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Abstract 
Today, with the advancement in technology, development of efficient smart and autonomous 
systems have become a priority. These systems use complex calculations which are hardware 
demanding and time consuming. Parallel processing systems hence, provide a way of 
improving the computational performance as a whole. Parallelizing sequential code 
automatically entails converting it to multithreaded code without supervision. Parallelization 
in the ideal case would allow programmers to make full use of available hardware resources, 
resulting in optimal performance. This isn't possible due to a wide array of program 
dependencies. The technique of speculative parallelization is one of the most favorable ways 
to automatically parallelize a loop when the system cannot determine dependencies at compile 
time. Therefore, the need for manual parallelization is eliminated. However, due to the use of 
additional hardware or software architectures, there are some speculative overheads. The 
present paper describes a suitable speculative parallelization algorithm that is capable of 
providing optimal performance. Moreover, suitable hardware architecture is also suggested 
which can further reduce the overheads for speculative parallelism. 
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1. Introduction 

Automatic parallelization, often known as auto parallelization, is the process of transforming 
sequential code into multi-threaded code in order to employ many processors concurrently in a multi-
core shared-memory chip architecture [1]. Some of the most popular use of automatic parallelization 
architectures include artificial intelligence, machine learning, seismic surveying, computational 
astrophysics, video color correction, climate modeling, financial risk management, drug discovery, 
medical imaging and computational fluid dynamics [2-6]. With the advent of smart technologies 
especially in the field of architectures [ 26-28] and data science, including artificial intelligence and 
deep learning, automatic parallelization techniques are being extensively used to improve the 
computation speed of large datasets [7-9]. However, despite its popularity, parallelizing sequential 
programs fully automatically is challenging because it requires complex analysis, and the ideal solution 
could depend on unknown parameter values when compiling [10]. 

Speculative parallelization [11] is a strategy which automatically parallelizing loops when the 
system cannot detect dependencies at build time. This strategy, also known as thread-level speculation, 
assumes that the system can execute all iterations of a particular loop in parallel. Speculative 
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parallelization has the advantage that it can automatically parallelize loops in a sequential program even 
if dependency patterns are unknown at build time.  

In this way, it can speed up a parallel, multithreaded computer without requiring manual 
parallelization, which incurs development costs. This takes only a few basic changes to the original 
sequential code, which are all well within the capability of contemporary compilers. Implementing 
custom functions for scheduling threads, executing speculative loads, and initiating commits when a 
thread completes successfully. 

However, there are some overheads as a result of the utilization of additional hardware. Overheads 
[12] are all distinct extra activities that must be performed with the goal of resolving difficulties caused 
by mis-speculation in speculative parallelism. Thread start and commit overhead is one sort of 
mandatory overhead. Other forms of overhead include roll-back overhead, squash overhead, load 
imbalance overhead, hardware overhead, communication overhead, and cache replacement overhead, 
which are non-compulsory[13]. 

Despite the overheads caused by mis-speculation, automated speculative parallelism with multicore 
chip design requires less time to execute a speculative loop than a sequential loop on a single processor. 
As a result, the current research investigates several automated parallelization strategies for optimum 
sequential code translation. As a result, the authors devise a suitable algorithm capable of producing 
near-optimal outputs for dependency-driven applications. The authors also proposed transactional 
memory-based technology for the same purpose. The primary goal of creating such hardware is to 
minimize overhead as much as feasible. 
 

2. Literature Survey 

This section surveys various automatic parallelization algorithms and compares their advantages and 
disadvantages. The paper also surveys various software and hardware overheads that are encountered 
while realizing the speculative parallelism algorithms.  

2.1. Automatic Parallelization Algorithms 

There have been several ways developed for parallelizing sequentially coded algorithms [14]. Most 
the algorithms utilize the relationship between loop iterations. This is because loops take most of the 
program execution time.  The parallelizing compilers only execute these iterations in separate threads 
if they have removable data dependency. When any of the iterations is reliant on other iterations (despite 
independent iterations), no compiler can parallelize the loop.  

The publications in [15] provide an overview of some of the most significant contributions in the 
field of automatic parallelization. Popular techniques like DOALL (Figure 1) and DOACROSS (Figure 
1) [16] techniques have been employed to better use multicore architectures through thread level 
parallelism (TLP). A loop iteration in DOALL can be executed in parallel because it is independent 
from any other loop iteration.  On the other hand, DOACROSS is capable of extracting parallelism 
from more complicated loops with loop-borne dependencies. Because the loop carried dependency must 
be communicated between cores every time the algorithm is iterated, DOACROSS performance is a 
function of inter-core latency of the system.  Figure 1 shows doall and doacross execution in comparison 
to the sequential execution. 

 



 
Figure 1: Doall and Doacross Loop Execution 

 
However, applying these algorithms is a difficult and error prone task due to inter-thread data and 

control dependencies. Also, compilers sometimes act very conservative whenever they can’t assure the 
absence of any type of dependence. Moreover, as per the Amdahl’s law [17], only few fractions of 
whole sequential workload are parallel and hence only those parallel parts can be allocated to different 
cores not whole program.  

Speculative parallelism or thread level speculation is an optimistic multi-threading technique that 
automatically parallelizes the implicit (speculative or dependent) threads keeping in view of original 
sequential semantic of the program. Parallelization using thread-level speculation (TLS) has been 
studied using software [ 20, 21] and hardware [ 18, 19] architecture. Rauchwerger et al [22] originally 
proposed it as a way to parallelize loops with independent data access, primarily arrays. There is a 
common feature among TLS implementations in that they largely rely on loops to parallelize, they 
mostly change the cache coherence protocols, and the parallel sections are generally small. 

