57

Game Mechanics Generation. A Work In
Progress

Jorge Ruiz Quifiones! and Antonio J. Ferndndez-Leival

University of Malaga Department Lenguajes y Ciencias de la Computacion,
Universidad de Mélaga, Andalucia Tech, Malaga

Abstract. As part of a more general research, this paper presents a work
in progress experiment for generating videogame mechanics and rules in
a fully procedural way. A practical application of the detailed theoretical
approach is also detailed as an experiment based on a genetic program-
ming algorithm that allows to generate new video game specifications
fulfilling the most important aspects highlighted by the game designers.
To meet those requirements, we take advantage of the potential of the
new features included in the last version of Xml-Based Video Game De-
scription Language (XVGDL), termed XVGDL , and the corresponding
advances in the XVGDL Game Engine (XGE). Taking advantage of
both tools, the execution and the evaluation methods are about to be
included in the experiment making the process to be performed without
any human intervention. We expect to have new videogame specifications
as the output of the process, created according initial requirements and
designers’ needs, with a minor effort of programming.

Keywords: Game Mechanics - Game Generation - Video Game Descrip-
tion Language - Video Game Engine - Video Game evaluation.

1 Introduction

This work in progress is framed into a more general research in the field of
video game definition languages (VGDL) and could be considered as a particular
case of procedural content generation (PCG) (although it will be focused on
non-visualization components). Applying different computational techniques for
generating game content directly related to the graphics or visualization—such
as maps, levels or game components—is one of the most common approaches.
In this research, we are focused as well in other non-visual aspects of the game
like game mechanics, game rules or game end conditions. After developing a
new VGDL called Xml Video Game Description Language (XVGDL) and the
corresponding Game Engine supporting XVGDL game specifications (XGE), at
the moment, just intended to be a basic game engine to allow to play XVGDL
game specifications, the research is currently in a experimental phase in which
some experiments are being performed to demonstrate and take advantage of
the XVGDL and XGE features.

The interested reader is referred to [17], where more details and the advan-
tages in usingXVGDL over other existing approaches are widely exposed.

Copyright © 2021 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

At this point of the global research, we can highlight the following aspects:

— XVGDL is a complete VGDL with powerful features to take advantage of
and contributing some improvements compared to other existing VGDLs
implementations.

— XGE is a complete functional game engine with research purposes that allows
to execute XVGDL specifications and provides great feedback to evaluate
games’ specifications.

— XVGDL and XGE are already implemented and presented. Used together,
they are a powerful tool to develop real experiments that can definitely
contribute during the game design phase, providing the game designers useful
information and feedback during the game play and after game executions.

The new step in our research path is, using both XGE and XGE features, to
provide a software that will be able to generate game mechanics. As a general
concept, that can be understood as generating new games as they will be poten-
tially different games one from each other. This is actually a previous stage to
generate full games automatically, including some other concepts like graphics,
maps/levels definitions, game objects, etc . ..

This work in progress presentation is structured as follows. In section 2, the
state of the art is exposed including some of the most relevant related works
and also explains more in deep the XVGDL and XGE features that allow to
evaluate and optimize video game specifications. Following, section 3 and its
different subsections explain in detail the approach that we are following to gen-
erate game mechanics and how the genetic programming algorithm is developed
to help on the main goal of the experiment. In particular, in subsection 3.3,
the practical experiment approach is described including the requirements, the
algorithm implementation and the expected outputs in the latest subsections. In
subsection 3.6 we analyze then the expected outputs and how this experiment
can contribute to the community. Last section 4, finally presents the conclusions
and future work, mentioning the following steps to complete the global research
project and the aspects to continue improving XVGDL and XGE .

2 State of the Art

Bio-inspired algorithms and, in particular, genetic programming (GP) has been
widely used in many different research and engineering areas, including lots of
many real examples and applications of this technique. Studies and researches in
the computer games (videogames) field are not an exception in this sense, and
we can find also existing works that take advantage of the GP features.

