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Abstract. Active class selection strategies actively choose the class pro-
portions of the data with which a classifier is trained. While this freedom
of choice can improve the classification accuracy and reduce the data ac-
quisition cost, it has also motivated theoretical studies that quantify the
limited trustworthiness of the resulting classifier when the chosen class
proportions differ from the class proportions that need to be handled
during deployment. In this work, we build on these theoretic founda-
tions to propose an active class selection strategy that allows machine
learning practitioners to express their prior beliefs about the deployment
class proportions. Unlike existing approaches, our strategy is justified by
PAC learning bounds and naturally supports any degree of uncertainty
with respect to these prior beliefs.

Keywords: Active class selection · Imbalanced binary classification ·
PAC learning theory.

1 Introduction

Active class selection (ACS) [11, 9] allows machine learning practitioners to ac-
tively choose the label proportions of their training data. This freedom of choice
is due to a class-conditional data generator, e.g. an experiment or a simulation,
which acquires feature vectors for arbitrarily chosen classes. Data generators of
this kind appear in various use cases, such as astro-particle physics [4, 3], gas
sensor arrays [11], and brain computer interaction [13].

Lomasky et al. [11] have put forward the idea that such a generator can
be leveraged in a sequence of multiple acquisition steps, as sketched in Fig. 1.
In each step, a classifier is trained and evaluated on all examples that have
been acquired so far, starting from a small initial data set (i). Based on the
classifier’s performance, a data acquisition strategy is then allowed to choose the
label proportions of the next acquisition step (ii). The class-conditional data
generator realizes these proportions, i.e. it produces a batch of labeled data
according to the choice of the strategy (iii). This batch adds to the training
set from which the classifier will be trained in all subsequent iterations. The
promise of such a sequential and informed data acquisition is that the classifier
can benefit in terms of data acquisition cost and performance, as compared to
being trained with some predetermined proportions of classes.
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Fig. 1. Strategies for active class selection choose the label proportions of newly ac-
quired training data. They are allowed to base their decisions on the performance of a
classifier that is trained with all previously acquired data. We propose to incorporate
prior beliefs, which can be uncertain, into the decision making.

Existing strategies [9, 11] for ACS do not account for the class proportions
that a trained model needs to handle during deployment; they solely focus on
the perceived difficulty of classes. One notable exception is a strategy that ac-
quires training data precisely with those label proportions that are faced in the
deployment stage; by design, this strategy requires the practitioner to know the
deployment class proportions precisely in advance. However, what if we know the
deployment class proportions not precisely, but with some degree of uncertainty?
For instance, astro-particle physicists can estimate the ratio between their sig-
nal and their background class only roughly, as being approximately 1 : 103 or
even 1 : 104 [2]. We are not aware of any ACS strategy that supports uncertain
deployment class proportions out of the box.

Motivated by such uncertainties, we have recently proposed a theoretically
justified certificate for ACS-trained models [4]. This certificate declares a range
of deployment class proportions for which a given model is accurate (i.e. has an
ACS-induced error smaller than some ε > 0) with a high probability (i.e. with
probability at least 1 − δ). This declaration can help practitioners in assessing
the practical value of an ACS-trained model. However, it has no immediate
implication on how to acquire data—in terms of an ACS strategy—when the
deployment class proportions are uncertain.

In the following, we therefore evolve the theoretical basis of our certificate
towards a data acquisition strategy for ACS. This strategy uniquely combines
the following qualities:

– our ACS strategy naturally supports uncertainty about the deployment class
proportions, e.g. as expressed by a Beta prior for binary classification.

– our strategy is theoretically justified by PAC learning bounds.

Our experiments suggest that our strategy, even under high amounts of un-
certainty, exhibits a performance that is comparable to the performance of an
optimal strategy with privileged access to the class proportions of the test set.
Other strategies, which are oblivious to the deployment class proportions, fall
behind by a significant margin.
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We summarize the theoretic foundations of ACS in Sec. 2 before we detail
our strategy in Sec. 3. The experiments in Sec. 4 lead to our conclusion in Sec. 5.

2 Theoretical Background

The term “domain”, as proposed by domain adaptation [14, 12], describes a
probability density function over the data space X × Y. In ACS, we assume
that the source domain S—where a machine learning model is trained—differs
from the target domain T—where the model is deployed—only in terms of the
class proportions pS 6= pT . Such deviations occur due to the freedom of ACS
strategies to choose any pS for the acquisition of training data. We are interested
in the impact of such deviations on the deployment performance, i.e. on the
classification performance with respect to T .

