over time. Models that learn from such
streaming data while complying with the restrictions imposed by their flowing
nature have given rise to a profitable research area widely referred to as data
stream learning. Examples of real-world stream learning applications abound
in a manifold of domains, including recommendation systems, energy demand
modeling, climate data analysis, malware/spam detection, industrial prognosis
or traffic data analysis, among many others. As a matter of fact, the upsurge
of scenarios resorting to Internet of Things (IoT) devices and functionalities has
significantly propelled the necessity of new advances in stream learning, since
applications where IoT sensors are deployed often produce huge amounts of data
continuously over time [25].

In this context, devices that capture and process such data streams are usu-
ally limited in terms of memory and computing power (e.g. sensors, tiny devices),
which causes that in most practical cases, the processing time is the main lim-
iting issue to tackle when designing models for stream learning. In response to
these restrictions, preprocessing and learning methods have been proposed in
the literature, as for instance, selective sampling strategies, divide and conquer
strategies and distributed computing [22]. Even if the relative maturity of those
developed techniques can satisfy the computational constraints to a certain ex-
tent, stream learning models must also be endowed with the capability to adapt
their captured knowledge to eventual changes in their received stream data. This
phenomenon, known as concept drift, is usually due to non-stationary environ-
mental conditions that exogenously affect the production of such data flows,
which yields that the characteristics of the data streams evolve over time and
impact on the prevalence of the knowledge embedded in the model [11, 12].

The community has hitherto been particularly active in the derivation of
new approaches suited to deal with different types of drift as per their speed
(abrupt/gradual), severity level or casuistry (feature/label drift). Actually, sig-
nificant efforts in this vein have been devoted towards the study of concept drift
together with known traditional problems in machine learning, such as class
imbalance or multi-label classification. However, a scenario that has been less
addressed to date is that where concept drift collides with a indefinite lack of
supervision of the incoming data. In many practical scenarios annotated stream
data can be costly to obtain, or even unfeasible by any means [20]. Therefore,
the immediate availability of the supervision associated to stream data (e.g. true
labels in classification tasks) cannot be assumed any longer or, at best, supposed
to be available after some application-dependent time delay. This circumstance,
known in the field as verification latency, may hold also in drifting data streams,
hence imposing not only efficiency of the learning algorithm, but also a contin-
uous adaptation of the model to varying concepts without any supervision of
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the input data whatsoever. This need for adaptation is of special relevance in
the so-called extreme verification latency, in which the supervision of the stream
data disappears at a time and is never available again for modeling purposes [18].
The real-world examples provided in the first part of this section also serve as an
example where extreme verification latency holds. For instance, IoT sensors that
capture temperature or humidity data are often subject to decalibration in the
physical and chemical properties of their transducers. In many practical setups
companies cannot afford to recalibrate such sensors every time decalibration oc-
curs, nor can they cope with the investment needed to newly annotate data in
the new operating regime of the decalibrated sensor. Therefore, they assume that
extreme verification latency is an inherent circumstance to be faced by solutions
designed for the considered task. Many contributions reported to date around
data stream classification over drifting data focus on scenarios characterized by
a lagged label supervision with respect to prediction time [17].

This work addresses data stream learning under the above two premises (con-
cept drift and extreme verification latency), focusing on slowly evolving drifts
that can be traced and characterized in a non-supervised fashion. To deal with
concept drift adaptation in these challenging conditions, we present SLAYER
(Semi-supervised stream LeArning with densitY-basEd dRift adaptation), a learn-
ing algorithm for classification tasks formulated over data streams that can in-
crementally characterize the evolution over time of the class-dependent modes
of streaming data. This characterization relies on an continuous non-supervised
analysis of incoming data in order to anticipate changes in their structural char-
acteristics. In other words, the cornerstone of SLAYER is that the analysis is
driven by the number of clusters found in data at every time, instead of the
number of classes of the formulated classification problem. At this point, we
emphasize that, unlike online clustering, which aims to have a good characteri-
zation of clusters over time but the correspondence between labels and clusters
is not taken into account, in our setup it is crucial to trace the correspondence
between labels and concepts over time. Therefore, the goal is to predict examples
to classes rather than to infer how data organize in clusters over time [21].