Focusing on computer games field, GP has been applied to agents [6,11, 1],
modeling [8, 4], machine learning [12,19] or procedural content generation [5],
to mention some of the existing works. This prolific production demonstrates
that GP applied to any different area or research field in games or computer
videogames is a really promising and powerful technique to proceed with exper-
iments of different nature (different areas/sub-areas) and get an interesting and
valuable output to be analyzed.

58

Getting deeper into game mechanics sub-area inside games research, many
recent publications about this topic can be found, but at the moment, it is
difficult to find works directly related to game mechanics generation. Some of
the most interesting works in this particular area are related to game mechanics
modelling and how they affect somehow to the players [2, 16, 14, 7] and also works
more focused on practical applications like [15, 21, 20, 18]. Last, worth to mention
[10] as a particular important contribution in the scope of our research, exposing
tools to manage dynamics in n-player games of different nature.

As stated, there are many different approaches that contribute so much to
the community, although it seems less common to find game mechanics (game
design) generation approach using Genetic Programming (GP). As an example,
[3] is focused on generating card games. This is a promising study to validate
the approach of trying generating different kind of games using GP. Applying
genetic programming to this particular field, would be a nice new contribution
of this work.

3 Generating Game mechanics

As stated in the previous chapter, Game mechanics in general represent a very
interesting and active game component to study. The research on game mechan-
ics can be done from many different approaches, ranging from theory to practical
applications. As aforementioned, we can not easily find works that are fully fo-
cused on game mechanics generation automatically and, as a consequence, there
are just a few approaches to generate complete games, as an example [13]. We
consider this aspect as a core point to finally be able to generate complete games
in an procedural way, which is also in our research.

The main reasons and barriers that we find in order to develop a game
mechanics generator include the following points:

— There is no standard VGDL that allows to extend the research in this and
other related fields. This makes the advances to be so slow and so coupled
to a concrete solution.

— There is no current approach that allows to test and experiment for games
of different nature. The point here also is that the existing works in this field
are heavily tied to a concrete example or implementation of a game, making
it difficult to be extended.

— Evaluating the computational creations is not a easy task to be performed
in a procedural way, and that is a key part of the whole process. A reliable
way to evaluate games is needed to automate the game generation process
and, in particular, the game mechanics generation.

The lack of having an standard way of describing game specifications or
in particular, game mechanics, is in our opinion, the most important barrier to
cross. In this sense, the publication of XVGDL has been great contribution as the
majority of those problems, making possible to extend the research in fields like

59

game mechanics, without focusing on other points, like describing or specifying
a game, an example to use, a game engine to execute, etc...

With previous experiments and researches, it has been demonstrated that
XVGDL and XGE are a really useful tools to explore and can contribute so
much with their potential and, with this new work, we want to give a new step
forward in this field, making possible to create mechanics and/or games, taking
advantages of the mentioned researches. In the next sub-section, the process of
generating game mechanics using an XVGDL approach is fully detailed.

3.1 The XVGDL approach to generate game mechanics

Given the ability we have to specify very different parts of a game at the con-
tent, visualization or mechanics level, this work in progress presents a procedure
that allows to generate parts, or even complete, videogames specifications using
XVGDL . Chasing the idea of applying a genetic programming (GP) technique
and taking advantage of the XVGDL nature, an specification can be easily in-
terpreted as a tree, by the inherited representation of an XML itself. At first, it
seems a feasible solution to apply GP to find new solutions (specifications) that
represent new games.

For our case of study in particular, the XVGDL has by definition an structure
which is really likely to be applied to a GP approach. XVGDL (based on XML
language) can be easily transformed into a tree representation. Also, different
nodes or even complete branches can be defined so they can be fit perfectly with
the GP definition, being used in the different GP algorithm phase.

Being XVGDL a concrete implementation of the eXtensible Markup Lan-
guage (XML), it can therefore easily be interpreted as a tree structure. The
Document Object Model (DOM) is the foundation of XML documents have a
hierarchy of units called nodes. DOM, is a way of describing the nodes and the
relationships between them. A DOM document is a collection of nodes or pieces
of information organized in a hierarchy.

