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Abstract
The rapid progression of Generative Adversarial Networks (GANs) has raised a concern of their misuses for malicious pur-
poses, especially in creating fake face images. Although many proposed methods succeed in detecting GAN-based synthetic
images, they are still limited by the need for large quantities of the training fake image dataset, and challenges for the detec-
tor’s generalizability to unknown facial images. In this paper, we propose a new approach that explores the asynchronous
frequency spectra of color channels, which is simple but effective for training both unsupervised and supervised learning
models to distinguish GAN-based synthetic images. We further investigate the transferability of a training model that learns
from our suggested features in one source domain and validates on another target domains with prior knowledge of the
features’ distribution. Our experimental results show that the discrepancy of spectra in the frequency domain is a practical
artifact to effectively detect various types of GAN-based generated images.
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1. Introduction
In recent years, there has been tremendous progress in
Generative Adversarial Networks (GAN), in which two
modules (generator vs. discriminator), play a minimax
game to produce highly realistic data. Unfortunately, in
addition to several fruitful GAN applications, attackers
can exploit GANs for malicious purposes, such as spread-
ing fake news [1] or propagating fake pornography of
celebrities [2] as shown in the past. Meanwhile, several
efforts have been made by researchers [3, 4, 5] to re-
sist these nasty misuses. Wang et al. built a deep neural
network to classify GAN-based generated images and
empirically demonstrates that a classifier trained on one
single dataset can generalize to different GAN datasets[4].
Especially, Dzanic and Shah [6] empirically show the
systematic bias in high spatial frequencies and use this
characteristic to classify real and deep network generated
images. However, they did not explore the deeper sta-
tistical frequency features that we propose in our work,
and they simply focused on converting the RGB to gray
image, unlike ours.

Also, the checkerboard artifacts in spectrum generated
by up-sampling components of GAN model were also ex-
tensively investigated by Zhang et al. [3] and Frank et al.
[5]. While these techniques have shown success in terms
of achieving high accuracy, they typically require a large
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Figure 1: The frequency spectra differences of real vs. fake
images. Top: Real images and their corresponding concur-
rent spectra. Bottom: Fake images and their corresponding
(chaotic) spectra. It is difficult for human eyes to distinguish
between real and fake images, but after applying DFT on each
channel of images, the vital clues to distinguish real vs. fake
images can be discovered.

quantities of data to train and the incurred high computa-
tional complexity, which can be prohibitively expensive
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Figure 2: Illustration of our end-to-end pipeline. Unlike other research [6] that apply DFT on a grayscale image, we focus on
each channel information and utilize statistical methods to obtain discriminative features.

in many practical applications. As a consequence, there
is a strong need for detection methodologies that can
achieve comparable levels of performance with limited
training data, requiring low computational requirements
and better generalization to unknown GAN-based gener-
ated images.
In this work, we first observe that the frequencies of

the channels in the real images are highly correlated as
shown in Fig. 1 and Fig. 3. In fact, the discriminator in the
GAN model can make the generated synthesized images
highly realistic, close to real images. However, to the best
of our knowledge, there has not been any attempt to
apply direct correlation constraint between channels on
the output images in the frequency domain in the GAN
models. From this observation, we hypothesize that the
insufficiency of channel-dependent training in most of
the current GAN models can produce the channel-wise
asynchrony in the frequency domain. The asynchronous
can be exposed in various GAN datasets, which can be ef-
fectively used to distinguish GAN-based synthetic images
by both unsupervised or supervised learning methods.
In order to demonstrate the effectiveness of our pro-

posed approach, we experimentwith four types of datasets:
Fake Head Talker [7], StyleGAN [8], StarGAN [9], and
Adversarial Latent Auto Encoder (ALAE) [10]. Our main
contributions in this work are summarized as follows:

• We firstly introduce the asynchronous in the fre-
quency domain for detectingGAN-generated fake
images.

• We propose effective unsupervised and super-
vised learning models using our discriminative
mining features to classify real and fake images.

• We demonstrate the transferability of our pro-
posed learningmodels across different GAN-based
synthetic datasets using our spectra features.

2. Our Methods

2.1. Fourier Spectrum Analysis
In this section, we construct our hypothesis on the channel-
wise asynchrony of GAN-based generated images. The
convolutional operation at the 𝑙𝑡ℎ layer of a generative
model is formulated as follows:

𝐴𝑙+1
𝑖 = 𝐶𝑜𝑛𝑣𝑙𝑖(𝐴

𝑙) = 𝜎

⎛⎝𝐶(𝑙)∑︁
𝑐=1

𝐹 𝑙
𝑖𝑐 ⊛ 𝑈𝑝(𝐴𝑙

𝑐)