We assess the performance of the proposed approach over a set of public
synthetic datasets featuring evolving drifts of very diverse nature, assuming ex-
treme verification latency in all of them. Results of our proposed scheme are
compared to the ones obtained by other methods reported in the scarce litera-
ture that has so far undertaken this same problem. Results elucidate that the
unsupervised drift tracking mechanisms embodied in SLAYER can lead to supe-
rior accuracies than its counterparts, as they allow for a fine-grained modeling
of the information continuously flowing and drifting over time.

The rest of the paper is structured as follows: first a brief review of related
contributions is made in Section 2. Next, Section 3 describes the overall algorith-
mic steps of SLAYER, jointly with a description and design rationale of methods
underneath. The experimental setup is detailed in Section 4, whereas results are
presented and discussed in Section 5. Finally, Section 6 concludes this work and
outlines future research directions stimulated by our findings.
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2 Background

Among the extensive bibliography corpus related to stream learning, we first
pause at the conclusions drawn in [15] and [16]. The importance of dealing
with verification latency when learning from streams was already pointed out
in the former, whereas the latter reviewed more than 130 works about concept
drift, analyzing assumptions, methodologies and techniques, and concluding with
prospects and guidelines for future research in the field. Among them, extreme
verification latency was identified as an area deserving further research. The de-
layed or null supervision of incoming data samples implies the use of different
strategies that blindly monitor the distribution of arriving data samples and
adapt the model to changes detected therein [17]. Within such strategies to han-
dle verification latency, we highlight 1) semi-supervised learning [12], in which
a few labeled samples are available for initially training a model, which allows
subsequently extracting further knowledge from the large amount of unsuper-
vised streaming data; and 2) active learning [19], by which the learning method
itself chooses the instances to be learned. Next, we review the main algorithms
contributed so far for data stream classification in non-stationary environments
subject to extreme verification latency.

To begin with, the Arbitrary Sub-Populations Tracker (APT) approach pro-
posed in [14] is characterized by a two-stage learning strategy. Expectation-
maximization is used to determine the optimal one-to-one assignment between
the unlabeled and labeled data (by using kernel density estimation techniques),
and next the classifier is updated to reflect the population parameters of newly
received data, as well as the drift characteristics. Shortly thereafter, the renowned
Compacted Object Sample Extraction (COMPOSE) semi-supervised approach
was reported in [5], which is essentially a geometry-based framework capable
of learning from non-stationary streaming data by following three steps: 1) the
extraction of so-called α-shapes to represent the current class conditional distri-
bution; 2) the shrinkage of such α-shapes to properly model the geometric center
of each class distribution; and 3) from the compacted α-shapes new instances
are extracted to serve as labeled data for future time steps.

Ever since COMPOSE has originated multiple variants, such as FAST COM-
POSE, MASS, or LEVELIW, which improve the original version of the algo-
rithm in different aspects (e.g. speed). Before commenting on them, we follow
our review by mentioning the Classification Algorithm Guided by Clustering
(SCARGC) in [20], which consists of clustering followed by classification applied
repeatedly in a closed-loop fashion. The algorithm exploits the current and past
cluster positions extracted from unlabeled data to track drifts over time. Later in
time, the first improvement of COMPOSE, denoted as FAST COMPOSE, was
published in [23], which reduces the computational fingerprint of COMPOSE by
alleviating the complexity of their shape extraction step. At the time, another
modified version of COMPOSE – Modular Adaptive Sensor System (MASS) [8]
– was proposed as a workaround to extreme verification latency in stream data,
yet was still found to be computationally unaffordable for resource constrained
applications (e.g. IoT sensor networks). Likewise, LEVELIW [23, 24] was pro-
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posed as a framework for learning in extreme verification latency scenarios by
using importance weighting in gradual concept drift scenarios. LEVELIW lever-
ages weighting to match distributions between two consecutive time steps, and
estimates the posterior distribution of the unlabeled data using a weighted least-
squares probabilistic classifier. The work in [1] proposed TRACE, a technique
that predicts the trajectory of concepts in the feature space by means of Kalman
filtering, which was shown to adapt to drifting environments without any exter-
nal supervision. Finally, [7], a semi-supervised density-based adaptive model for
non-stationary data (AMANDA) has been recently proposed in [7]. AMANDA
weights and filters samples that best represent the concepts in the distribution.
To this end, it identifies which instances lie in the core region of the existing
class distributions, so that these selected instances are chosen as training data
for the next iteration. The weighting method receives a set of instances as input
and returns the same set of instances associated to weights.