If we interpret an existing specification of a game in XVGDL language tak-
ing into account these mentioned characteristics, we could easily represent the
specification in the form of a tree and, in addition, separating the XVGDL nodes
theoretically and by concepts as indicated in the Figure 1.

60

XVGDL

S

y N
Structural Graphics (Mechanics | 1A
-\\ /o’

Fig. 1. Basic composition of an XVGDL specification represented as a tree.

As it can be appreciated in the Figure 1, all the information of a specification
of a game in XVGDL would be lower in the hierarchy of each of the main nodes
represented in the image. In addition to the main parent node, at the first level
of the hierarchy, the detail of each of the levels represented is specified below:

— Structural Information: At this level, all XVGDL nodes related to the struc-
ture of the game, its maps, levels, screens or its controls, as well as the
general properties that are established, are represented.

— Graphic Information: From this level, all XVGDL nodes related to graphic
aspects would hang. We talk, for example, about details at the renderer level,
the bitmaps associated with each of the game objects or the screen layout.

— Mechanics Information: All XVGDL nodes related to game mechanics. This
node would be much more extensive in depth including game rules, end
conditions, game states, the objects present in the game and events.

— Artificial Intelligence (AI): Considering it has importance enough to have its
own node. Al sub-tree includes all the information and specifications related
to agents and Al applied to any object in the game. It also includes all
different AI implementations not directly related to an object, but affecting
somehow during game play. As an example, an algorithm implementation
to set the weather conditions during the game play or the game difficulty
according to the player conditions and behaviour.

3.2 Representation of XVGDL elements in a tree.

We have seen, in general terms, how we could conceptually group XVGDL el-
ements in four different dimensions. From these nodes, let’s call them main, in
general the intermediate nodes will represent concepts (existing elements/tags
in XVGDL) as well as their properties. To complete the tree, the leaf nodes will
represent specific values for each of the properties of the parent node. Each leaf
node will have a value in relation to the parent node it represents.

As an example, in Figure 2, the representation of a bitmap element defined
in XVGDL is detailed from the following code:

61

1 <bitmap id=’PlayerRunning’ file=’/bitmaps/player-running.png’ />

Ibitmaps/player-

PlayerRunning running. png

Fig. 2. XVGDL representation of nodes with attributes and values.

In Figure 2, the blue Bitmap node represents an element of the XVGDL .
The red nodes named id and file represent properties of the parent node. The
leaf nodes, in green, represent specific values of these properties.

Following the same color code represented in Figure 2 (blue for components,
red for attributes and green for values), another bit more complex case is rep-
resented in Figure 3, which shows graphically the tree representation of the
following XVGDL code: :

<rule name="eatSmallDot" type="collision">
<ruleAction objectName="pacman" result="score-up" value="100" />
<ruleAction objectName="smallDot" result="disappear" />

</rule>

=W N =

62

Rule

e N e N

(Name) Type | | Actions e
\\ ‘,/" \\ ‘,/" o g
eatSmallDot Collision | Actions] { Actions |
y N y N y N s N s

[objectname | | Result) Value) [ObeciName | | Result

.

pacman

scoreup

100

"

smallDot

diszapear

Fig. 3. XVGDL representation of complex nodes with sub-trees.

Following this type of representation and given the four main nodes from
which the information hangs (structural, mechanical, IA and graphic), we can
represent an entire specification in the form of a tree and work with it in a future
genetic programming experiment.

3.3 Designing the experiment: Generating Game mechanics

Supporting the underlying research, a practical experiment was conducted to
demonstrate the potential of this approach and also to be able to extract valuable
information about the game design in a particular case, using an specification
of the Pacman [9] videogame as test bench.

As aforementioned, the main idea of this global research is to generate full
games from scratch (or at least, with a minimum effort of development), but at
this point, we are focusing on the game mechanics and game rules. That means
that the whole game generation is not covered.

This approach will allow us to create new game specifications including new
mechanics. Practically, this means we can create new games. Not only that,
but also if we apply the same solution to all the elements in the XVGDL tree
representation, is easy to extrapolate it to different nodes in the tree, that is,
covering not only mechanics but also other game components.