Recently, a PAC learning perspective on this setting has provided us with
Theorem 1 [4]. This result quantifies the difference in loss values L(h) between
an ACS-generated training set D and the target domain T . Only if this difference
is small, we can expect to learn a classifier h from D that is accurate also with
respect to T , similar to standard PAC learning theory. The key insight of this
theorem is that the relevant loss difference between D and T is continuously
approaching the inter-domain gap ∆p ·∆` while the training set size m increases.
In ACS, this increase happens naturally while more and more data is actively
being acquired, so that the error of any ACS-trained classifier is increasingly
dominated by this gap. Here, ∆p = |pT − pS | denotes the difference between
class proportions and ∆` = |`Y=2(h)− `Y=1(h)| denotes the difference between
class-wise losses. The latter of these terms is constant across domains S and T .
In turn, ∆p ·∆` is constant with respect to the random draw of the training set
D and is therefore independent of ε, δ, and m; it reflects the interplay between
the classifier h, the data distribution, and the loss function.

Theorem 1 (Identical mechanism bound; binary classification [4]). For

any ε > 0, any h ∈ H, with probability at least 1− δ, where δ = 4e−2mε
2

:

∆p ·∆` − ε ≤ |LT (h)− LD(h)| ≤ ∆p ·∆` + ε

The true difference ∆` from Theorem 1 is unknown, but we can estimate
an upper bound ∆`∗ of this quantity from ACS-generated data. The details on
this estimation are already presented in the scope of ACS model certification
[4] and do not need to be repeated here. All we need to know to establish our
ACS strategy is that ∆`∗ is the smallest upper bound of ∆` that holds with
probability at least 1 − δ. The probabilistic nature of this upper bound stems
from the fact that ∆`∗ is estimated from finite amounts of data.

3 A Strategy for Uncertain Class Proportions

The goal of our strategy is to decrease the inter-domain gap ∆p ·∆` from The-
orem 1 as much as possible, as according to a prior distribution P̂ of the de-
ployment class proportions pT . This goal will allow any binary classification
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algorithm to learn accurate predictions for the target domain, as according to
the prior beliefs of a domain expert.

Formally, we assume a prior P̂ : [0, 1]→ [0, 1] of the positive class prevalence

pT ∈ [0, 1] to be given. We incorporate P̂ by marginalizing the inter-domain gap
over this prior, as according to Eq. 1. Since we do not know the true ∆`, we are
using the estimated upper bound ∆`∗ instead. Consequently, the marginalization
according to ∆`∗ is an upper bound, with probability 1−δ, of the marginalization
according to the true ∆`.

ε∗ =

∫ 1

0

P̂(pT = p) · |pS − p|︸ ︷︷ ︸
= ∆p

·∆`∗ d p (1)

In each ACS iteration, we are free to alter the class proportions pS of the
ACS-generated training set to some degree, depending on how much data we
acquire in each batch and on how much data we already have acquired. In fact,
we can understand pS = m2

(m1+m2)
as a function of the class-wise numbers of

samples m1 and m2. The upper bound ∆`∗ also lends itself for being interpreted
as a function of sample sizes: the more data is acquired in both classes, the
tighter will our estimation of this quantity be. Ultimately, we consider ε∗ to be
a function of m1 and m2, so that we can minimize ε∗ via an optimal choice of
m1 and m2 in each data acquisition batch.

3.1 Minimizing the Marginalized Error

Our strategy decreases ε∗ in the direction of its steepest descent, i.e. it takes a
simple gradient step with respect to the acquisition vector m = (m1,m2). The
gradient which defines the steepest descent is computed via the product rule:

∇m ε∗ = ∇mf ·∆`∗ + f · ∇m∆`
∗

where f(m) =

∫ 1

0

P̂(pT = p) · |pS(m)− p| d p
(2)

We will come back to the function f shortly. For now, we plug ∆`∗ and
∇m∆`

∗ into the equation above. These functions are defined by

∆`∗(m) = ˆ̀
Y=2(h) +

√
ln δ2
−2m2

− ˆ̀
Y=1(h) +

√
ln δ1
−2m1

,

[∇m∆`
∗]y =

(
− ln δy
my

) 3
2

· (2
√

2 ln δy)−1,

(3)

where the δy are probabilities of violations of ∆`∗ that occur from either one
of the class-wise losses `Y=y(h) in ∆`. In fact, finding a suitable assignment of
δy values within a given probability budget δ = δ1 + δ2 − δ1δ2 is the central
difficulty in model certification; there, the sample size m is fixed, so that ∆`∗

can be optimized over this assignment [4]. Here, we keep the δy fixed instead, to
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values that are obtained with a certificate from previous ACS acquisitions. This
change allows us to optimize ∆`∗ over m to acquire new data and it guarantees
that ∆`∗ remains an upper bound of the true ∆` also in the next batch, at least
with probability 1−δ. The class-wise estimates ˆ̀

Y=y(h) in Eq. 3 are the average
values of losses in the training data; they are also part of our certificate.