In conclusion, the recent activity in the field reviewed above suggests that this
is a topic eager for new algorithmic approaches. This is the main motivation for
the development of SLAYER, which incorporates a novel perspective to predict
the evolution of drifts over stream data in an unassisted manner.

3 SLAYER: Description and Design Rationale

Learning in non-stationary streaming environments can be approached from two
different perspectives: active or passive [6]. The difference among them resides
on the adaptation mechanism: the active procedure depends on the use of a
drift detector that processes arriving data and triggers an alarm when a change
is detected. By contrast, a passive method continuously modifies the model over
time without explicitly detecting the drift in order to prepare the model for any
concept drift eventually present in the stream data. Our scheme builds upon a
passive approach: even if a drift is not detected anyhow, SLAYER constantly
updates its knowledge in order to yield a prediction conforming to the prevalent
status of the stream. For this to occur, a fundamental premise of SLAYER is
that drifts over the streams are gradual, so that changes can be monitored and
tracked over non-supervised data. This is important to be noted, as conventional
drift detectors and passive adaptation strategies operate by assuming immediate
access to the annotation of the received data instances, so that changes can be
inferred by quantifying the performance degradation of the model over time.

Figure 1 and Algorithm 1 summarize the main steps of SLAYER. As can be
read in the algorithm, we departing from the arrival of the initial set of labeled
instances {xt}T0

t=1, from which SLAYER infers the clusters in which these initial
samples can be grouped (line 2). Without loss of generality, this initial step can
be done by very assorted means. For the sake of simplicity and given the limited
computational effort imposed by streaming setups, this is done by using K-means
together with the well-known elbow method to compute the optimal number of
clusters K0: the total within-cluster variation is calculated for increasing values
of K0 as the sum of squared distances Euclidean distances between items and
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the corresponding centroid, so that the optimal value of K0 is declared when
the addition of a new cluster does not imply an improvement (decrease) of the
variation measure.

Once clusters {X k0 }K0

k=1 have been computed over the initial set of samples
{xt}T0

t=0, two structural characteristics are quantified for every cluster X k0 : the
amount Qk0 of examples assigned to the cluster, i.e. Qk0 = |{xt ∀t ≤ T0 :
cluster(xt) = k}|, and its radius Rk0 (namely, the maximum distance from
every example to the centroid of its assigned cluster). From these characteris-
tics and assuming a globular shape of the cluster, a rough estimation of the
cluster density is given by Dk

0 = Qk0/(R
k
0)D, where D is the dimension of the

feature space (line 2). After computing this measure over the cluster space of the
initial batch of labeled examples, a 1-nearest neighbor model can be used over
such samples to predict the samples of the next batch that follows immediately
thereafter (Lines 3 and 4).

Time

X1

X2

X1

X2

X1 X1

X2

X1

X2

X1

X2X2λ3
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. . .
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B+1}

K2
B

k=1

Fig. 1: Schematic diagram illustrating the internal processing of unsupervised
batches featured by SLAYER, including the successive clustering and mapping
procedure performed at every mini-batch b ∈ {1, . . . ,M}.

When the next batch arrives and once samples therein have been predicted
(line 6), another clustering phase is performed over such samples (line 7) so
that the new cluster space {X k1 }K1

k=1 can reflect the emergence of new clusters or
the disappearance of others. A matching between the clusters from the previous
batch and those arising for the current one is done (line 8), yielding a mapping
function Ω1 : {1, . . . ,K1} 7→ {1, . . . ,K0} given by:

Ω1(k′) = arg min
k∈{1,...,K}

‖ck′1 − ck0‖F , (1)

where ‖·‖F stands for Frobenius (Euclidean) norm, and ck1 denotes the cen-
troid of the k-th cluster. Despite its simplicity, this simple mapping rule permits
to trace how the cluster space evolves between subsequently received batches.
Departing from this matching, densities {Dk

1}K1

k=1 of the K1 clusters are com-
puted and compared to those of the previous clusters to which they are mapped.
SLAYER implements this comparison as |Dk′

1 −DΩ(k′)
0 |, which, together with

an increase or decrease of the number of clusters (namely, when K1 6= K0), is an
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Algorithm 1: SLAYER

Input : Initially annotated data instances {xt, yt}T0
t=1, threshold ε for

declaring a density-driven change, number of mini-batches M ,
unsupervised stream instances {xt}t>T0 .