2.2. Overhead encounter in Speculative Parallelization  

The identification of speculative threads can greatly contribute to overall performance. Architectures 
like Hydra, Atlas, Trace, Mitosis etc use dedicated compilers for the parallelization of sequential code 
[23, 24].  For the control flow and/or speculative values, however, they use software-based value 
prediction. This as compared to the proposed method is not applicable for all software code and 
applications.  

Several thread-level speculative approaches have been proposed for extracting parallelism from 
legacy code by using Transactional Memory. They split an application into sections and run them 
speculatively on parallel threads. Each thread can either buffer its state or expose it. If the code is unsafe, 
the changes are reverted, and the execution is restarted. Some efforts have combined TLS and TM into 
a unified model to benefit from both technologies. However, most of the models require manual efforts 
to ensure memory violations do not occur. 

The proposed architecture and algorithm uses speculation for improving the performance of 
automatic parallelization algorithm. However, as discussed in section 2.1. and section 2.2. Speculation 
requires additional hardware or software support which results in overheads. The present paper hence 
proposes an efficient, computation aware architecture that minimizes some of the non-compulsory 
speculation overheads. 

3. Architecture Framework & Design  

The present paper proposes an architecture for conversion of sequential code into paralleled threads 
or jobs speculatively. For the same program is first converted into LLVM IR through the preprocessing 
step. Then via the code profiling step hot loops are identified. These loops then pass through the code 
transformer and generator phase of the architecture. The next step is the multi-threaded code generation 
step as described in the section 3.1. The partitioned code is scheduled onto the transaction memory-
based runtime architecture. The scheduling of jobs is said to be successful when there are no 
dependency violations. The detailed architecture scan be seen in the Figure 2. 



 
Figure 2: Architectural Framework 

 
1. Preprocessing: It involves preparing the program's intermediate representation (IR) for 

parallelization.  
2. Profiling: The code profiling employed in this design is based on hotspots in the original IR 

code.  
3. Memory analysis & Code Generation: The result of the memory analysis phase is fended into 

the code transformation and generation mechanism. The code generation algorithm used in the 
architecture is defined in Figure 3. 

 

 
  

Figure 3: Suitable Code Generation Algorithm 
 
4. Runtime & Hardware Architecture: The model uses a batch wise process batch approach. 

The multi-threaded code generation algorithm produces parallel code in the form worker threads (or 
jobs) which are executed in batches. These are then implemented as memory transactions in the model. 
Each memory transaction has its own private copy of the memory that has been accessed. The purpose 
of transactional memory systems is to support portions of code identified as transactions in a visible 
manner by guaranteeing atomicity, consistency, and isolation. By allowing programmers to wrap their 
procedures behind transactional blocks, transactional memory provides a high-level programming 
abstraction.  

5. Validation & Recovery: To support transactional memory access, the model additionally 
includes batch-wise validation tests In the event that a dependence violation conflict is found, tasks 
within the batch are performed up to the last valid checkpoint before waiting for the Recovery program 
to terminate transactions in the higher chronological order 

4. Evaluation  

Implementations of the current architecture use the LLVM compiler infrastructure, which has been 
tested using clang in full system mode on a quad-core out-of-order processor. The operating system 



used in for testing and implementing the model is Linux OS (Ubuntu Version 21) [25]. The algorithm 
phase is implemented in the LLVM compiler infrastructure. LLVM provide analysis modules and 
passes which can be manipulated in order to perform code optimizations and transformations.  

Speedup of the hottest loop of each benchmark speedup is compared to the sequential execution time 
in Figure 4. 

 052.alvinn is a back propagation based neural networking algorithm in C from the SPECfp92 
benchmark suite. K-means or 120.kmean is a clustering algorithm in C++ form the SPEC ACCEL 
benchmark suite. Labyrinth algorithm from STAMP benchmark is used in grid copying operations for 
the removal of read sets. Swaptions is PARSEC based algorithm used in heath-jarrow-Morton 
framework. Bzip algorithm is an opensource burrows-Wheeler Feature comparison algorithm. 

 

 
Figure 4 : Speedup of designed algorithm over sequential code 

 
Figure 4, represents the geometric speedup of the benchmark codes on the proposed model. The 

proposed model gives on overall geomean speedup of 4.3x on the tested benchmark algorithms.  Hence, 
applying speculative parallelization algorithm is much more efficient as compared to the sequential 
code execution. 

 

5. Conclusion 

The current research paper discussed automatic parallelization approaches for the conversion of 
parallel codes into threads. Although several parallelization algorithms have been devised over the year, 
speculative parallelization techniques provide better speedup. This is because they speculatively predict 
values at compile time. This helps in code optimization and hence, code generation.  However, 
speculative algorithms require additional overheads. Hence, in the present paper a suitable speculative 
algorithm has been devised which produces high speed up as compared to sequential algorithms. 
Further, transactional memory-based hardware architecture for the same has also been discussed. The 
hardware suggested, is capable of producing near-optimal outputs for dependency-driven applications. 
The future research avenues entails improving the parts of speculative parallelization architecture, in 
order to ensure better dependency identification and removal. The use of LLVM in development 
infrastructure as a whole will not only help in increasing the performance of proposed algorithms but 
also facilitate the application of algorithm to various other speculation techniques as well. 
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