3.2 A Beta Prior for Binary Class Proportions

Now we turn to the function value and the gradient of the function f in Eq. 2.
Plugging a parametric prior P̂ into this function can allow us to compute these
terms efficiently, in closed forms. To this end, a Beta(α, β) prior is suitable for
binary classification because the Beta distribution is a conjugate prior of the
Bernoulli distribution, which in turn is a suitable model for the prevalence of
binary class labels. As a matter of convenience, the parameters α > 0 and β > 0
can be chosen such that the resulting distribution has some predetermined mean
and standard deviation; we believe that domain experts can often express their
prior beliefs in terms of these properties.

Plugging a Beta prior into the f function from Eq. 2 yields the following
components, where I is the regularized incomplete Beta function:

fα,β(m) =
2pS(m)α(1− pS(m))β

(α+ β)B(α, β)
+
(
pS(m)− α

α+ β

)(
2IpS(m)(α, β)− 1

)

∇mfα,β =
2IpS(m)(α, β)− 1

(m1 +m2)2
·
(
m2

−m1

)
(4)

Plugging Eq. 3 and 4 into Eq. 2 provides us with a gradient that we can
compute analytically from a certificate with a δy assignment, from sample sizes
m1 and m2 and from the prior parameters α and β. The negative gradient
−∇m ε∗ of the marginalized error ε∗ defines the class-wise numbers of samples
that our strategy acquires in the next data acquisition batch.

With small data volumes or with highly imbalanced classes, our strategy is
dominated by the ∆`∗ component; small classes need additional data until this
upper bound holds with some desired probability 1−δ. Constrastingly, when the
total data volume is large, our strategy is dominated by the f component; to this
end, a Beta prior favors class proportions that are close to its mean α

α+β . The
turning point between these two behaviors is well-founded in the PAC learning
theory that underlies the estimation of ∆`∗.

4 Experiments

The first introduction of the ACS problem is already accompanied by the pro-
posal of five heuristic ACS strategies [11]. In the following, we compare our own
strategy from Sec. 3 to these five heuristics:

proportional: always sample according to pT , provided that these true pro-
portions are already known at training time.
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uniform: always sample all classes in the same amount.
inverse: sample according to the inverse accuracy of a classifier that is trained

on earlier batches; the underlying assumption is that weak class-wise perfor-
mances can be counteracted with over-sampling.

improvement: sample according to the class-wise improvement in accuracy
that has occurred between the current iteration and the iteration before;
this strategy assumes that stable performances, i.e. performances that did
not change recently, will remain stable during future acquisitions.

redistriction: sample according to the class-wise number of training examples
for which the prediction has changed between the current iteration and the
iteration before; the assumption here is that stability can be promoted by
over-sampling classes with volatile decision boundaries.

Our theoretical analysis of the ACS problem [5, 4] reveals that the propor-
tional strategy is actually more than a heuristic; this strategy is indeed optimal
in the limit of data acquisition. However, it requires precise knowledge of pT ,
which practitioners might not be able to provide. Contrastingly, all other strate-
gies are entirely oblivious to the deployment proportions; they solely focus on
different notions of class-wise difficulties.

This shortcoming is also shared by an ACS strategy that aggregates utility
scores of pseudo-instances [9]. For now, we have excluded this approach from
our comparison, due to this property. For future work, however, we expect that
the method can overcome this limitation with a recent update of its utility
function [8]. This update supports a prior of pT , which is in line with our idea
of incorporating prior beliefs in ACS. Embedding the update in the original
pseudo-instance strategy, however, might not be trivial.

4.1 Methodology

We have parameterized the Beta prior of our strategy with a predetermined mean
and standard deviation, both set to the true value of pT . Accordingly, the mean
of the prior is well aligned with the true class proportions of the deployment
data; the uncertainty, however, is as large as possible.

In accordance to a reliable evaluation methodology [7], we present pairwise
differences between ACS strategies in terms of their statistical significance. A
comprehensive way of plotting such differences is through critical difference di-
agrams [6, 1], which compare multiple strategies over multiple data sets in a
statistically sound way. We employ accuracy as the underlying performance met-
ric and we conduct multiple trials to obtain an average performance value for
each combination of strategy and data set. These average performances are then
summarized through critical difference diagrams.