Output: Predictions {ŷt}∞t=1.
1 Let L denote the number of classes
2 Compute clusters {X k0 }K0

k=1 and densities {Dk
0}K0
k=1 for {xt}T0

t=1

3 Set ĉk1 equal to the average of all xt such that xt ∈ X k0
4 Set `(k) to the majority class of annotated instances assigned to cluster k
5 foreach incoming batch B ∈ [1, . . . ,∞] do
6 Predict samples yt ∈ B as the label `(k) of the closest {ĉkB}

KB−1

k=1

7 Compute clusters {X kB}KB
k=1 and densities {Dk

B}KB
k=1 for {xt}t∈B

8 Compute mapping ΩB()̇ between {X kB}KB
k=1 and {X kB−1}

KB−1

k=1

9 Divide batch B in M mini-batches
10 foreach minibatch b do
11 Compute clusters {X b,kB }

Kb
B

k=1 and centroids {cb,kB }
Kb

B
k=1

12 Infer mapping λbB : {1, . . . ,Kb
B} 7→ {1, . . . ,Kb−1

B }
13 Correct each cb,kB based on λbB(·) as per Expr. (2)
14 if ∃k such that |Dk

B −DΩB(k)
B | > ε then

15 Set α` = 0 ∀` ∈ {1, . . . , L}
16 else
17 Adjust α` for each ` ∈ {1, . . . , L} as in Expression (3)
18 end

19 Predict ĉkB+1 by means of a Kalman filter, using as prior estimation
ĉk
∗
B , where k∗ = λ1

B(λ2
B(. . . (λM−1

B (λMB (k))) . . .)

20 end

21 end

indicator of a potential change of the cluster space over time. For this purpose, a
change is declared when there exists at least a cluster k′ ∈ {1, . . . ,K1} for which
|Dk′

1 −DΩ1(k
′)

0 | > ε, where ε is an hyper-parameter of SLAYER that tunes the
sensitivity of the model to the speed and intensity at which clusters vary.

When a change is identified, a forgetting mechanism must be triggered to dis-
card previous knowledge about the stream. In the unsupervised regime, SLAYER
predicts arriving samples by assigning them the label associated to the pre-
vailing cluster space whose centroid is closest to each sample. To this end,
SLAYER attains a finer level of granularity by dividing each batch into M
mini-batches of equal size (line 9). Samples falling inside each mini-batch are
clustered by means of a memory-based K-means algorithm wherein, once Kb

1

clusters have been extracted from mini-batch b (line 11), a distance-based match-
ing λb1 : {1, . . . ,Kb

1} 7→ {1, . . . ,Kb−1
1 } is computed as in (1) (line 12), so that

centroids can be corrected as (line 13):

cb,k1 =
α`(k) · cb−1,λ

b
1(k)

1 ·N b−1,λb
1(k)

1 + (1− α`(k)) · cb,k1 ·N b,k
1

α`(k) ·N b−1,λb
1(k)

1 + (1− α`(k)) ·N b,k
1

, (2)
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where N b,k
B denotes the number of samples assigned to cluster k in mini-batch b

of batch B, cb,kB its centroid, and α`(k) is a forgetting factor that depends on `(k),
i.e. the label of cluster k that is tied through consecutive batches by virtue of
repeated clustering and mapping over mini-batches. In the above expression we
note that α`(k) = 0 implies no correction of the cluster center, whereas α`(k) = 1
denotes full persistence of the cluster space over the batch. Given this role of
α`(k) in the update dynamics of the cluster space, SLAYER modifies its value
whenever a new batch arrives: if a change is declared, α` = 0 for all classes (line
15). Otherwise (line 17), α` is set inversely proportional to the average distance
between centroids of tied clusters that are assigned label `, i.e.:

α` ∝




Kb
1∑

k=1

‖cb,k1 − c
b−1,λb

1(k)
1 ‖F · I(`(k) = `)



−1

, (3)

where I(·) is an auxiliary binary function taking value 1 if its argument is true (0
otherwise). By updating the forgetting factor as in the above expression, α` can
be thought to be a rough estimation of the average speed at which label concepts
move over the feature space during the batch. The above adaptation of α is done
in a per label basis and not in a finer granularity (per every cluster), as this could
increase significantly the overall computational complexity of SLAYER, specially
in those cases with scattered cluster spaces.

Finally, SLAYER attains a higher level of adaptability against drifts over
the stream by predicting where clusters will reside during the incoming batch
(line 19). Since there is a correspondence (thoroughly tied through mini-batches)
between the clusters discovered in consecutive batches, a lightweight Kalman
filter is used to estimate the future coordinates ĉkB+1 of every centroid at the
end of the current batch B. A Kalman filter is a simple recursive system used to
calculate the state of a linear dynamic system and the variance or uncertainty of
the estimate. In SLAYER, a Kalman filter keeps track of the estimated position
of cluster centers in the feature space, yielding a vector of estimated centroids
{ĉkB+1} that is used for predicting the next batch of samples. This is possible
thanks to their assigned labels propagated through the mini-batch-wise cluster-
and-mapping process explained above.

4 Experimental Setup

In order to assess the performance of SLAYER, we make use of a public reposi-
tory of non-stationary data streams widely adopted by the stream mining com-
munity working with gradual drifts [20]. Specifically, the repository contains 15
synthetic datasets featuring different drift changes over time, including trans-
lations, rotation, warps and other transformations of the feature space. Table
1 summarizes their main characteristics. The column labeled as D and L refer
to the number of features and classes, respectively. In these datasets, the initial
5% of the samples are assumed to be supervised, whereas the remaining stream
instances arrive in 100 batches in chronological order.
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After reviewing the latest contributions on data stream classification under
extreme verification latency in non-stationary environments (Section 2), we have
built a comparison benchmark that includes several proposals published so far
in this research area:

– A static classifier learned from the first labeled samples (STATIC).
– A sliding window classifier that learns initially from labeled samples, and up-

dates its knowledge with predicted upcoming samples, discarding samples that
do not fall inside the sliding window for predicting new instances (SLIDING).

– An incremental window classifier, which works similarly to the sliding window
classifier, but that does not forget any past instance for training (INCR).

– COMPOSE [5], which creates a boundary from the current data and defines
a shape that represents the distribution of each class. After several iterations,
COMPOSE draws instances from the core region(s) to support training as
labeled data. Finally, upon the reception of new unlabeled data, new instances
are combined with that of the core regions to retrain the model and adapt to
eventual non-stationary behaviors over the stream.

– LEVELIW [23, 24], an iterative weighting approach that relies on the assump-
tion that there is an overlap among class-conditional distributions between
consecutive time steps, a premise that holds in slow drifting data streams.

– AMANDA [7], in which the distributions of each class are first estimated
over the received labeled samples. Then, a semisupervised learning classifier
is learned and used to predict upcoming batches with unlabeled samples. A
density-based algorithm measures the importance of the classified instances
by weighting them, and only retaining the most representative samples. This
method has two variations: AMANDA-FCP (A-FCP), which selects a fixed
number of samples; and AMANDA-DCP (A-DCP), which dynamically selects
samples from data.