63

As discussed above, an algorithm can be perfectly applied to any part of
the specification. As a future opportunity to explore, it would be a matter of
deciding what elements we are going to consider in a future experiment to allow
applying the same idea (GP approach) to generate other different videogame
specification components. With the theoretical approach, the representation and
division that we have detailed in the previous sections, we can easily proceed
to other game components, being important in this particular work to limit the
generation for the experiment. We have identified the components or sections
where the algorithms can be applied, in such a way that we can complete the
game generation, dealing with the following points globally or individually:

— Generation of game mechanics (Main mechanics node), covered by this work
making possible to generate different games with a base set of components.

— Generation of game’s components at a visual level (Main graphics node),
covering all generation of graphics and visual components of a game.

— Generation of game’s levels and/or maps (Main structure node), automating
the creation of new game maps or levels.

3.4 Requirements

To carry out the generation of game mechanics we should have the following
elements:

— A seed, that is to say, a base version of a game, from which we could generate
the part that interests us. It could be as basic as we want, thus being the
more complex generation process, or we could have a seed in which the
structural and graphic information is defined and is immutable, and we apply
the generation only at the level of nodes related to mechanics.

— A repository containing an initial set of rules, termination conditions and
events.

At this point we need what we call a Primary Data store. This is important
in order to make sure the generated games (experiment outputs) will be correct
and valid in terms of game specifications. That means that the games will have
sensible rules and mechanics, end conditions to make sure the game will finish
and some basic definitions, assuring the game can be executed properly.

So, the main requirement now before starting the generation experiment will
be to make sure we have a data store, keeping an initial set of rules (mechanics)
and end conditions, as well as basic game definitions. Taking advantage of the
current development, of XVGDL and XGE , we have created a simple process
that fulfills the data store as needed. Different combinations of all possible values
for rules and end conditions are performed in order to have the first base set of
rules. As aforementioned, basic game specification (for Pacman in this case) has
also been used to store a base game definition which will be evolved to a variant
of the original video game using the GP approach. To make sure the data store
is accessible from different sources, at the moment, data is stored using three
different sources of information, a relational data-base, a local data set (in files)

64

and a secured access to a S3 bucket from AWS. Figure 4 expose graphically
this procedure and the communication between different stacks involved in the
videogame mechanics generation process.

Generator Game Generator

]
]
f -
Irr.il Irri]
@ a
1 ./ i
aono -
]
XVGDL-Datastore XVGDL-DataStore XVGDL 1 W‘l |~ e
]
1

(=t

Secured
l Access XVGDL Core

EE g

Amazon 53 Relational
Database

Local Dataset

Fig. 4. The XVGDL Data store generation.

3.5 The algorithm

As already explained, the implementation approach is to use GP, implement-
ing an algorithm that, starting from a seed, will find for different interesting
videogames’ specifications, according to previously defined requirements. The
initial seed can be already described (configured) or even can be generated from
the aforementioned repositories, at last, it will be the base game to evolve. The
base seed will be slightly modified to make sure we have an interesting popula-
tion to start the algorithm. This is performed using a simple software in charge
of generating new values for the base specification defined nodes. Once the ini-
tial population of specifications are obtained, those must be transformed into
the tree form, as detailed in sub-section 3.2 making possible then to apply the
main steps defined by a genetic programming algorithm. In a general way, we
have defined the following operations:

— Selection: We would apply an evaluation function to each of the solutions
found. Is part of this experiment to define a fitness function to evaluate each
possible solution, focusing in parameters that can be defined by the game
designers before starting the experiment. Aspects like wining/loosing the

i ¢ Generated Games

65

game, time to complete, number of lives remaining, etc... will be considered
to create the fitness function.

Crossing: From the population of specifications that we have at a given
moment, the crossing of individuals could be done by exchanging leaf nodes
(values) for certain aspects of the game, or directly exchanging sub-trees
that represent a specific structure, including elements and their values.
Mutation: We could drastically change a complete branch of a tree from
the elements that we have in the repositories or change leaf nodes (values)
for distant values (within the allowed ranges).