We define the trials via five repetitions of a three-fold cross validation. From
the imbalanced-learn1 package [10], we retrieve 13 data sets that have at least
150 minority class samples (to facilitate sampling) and at most 100 features (to

1 https://imbalanced-learn.org/stable/datasets/
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facilitate learning). We ensure comparability between all strategies by employing
the same classifier in all experiments, a logistic regression with default meta-
parameters. The data acquisition happens in up to 8 batches, each of which
acquires 50 new training examples. However, not all strategies reach the last
batch on all data sets; we stop each trial as soon as the strategy exhausts one
of the classes. We opted for this early stopping criterion to focus on “realistic”
acquisitions that happen due to free choices and not due to the fact that our
experiment only simulates class-dependent data acquisition with finite pools of
data. For the same reason, and due to weak performances on imbalanced data,
we did not evaluate the uniform strategy here. Due to the early stopping, it
becomes increasingly harder to detect significant differences; while the batches
three and four can be evaluated on all data sets, only 9 data sets remain for batch
eight. The implementation of our configurable experiments is available online2.

4.2 Results and Discussion

Fig. 2 presents the critical difference diagrams, as according to our evaluation
methodology. We see that our method, with access to an uncertain prior of pT ,
performs as well as the privileged strategy that knows pT precisely. Moreover,
our method outperforms all existing strategies which are oblivious to pT .

Fig. 3 traces this success back to the acquisition behavior that each strategy
exhibits. Our own strategy quickly approaches the true proportions pT of classes,
due to the perfect alignment between the mean of the prior and pT . For the
particular case of a Beta prior, this behavior is a reason for concern: if the
mean of this prior was not well aligned with pT , we might have acquired data
in mistaken class proportions; only if the mean of the Beta prior is sufficiently
accurate, we can expect the competitive behavior that Fig. 2 suggests. Future
research down this lane, e.g. with other types of prior distributions, is needed.

Fig. 3 further reveals two explanations for the poor performances of the
existing strategies: first, all of these strategies exhibit a central tendency of
staying close to the class proportions of the initial training set; second, each of
these strategies prefers class proportions of an increasingly large variability. Both
of these behaviors are due to the sole focus of these strategies on the perceived
difficulties of classes, which can differ considerably between the data sets.

5 Conclusion and Outlook

In contrast to existing ACS strategies, which either assume precise knowledge
about the deployment class proportions or no knowledge at all, we have advo-
cated the incorporation of a prior distribution that expresses beliefs about the
class proportions with any degree of (un)certainty. Our ACS strategy is well-
founded on PAC learning bounds which we have recently proposed for ACS [4].
Experiments suggest that our strategy performs as well as the fully certain case,
which, however, is harder to specify than an uncertain prior.

2 https://github.com/mirkobunse/AcsCertificates.jl
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Fig. 2. Critical difference diagrams evaluate our ACS strategy ( ) against existing
ACS strategies [11], one of which has privileged access to the true class proportions
pT ( ). The two plots present different values of pT . Each position on the vertical
axes corresponds to one critical difference diagram for one batch in the ACS data
acquisition loop. Horizontal positions correspond to the average ranks of strategies
across multiple data sets, as according to the average accuracy in multiple trials; lower
ranks are better. Horizontal connections between two or more strategies indicate that
a Wilcoxon signed-rank test is not able to detect significant differences between these
methods from the performances they exhibit.
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Fig. 3. Our ACS strategy ( ) quickly approaches the true proportions pT of classes
in terms of the Kullback-Leibler divergence dKL. Due to the uncertainty of the prior,
however, this divergence always remains above zero. The standard deviation of dKL, as
displayed by the error bars, increases considerably with the other strategies.

Future work on ACS should focus on strategies that support multi-class clas-
sification and regression. We identify the PAL-ACS framework [9] with a recent
update of its utility function [8] as a promising candidate in this direction.
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2. Bockermann, C., Brügge, K., Buss, J., Egorov, A., Morik, K., Rhode, W., Ruhe,
T.: Online analysis of high-volume data streams in astroparticle physics. In: Europ.
Conf. on Mach. Learn. and Knowledge Discovery in Databases. Springer (2015)

3. Bunse, M., Bockermann, C., Buss, J., Morik, K., Rhode, W., Ruhe, T.: Smart
control of Monte Carlo simulations for astroparticle physics. In: Astronomical Data
Analysis Software and Systems. pp. 417–420 (2017)

4. Bunse, M., Morik, K.: Certification of model robustness in active class selection.
In: Europ. Conf. on Mach. Learn. and Knowledge Discovery in Databases. Springer
(2021)

5. Bunse, M., Weichert, D., Kister, A., Morik, K.: Optimal probabilistic classification
in active class selection. In: Int. Conf. on Data Mining. IEEE (2020)
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