Dataset LD Instances
Class

distribution
Description

1CDT 2 2 16 · 103 50%/50% Two clusters (one per class), one moving in diagonal
1CHT 2 2 16 · 103 50%/50% Two clusters (one per class), one moving horizontally
1CSurr 2 2 55283 37%/63% Two clusters (one per class), one surrounding the other
2CDT 2 2 16 · 103 50%/50% Two clusters (one per class), moving in the same diagonal
2CHT 2 2 16 · 103 50%/50% Two clusters (one per class), moving together horizontally
FG2C2D 2 2 2 · 105 75%/25% Three clusters for one class, one moving cluster for the other class
GEARS 2 2 2 · 105 50%/50% Two rotating gears, one per class
MG2C2D 2 2 2 · 105 50%/50% Two clusters per class, moving and overlapping with each other
UG2C2D 2 2 1 · 105 50%/50% One cluster per class, moving without overlapping with each other
UG2C5D 2 5 2 · 105 50%/50% Two 5-dimensional clusters, one per class, moving and overlapping
4CE1CF 5 2 173250 20% per label Four classes expanding and one class fixed, one cluster each
4CR 4 2 144400 25% per label Four clusters, one per class, rotating with no overlap

4CRE-V1 4 2 125 · 103 25% per label Four clusters, one per class, rotating with expansion (version 1)
4CRE-V2 4 2 183 · 103 25% per label Four clusters, one per class, rotating with expansion (version 2)
5CVT 5 2 4 · 104 33%×1, 16%×4 Five clusters, one per class, moving together vertically

Table 1: Slow drifting stream datasets from [20] utilized in this work.

In what refers to performance metrics, we use the so-called prequential error,
which has been thoroughly used in the literature [9, 10]. For the sake of compli-

58 M. Arostegi, J. Lobo, J. Del Ser



10 Arostegi et al.

ance with the methodological practices in the above prior work, the prequential
error is computed based on an accumulated sum of a loss function between the
prediction and observed values [3], i.e.:

preqError(t) =
1

t

t∑

t′=1

L(yt′ , ŷt′), (4)

where the prequential error is computed at time t, ŷt′ represents the prediction,
and yt′ represents the real value at time t′ ≤ t. Among the possible loss functions
for classification, we specifically use the 0-1 loss, i.e. L(yt′ , ŷt′) = 0 if yt′ = ŷt′
and 1 otherwise. The prequential error allows monitoring the evolution of the
models’ performance over time. However, it is convenient to gauge other perfor-
mance metrics that are sensitive to mild class imbalance, as there is no certainty
that classes are equally represented in batches received over time. Therefore, we
also report on the macro F1 score, which grants the same importance to each la-
bel/class. Source code and datasets will be made available at a public repository
available in https://git.code.tecnalia.com/maria.arostegi/slayer/.

5 Results and Discussion

The obtained results are summarized in Tables 2 (average prequential error)
and 3 (average macro F1 score) for the methods and datasets considered in our
study. In these tables, the best results for each datasets are highlighted in bold.

Dataset STATIC SLIDING INCR COMPOSE LEVELIW A-FCP A-DCP SLAYER

1CDT 0.76 0.06 0.3 0.08 0.04 0.02 0.05 0.006
1CHT 3.93 0.43 3.2 0.48 0.4 0.33 0.39 0.38
1CSURR 35.86 9.05 36.06 9.43 9.2 4.39 7.93 5.91
2CDT 46.3 6.13 46.14 6.73 49.74 5.46 5.83 3.8
2CHT 45.97 48.45 46.01 47.41 47.41 14.39 19.93 10.27
FG2C2D 17.79 4.43 18.29 12.15 4.31 5.12 16.39 4.32
GEARS 5.43 0.81 5.33 4.03 6.18 0.81 3.74 3.84
MG2C2D 51.63 22.86 50.66 49.17 9.31 8.7 14.88 8.59
UG2C2D 55.81 4.97 54.42 5.32 26.34 4.3 12.64 4.26
UG2C5D 30.97 20.11 30.62 20.82 20.82 8.21 8.53 8.08
4CE1CF 1.98 1.9 1.82 2.09 2.21 1.73 1.92 2.029
4CR 78.83 0.02 78.75 0.04 0.02 0.02 0.03 0.009

4CRE-V1 78.15 81.29 79.44 79.55 79 73.5 73.28 2.21
4CRE-V2 79.61 82.88 79.67 77.38 80.77 69.97 71.81 7.69
5CVT 54.51 60.97 52.04 65.5 59.18 24.11 52.38 12.4

Table 2: Prequential error of the compared methods for the considered datasets.