From the crossover and mutation operations, we would have solutions that we
could evaluate thanks to the fitness function that we define and applying the
characteristics of XVGDL .

Somehow, even not starting from specific game requirements, we could have
very different games visually, structurally and mechanically, always starting from
some generic objectives to be evaluated, such as the total playing time, assess-
ment of victory player, difficulty level, etc.

3.6 Expected results

The main output of this experiment will be different videogames’ specifications
that, starting from a base game and given initial designers’ requirement, are
valid and complete, in such a way that they are playable games, using XGE ,
the game engine interpreter of XVGDL game specifications. It is important to
highlight here the following aspects.

— During the experiment, we will apply a fitness function to every single so-
lution guided by the designers’ criteria in such a way that we will finally
have videogame specifications that will maximize the designers’ initial re-
quirements.

— The output, which will be a population of videogames, will finally represent
game specifications that can end up in completely different games one from
each other, as eventually, the rules and mechanics will be different for each
solution.

It is important to point as well that this work is not oriented to find the best
solution (best game specification in this case) as there is no such solution. The
main idea is to find a set of solutions, fulfilling some initial requirements, making
sure the games are playable (correct). A solution is not better than other, but
the output will help designers to define and describe new game specifications,
according the ones obtained for the final population. Even those final specifica-
tions could be then gathered into a single game specification, just taking into
account the most promising game mechanics and rules from each of them.

We have covered game mechanics and rules but as the XVGDL is easily trans-
formed into a tree, the whole game generation is a feasible future opportunity
to explore.

66

4 Conclusions and future works

In this work, we are taking advantage of the already implemented and presented
XVGDL and XGE . With this experiment, we demonstrate the important contri-
bution and a bunch of possibilities open using those tools. This research path is
a really promising branch, opening many different new opportunities for future
researches.

Although GP is widely used in videogames research fields, generating game
mechanics automatically will be a great contribution as there is not so much
work in the library in regards to this particular sub-area.

During the paper we have also mention how this proposal can be applied to
other game specfications’ components, not only considering game mechanics. The
process detailed here can be extended to maps/levels, Als and other graphical
components. In this sense, we consider this work as a core point to finally be able
to generate complete games in an procedural way, which is also in our research
path. This, or a similar proposal, can be used for future implementations to
keep the same approach in generating graphics or structural components of a
videogame, completing the full automatic generation.

The evaluation of these computational creations is a key factor to consider
here, as we need to ensure that the solutions accomplish the designers’ specifi-
cations and requirements. Previous works optimizing game specifications with
XVGDL and XGE , cleared the way to perform these evaluations and allow us
now to perform this work with key tools, ideas and providing a good level of
reliability.

Algorithm performance and data will be analyzed once the executions will
be finished. Hopefully, GP will be a good approach to get the expected output,
although applying some other search techniques or approaches will be evaluated
for future experiments.

We consider this work as a core point to finally be able to generate complete
games in an procedural way. While this idea needs to be investigated yet, this
work will contribute so much to the automatic complete videogame generation,
together with the other approaches mentioned in the paper.

Acknowledgements

This work has been supported by Spanish Ministry of Economy and Competi-
tiveness (MINECO) projects: EphemeCH (TIN2014-56494-C4-1-P), and Deep-
Bio (TIN2017-85727-C4-1-P) — Check: http://blog.epheme.ch and http://
blog.deepb.io —, and Universidad de Mélaga, Campus de Excelencia Interna-
cional Andalucia Tech.

References

1. Dworman, G.O., Kimbrough, S.O., Laing, J.D.: On automated discovery of models
using genetic programming: Bargaining in a three-agent coalitions game. J. Manag.
Inf. Syst. 12(3), 97-125 (1996), http://www. jmis-web.org/articles/307

67

10.

. Ferro, L.S.: The game element and mechanic (GEM) framework: A

structural approach for implementing game elements and mechan-
ics into game experiences. Entertain. Comput. 36, 100375 (2021).
https://doi.org/10.1016/j.entcom.2020.100375, https://doi.org/10.1016/j.
entcom.2020.100375

Font, J.M., Mahlmann, T., Manrique, D., Togelius, J.: Towards the automatic
generation of card games through grammar-guided genetic programming. In: Yan-
nakakis, G.N., Aarseth, E., Jorgensen, K., Lester, J.C. (eds.) Proceedings of the
8th International Conference on the Foundations of Digital Games, FDG 2013,
Chania, Crete, Greece, May 14-17, 2013. pp. 360-363. Society for the Advance-
ment of the Science of Digital Games (2013), http://www.£dg2013.org/program/
papers/short01_font_etal.pdf

Frade, M., de Vega, F.F., Cotta, C.: Modelling video games’ landscapes by means
of genetic terrain programming - A new approach for improving users’ experi-
ence. In: Giacobini, M., Brabazon, A., Cagnoni, S., Caro, G.D., Drechsler, R.,
Ekart, A., Esparcia-Alcazar, A., Farooq, M., Fink, A., McCormack, J., O'Neill, M.,
Romero, J., Rothlauf, F., Squillero, G., Uyar, S., Yang, S. (eds.) Applications of
Evolutionary Computing, EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT,
EvolASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, Naples, Italy,
March 26-28, 2008. Proceedings. Lecture Notes in Computer Science, vol. 4974, pp.
485-490. Springer (2008). https://doi.org/10.1007/978-3-540-78761-7_52, https:
//doi.org/10.1007/978-3-540-78761-7_52

Frade, M., de Vega, F.F., Cotta, C.: Breeding terrains with genetic terrain pro-
gramming: The evolution of terrain generators. Int. J. Comput. Games Technol.
2009, 125714:1-125714:13 (2009). https://doi.org/10.1155/2009/125714, https:
//doi.org/10.1155/2009/125714

Garcia-Sanchez, P., Fernandez-Ares, A., Mora, A.M., Valdivieso, P.A.C., Gonzélez,
J., Guervés, J.J.M.: Tree depth influence in genetic programming for gener-
ation of competitive agents for RTS games. In: Esparcia-Alcdzar, A.I., Mora,
A M. (eds.) Applications of Evolutionary Computation - 17th European Con-
ference, EvoApplications 2014, Granada, Spain, April 23-25, 2014, Revised
Selected Papers. Lecture Notes in Computer Science, vol. 8602, pp. 411-
421. Springer (2014). https://doi.org/10.1007/978-3-662-45523-4_34, https://
doi.org/10.1007/978-3-662-45523-4_34

Gauthier, A., Jenkinson, J.: Designing productively negative experiences
with serious game mechanics: Qualitative analysis of game-play and
game design in a randomized trial. Comput. Educ. 127, 66-89 (2018).
https://doi.org/10.1016/j.compedu.2018.08.017, https://doi.org/10.1016/
j.compedu.2018.08.017

Geng, S., Hu, T.. Sports games modeling and prediction using ge-
netic programming. In: IEEE Congress on Evolutionary Computation,
CEC 2020, Glasgow, United Kingdom, July 19-24, 2020. pp. 1-6. IEEE
(2020). https://doi.org/10.1109/CEC48606.2020.9185917, https://doi.org/10.
1109/CEC48606.2020.9185917

Inc, B.N.E.: Pacman official, http://pacman.com/en/, accessed: 2nd September
2021

Letcher, A., Balduzzi, D., Racaniére, S., Martens, J., Foerster, J.N., Tuyls, K.,
Graepel, T.: Differentiable game mechanics. J. Mach. Learn. Res. 20, 84:1-84:40
(2019), http://jmlr.org/papers/v20/19-008.html

68

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Liu, F., Serguieva, A., Date, P.: A mixed-game and co-evolutionary genetic pro-
gramming agent-based model of financial contagion. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain, 18-23 July
2010. pp. 1-7. IEEE (2010). https://doi.org/10.1109/CEC.2010.5586243, https:
//doi.org/10.1109/CEC.2010.5586243