We begin our discussion by inspecting the prequential error scores in Table 2.
It is first relevant to notice that the use of näıve methods (STATIC, SLIDING,
INCR) yields in general comparatively bad results due to the fact that they are
not designed to cope with non-stationary environments under extreme verifica-
tion latency. If we take a closer look at these scores, except for GEARS, 4CR and
4CEF1CF, the prequential error of those methods are significantly higher that
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the rest of algorithms in the benchmark. By contrast, if we consider approaches
tailored to deal with unsupervised drifting streams such as COMPOSE or LEV-
ELIW, results improve across datasets, yet still lagging behind those obtained
by A-FCP, A-DCP and SLAYER.

Among the weak points of our proposed approach we pause at the impor-
tance of the density of the clusters, and the speed at which they move over the
feature space. For example, in the 4CE1CF dataset, in the beginning of the stream
the 5 classes are very close to each other in the feature space, represented by
single clusters with very similar densities. This poses a challenge for the change
detection mechanism of SLAYER, as reflected by the 6th position in the ranking
between models for this dataset. Therefore, SLAYER fails to properly charac-
terize the evolution of concepts from unsupervised data streams when these two
circumstances collide together.

We now focus on the comparison between the two AMANDA-based ap-
proaches (A-FCP and A-DCP) and SLAYER. First we observe that SLAYER
obtains a slight advantage over A-FCP, as SLAYER scores best in 10 out of
the 15 datasets under consideration. A-FCP attains the best performance in 4
datasets, falling down once to the 6th position in the ranking. By contrast, A-
DCP is never below the fourth position among the methods, but it does not score
best in any of the datasets. Similar conclusions can be drawn when analyzing
the macro F1 results shown in Table 3. SLAYER yields the best results for 9
datasets, followed by A-FCP that scores first in 5 datasets, and A-DCP in just
one dataset.

Dataset STATIC SLIDING INCR COMPOSE LEVELIW A-FCP A-DCP SLAYER

1CDT 0.9935 0.9994 0.9971 0.9995 0.9996 0.9997 0.9994 0.9999
1CHT 0.96 0.995 0.9681 0.9949 0.996 0.9963 0.9955 0.996
1CSURR 0.6403 0.9137 0.6384 0.9094 0.6368 0.9607 0.9267 0.9385
2CDT 0.3871 0.9418 0.3884 0.9362 0.4836 0.948 0.9416 0.961
2CHT 0.3954 0.356 0.3942 0.4758 0.4758 0.8526 0.788 0.897
FG2C2D 0.7322 0.9391 0.7298 0.8596 0.9469 0.9319 0.819 0.9419
GEARS 0.9474 0.9957 0.9485 0.9637 0.9382 0.9957 0.963 0.9579
MG2C2D 0.4795 0.7543 0.4936 0.505 0.5923 0.9143 0.8499 0.9133
UG2C2D 0.4425 0.9514 0.4546 0.9491 0.7366 0.9581 0.8706 0.9538
UG2C5D 0.668 0.7549 0.6782 0.7918 0.7918 0.9151 0.9129 0.9153
4CE1CF 0.9807 0.9795 0.9821 0.9781 0.9779 0.9808 0.9803 0.9798
4CR 0.2099 0.9998 0.2154 0.9999 0.9998 0.9998 0.9999 0.9999

4CRE-V1 0.2073 0.1804 0.1997 0.2035 0.2486 0.267 0.2651 0.9778
4CRE-V2 0.2043 0.1259 0.2039 0.1971 0.2464 0.3035 0.181 0.9229
5CVT 0.3537 0.1812 0.3707 0.2385 0.1767 0.7297 0.3802 0.8849

Table 3: Macro F1 results of the compared methods for the considered datasets.

We end our discussion by inspecting the statistical significance of the dif-
ferences observed in the above tables. To shed light on this matter, Demsar’s
critical distance diagrams are often used [4]. These diagrams show the average
ranks of a number of models under comparison across multiple datasets, wherein
significant differences are declared when the difference between the average ranks
of two models is larger than a critical distance (CD). The CD value is given by
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a post-hoc Nemenyi test at a certain confidence level (usually set to 0.95). The
critical distance diagram corresponding to the results in Table 2 is shown in
Figure 2.a: unfortunately, the average rank achieved by SLAYER cannot be de-
clared to be statistically significant, mainly due to the relatively high value of
CD (2.71) that results from the large number of models being compared.

Although critical distance diagrams are widely used by the community, they
have been reported to be misleading and scarcely interpretable [2]. Therefore,
we complement this analysis with a pairwise Bayesian analysis of differences be-
tween the best performing methods in the benchmark, namely, A-FCP, A-DCP
and SLAYER. Specifically, we model the probability that one model outperforms
another based on the results obtained by each of them over all datasets. Once
fitted, the probability distribution is sampled and displayed in barycentric coor-
dinates, wherein three regions can be observed: the first algorithm outperforms
the second (and vice versa), and a region of practical equivalence (the two meth-
ods perform similarly). A rope parameter establishes the minimum difference
that scores of both methods must have for them to be declared different to each
other, thereby ensuring that statistical significance relies on an interpretable
parameter. Figure 2.b depicts the Bayesian posterior plot between A-FCP and
SLAYER performed over the prequential error scores with a rope equal to 0.1.
As shown in this plot, the sampled distribution appears to be clearly skewed
towards SLAYER, revealing that it is likely that our proposal outperforms A-
FCP, with prequential error differences larger than the selected rope value. When
comparing SLAYER to A-DCP (Figure 2.c), the significance of the better pre-
quential error performance observed for our proposal is even more significant.

1 2 3 4 5 6 7 8

SLAYER

A-FCP

A-DCP

SLIDING LEVELIW

COMPOSE

INCR

STATIC

CD

(a)

p(A-FCP)

p(rope)

p(SLAYER)

(b)

p(A-DCP)

p(rope)

p(SLAYER)

(c)

Fig. 2: (a) Critical distance diagram of prequential error results in Table 2; (b)
Bayesian posterior plot of A-FCP versus SLAYER corresponding to the same
table; (c) Bayesian posterior plot of A-DCP versus SLAYER.

6 Conclusions and Future Work

This work has gravitated on a research area that has been paid considerably
lower attention in the stream learning field than other widely studied paradigms:
learning to classify streams subject to the effects of concept drift and extreme
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verification latency. In this setup, classification models for streaming data be-
come obsolete at a point due to the drift experienced by concepts to be classified
over time, whereas the absence of supervision about the stream samples hinders
severely the change detection, tracking and adaptation processes. This confluence
of conditions has been the main motivation for SLAYER, the novel approach
presented in this paper, which continuously analyzes the evolution of clusters
and ties them together across batches, so that a correspondence between labels
and evolving clusters can be constantly maintained over time. By virtue of this
mechanism, SLAYER seamlessly accommodates the appearance/disappearance
of new clusters, and is particularly suitable for environments where the speed of
change in the feature space is not abrupt, so that posterior distributions overlap
to a certain extent between consecutive time ticks (slow feature drift). Simula-
tion results over 15 datasets with different drift dynamics have elucidated that
in most of them, SLAYER outperforms state-of-the-art approaches contributed
to address this kind of scenarios. Furthermore, differences have been found to
be significant as concluded from a Bayesian posterior analysis.

Future research work will be devoted towards enhancing different constituent
parts of SLAYER. We foresee to resort to methods capable of learning topologi-
cal relationships between multi-dimensional samples (e.g. Growing Neural Gas)
for a better characterization of the patterns associated to each of the classes
are not corpuscular (as in the GEARS dataset). Also, we will assess the extent
to which we can extrapolate core SLAYER concepts (especially the prediction
of the evolution of the concepts using Kalman) to other data stream learning
paradigms, including online clustering. Likewise, improvements are planned in
the way SLAYER connect the different clusters over mini-batches, for which an
alternative measure of similarity between clusters more reliable than the dis-
tance between their centroids will be sought. Finally, we will explore whether
mini-batches of variable size can be considered in the design of SLAYER, so
that mini-batches are enlarged whenever the drift dynamics between the pre-
vious consecutive mini-batches are slow. This would lessen the computational
effort required to run SLAYER, and could give rise to 1) a more accurate rep-
resentation of the prevailing cluster distribution; and 2) a better traceability of
the label-cluster assignment over time.
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