Marino, J.R.H.: Learning strategies for real-time strategy games with genetic pro-
gramming. In: Smith, G., Lelis, L. (eds.) Proceedings of the Fifteenth AAAT Con-
ference on Artificial Intelligence and Interactive Digital Entertainment, AIIDE
2019, October 8-12, 2019, Atlanta, Georgia, USA. pp. 219-220. AAAI Press (2019),
https://www.aaai.org/ojs/index.php/AIIDE/article/view/5249

Michael Cook, m.: Games by angelina, http://www.gamesbyangelina.org/, ac-
cessed: 2nd September 2021

Moll, P., Frick, V., Rauscher, N., Lux, M.: How players play games: observing
the influences of game mechanics. In: Eg, R., van der Hooft, J., Raaen, K. (eds.)
Proceedings of the 12th ACM International Workshop on Immersive Mixed and
Virtual Environment Systems, MMVEQ@QMMSys 2020, Istanbul, Turkey, June 8,
2020. pp. 7-12. ACM (2020). https://doi.org/10.1145/3386293.3397113, https:
//doi.org/10.1145/3386293.3397113

Navarro, D., Sundstedt, V.: Simplifying game mechanics: gaze as an implicit
interaction method. In: Gutierrez, D., Huang, H. (eds.) SIGGRAPH Asia
2017 Technical Briefs, Bangkok, Thailand, November 27 - 30, 2017. pp. 4:1-
4:4. ACM (2017). https://doi.org/10.1145/3145749.3149446, https://doi.org/
10.1145/3145749.3149446

Nguyen, J., Ruberg, B.: Challenges of designing consent: Consent mechanics in
video games as models for interactive user agency. In: Bernhaupt, R., Mueller,
F.F., Verweij, D., Andres, J., McGrenere, J., Cockburn, A., Avellino, I., Goguey,
A., Bjgn, P., Zhao, S., Samson, B.P., Kocielnik, R. (eds.) CHI ’20: CHI Conference
on Human Factors in Computing Systems, Honolulu, HI, USA, April 25-30, 2020.
pp. 1-13. ACM (2020). https://doi.org/10.1145/3313831.3376827, https://doi.
org/10.1145/3313831.3376827

Ruiz-Quiniones, J., Ferndndez-Leiva, A.: Xml-based video game description lan-
guage. IEEE Access 8, 4679-4692 (2020)

Siu, K., Zook, A., Riedl, M.O.: A framework for exploring and evaluating mechanics
in human computation games. In: Deterding, S., Canossa, A., Harteveld, C., Zhu,
J., Sicart, M. (eds.) Proceedings of the International Conference on the Foundations
of Digital Games, FDG 2017, Hyannis, MA, USA, August 14-17, 2017. pp. 38:1—
38:4. ACM (2017). https://doi.org/10.1145/3102071.3106344, https://doi.org/
10.1145/3102071.3106344

Szarowicz, A., Francik, J., Lach, E.: Reinforcement learning and genetic pro-
gramming for motion acquisition. Int. J. Intell. Games Simul. 4(1), 55-66 (2006),
http://wuw.scit.wlv.ac.uk/0JS_IJIGS/index.php/IJIGS/article/view/5
Villegas, E., Labrador, E., Fonseca, D., Ferndndez-Guinea, S.: Validating game
mechanics and gamification parameters with card sorting methods. In: Rocha, A.,
Adeli, H., Reis, L.P., Costanzo, S. (eds.) New Knowledge in Information Systems
and Technologies - Volume 3. Advances in Intelligent Systems and Computing,
vol. 932, pp. 392-401. Springer (2019). https://doi.org/10.1007/978-3-030-16187-
3_38, https://doi.org/10.1007/978-3-030-16187-3_38

Volkovas, R., Fairbank, M., Woodward, J.R., Lucas, S.M.: Mek: Mechanics proto-
typing tool for 2d tile-based turn-based deterministic games. In: IEEE Conference
on Games, CoG 2019, London, United Kingdom, August 20-23, 2019. pp. 1-8.

69

IEEE (2019). https://doi.org/10.1109/CIG.2019.8848016, https://doi.org/10.
1109/CIG.2019.8848016

70