⎞⎠ , (1)

where 𝐶(𝑙) is the number of channels of the 𝑙𝑡ℎ layer’s
output𝐴𝑙, 𝐹 𝑙 ∈ R𝑘𝑙×𝑘𝑙×𝐶(𝑙+1)×𝐶(𝑙) is a set of𝐶(𝑙+1)×
𝐶(𝑙) trainable 2𝐷 filters that have size of 𝑘𝑙 × 𝑘𝑙. And
𝑈𝑝(·), ⊛ and 𝜎(·) denote the up-sampling operator, con-
volutional operator and activation function, respectively.
According to Khayatkhoei and Elgammal [11], we can
simplify the Eq. 1 by restricting 𝜎(·) to to rectified lin-
ear units (ReLU), which makes the 𝐶𝑜𝑛𝑣𝑙𝑖(𝐴

𝑙) become
locally piece-wise linear, and absorbing the up-sampling
𝑈𝑝(·) into 𝐴𝑙

𝑐. In this way, we transform Eq. 1 to:

𝐴𝑙+1
𝑖 = 𝐶𝑜𝑛𝑣𝑙𝑖(𝐴

𝑙) =

𝐶∑︁
𝑐=1

𝐹 𝑙
𝑖𝑐 ⊛𝐴𝑙

𝑐. (2)

By applying the 2D discrete Fourier transform (DFT)
to 𝐴𝑙+1

𝑖 , it is now viewed in the frequency domain as
follows:

𝐴̃
𝑙+1
𝑖 = F(𝐴𝑙+1

𝑖 ) = F

(︃
𝐶∑︁

𝑐=1

𝐹 𝑙
𝑖𝑐 ⊛𝐴𝑙

𝑐

)︃

=

𝐶∑︁
𝑐=1

F
(︁
𝐹 𝑙
𝑖𝑐 ⊛𝐴𝑙

𝑐

)︁
(linearity property of FT)

=

𝐶∑︁
𝑐=1

F
(︁
𝐹 𝑙
𝑖𝑐

)︁
× F

(︁
𝐴𝑙

𝑐

)︁
(conv. property of FT)

=

𝐶∑︁
𝑐=1

𝐹̃
𝑙
𝑖𝑐 × 𝐴̃

𝑙
𝑐 = ⟨𝐹 𝑙

𝑖 ,𝐴
𝑙⟩, (3)



where 𝐹 𝑙
𝑖 = (𝐹

𝑙
𝑖1, ..., 𝐹

𝑙
𝑖𝐶)

𝑇 , and 𝐴𝑙 = (𝐴̃
𝑙
1, ..., 𝐴̃

𝑙
𝐶)

𝑇 .
Equation 3 indicates that in the frequency domain, every
channel of in the next layer is decomposed into the com-
bination all previous layer’s channels with different sets
of coefficients. If we consider 𝐴𝑙+1 as the synthesized
output image and fix 𝐴𝑙 , every vector 𝐹 𝑙

𝑖,𝑖=1,..𝐶(𝑙+1)
is

trained independently to minimized the loss that applied
on each 𝐴̃

𝑙+1
𝑖 . When we consider𝐴𝑙 as a basic and𝐹 𝑙

𝑖 as
the coordinate of 𝐴̃

𝑙+1
𝑖 with respect to 𝐴𝑙, to synthesize

a new image, the generative models expect that 𝐴𝑙 is
also good enough so that each independent coefficient
vector 𝐹 𝑙

𝑖 can produce corresponding single channel. In
addition, these output channels should become as natural
as possible in spacial domain after being stacked together
in the order of three color channels: Red, Green and Blue.
Small shifts of 𝐹 𝑙

𝑖,𝑖=1,..𝐶(𝑙+1)
in the frequency domain

may only change fine-grained details of visualization but
can produce frequency-bias when there is no direct con-
straint between channels.

2.2. Descriptive Features Extraction
Let ℐ be a color image with three channels: Red, Green
and Blue, which has width of 𝑊 and height of 𝐻 . To
create its frequency representation, we firstly apply 2D
DFT on each channel as follows:

Fℐ𝑅/𝐺/𝐵
(𝑢, 𝑣) =

𝑊∑︁
𝑥=1

𝐻∑︁
𝑦=1

ℐ𝑅/𝐺/𝐵(𝑥, 𝑦)·𝑒−𝑖2𝜋(𝑢𝑥
𝑊

+ 𝑣𝑦
𝐻

),

(4)
where 𝑥 and 𝑦, and denote the 𝑥𝑡ℎ and 𝑦𝑡ℎ slice in the
width and height dimension of ℐ . For convenience, we
use the notation Fℐ𝑅/𝐺/𝐵

to represent the function that
is independently applied for each channel of the image.
Note that Fℐ𝑅/𝐺/𝐵

(𝑢, 𝑣) is now a complex number, i.e.
Fℐ𝑅/𝐺/𝐵

(𝑢, 𝑣) ∈ C, and the spectrum of each channel
is obtained as follows:

𝑆𝑝𝑒𝑐𝑅/𝐺/𝐵(𝑢, 𝑣) = 𝑚𝑜𝑑
(︁
Fℐ𝑅/𝐺/𝐵

(𝑢, 𝑣)
)︁
, (5)

where 𝑚𝑜𝑑(·) denotes the modulus of complex number.
Although it would be challenging for human eyes to

distinguish between real and GAN-generated fake im-
ages, we believe that their frequency spectra differences
can be possibly exposed, when we stack the three chan-
nels’ spectra of real vs. fake. Figure 1 presents our exam-
ple of images’ spectra from VoxCeleb2 dataset [12] and
Fake Head Talker dataset [13]. In particular, in the real
images, we empirically find that the spectra of three color
channels are mostly concurrent when stacking together,
whereas they become noisy in the fake images, as shown
in Fig. 1.

Based on this important observation, we propose the
following key statistical descriptive features to discrimi-
nate the GAN images in the frequency domain:𝑀𝑒𝑎𝑛,
𝑀𝑎𝑥, 𝑀𝑖𝑛, 𝑖𝐶𝑜𝑟𝑟𝑅𝐺, 𝑖𝐶𝑜𝑟𝑟𝑅𝐵 , and 𝑖𝐶𝑜𝑟𝑟𝐺𝐵 , where
the details are presented below:

• 𝑀𝑒𝑎𝑛. We take the average of the channel-wise
spectrum differences:

𝑀𝑒𝑎𝑛 =
𝑑𝑅𝐺 + 𝑑𝑅𝐵 + 𝑑𝐺𝐵

3
, (6)

Also, we use 𝑑𝑅𝐺 that is the average spectrum
differences between the spectra of the Red and
Green channel in an image as follows:

𝑑𝑅𝐺 =
1

𝑊𝐻

𝑊∑︁
𝑢=1

𝐻∑︁
𝑣=1

⃒⃒
𝑆𝑝𝑒𝑐𝑅(𝑢, 𝑣)−𝑆𝑝𝑒𝑐𝐺(𝑢, 𝑣)

⃒⃒
,

(7)
and 𝑑𝑅𝐵 and 𝑑𝐺𝐵 can be similarly defined.

• 𝑀𝑎𝑥 and 𝑀𝑖𝑛. We take the maximum and min-
imum values in {𝑑𝑅𝐺, 𝑑𝑅𝐵 , 𝑑𝐺𝐵}.

• 𝑖𝐶𝑜𝑟𝑟𝑅𝐺 . We calculate the correlation coefficient
between 𝑆𝑝𝑒𝑐𝑅 and 𝑆𝑝𝑒𝑐𝐺 and transform it to
positive range value by adding 1 to its negative
values as follows:

𝑖𝐶𝑜𝑟𝑟𝑅𝐺 = −𝜌(𝑆𝑝𝑒𝑐𝑅, 𝑆𝑝𝑒𝑐𝐺) + 1, (8)

where 𝜌 is the Pearson correlation coefficient, and
𝑖𝐶𝑜𝑟𝑟𝑅𝐵 and 𝑖𝐶𝑜𝑟𝑟𝐺𝐵 can be similarly defined.

Our end-to-end pipeline of extracting above frequency
descriptive features from a given image is visually illus-
trated in Fig. 2.

2.3. Binary Classifier
To demonstrate the characteristic-defining ability of the
spectrum disagreement, we first employ the simple clas-
sifiers to classify real and fake images as below:

• Gaussian Mixture Model (GMM). GMM is a
probabilistic model that assumes the distribution
of observed sampling data points is composed of
a mixture of many Gaussian distributions, partic-
ularly, in our case is two distributions of real and
fake class. To determine the means and variances
of the two Gaussian distributions, Expectation-
Maximization (EM) algorithm is used to itera-
tively estimate these parameters. Our descriptive
features populate in the way that the higher spec-
trum agreement of an image will have the lower
descriptive values. Therefore, we can expect that
the Gaussian distribution in the mixture model,
which has a smaller expectation will represent



the real images’ distribution, and the other repre-
sents the fake images’ distribution. By applying
EM, we can classify real and fake images in an
unsupervised manner in which the labels of a
training dataset are not required.

• Support Vector Machine (SVM). SVM is a ro-
bust supervised learning method that maximizes
themargin of hyperplanes between different classes.
The samples that lie along the margins are called
the support vectors. In our experiment, we use
SVM with the radial basis function (RBF) kernel
to train with our six proposed features.

3. Experiment

3.1. Datasets
To examine the effectiveness of our proposed frequency
features, we experiment four types of dataset: Fake Head
Talker [7], StyleGAN [8], StarGAN [9], and Adversarial
Latent Auto Encoder (ALAE) [10]. A brief description of
each dataset is provided below as well as in Table 1:

• FakeHeadTalker dataset [7]. FakeHead Talker
is generated by the few-shot learning system that
is pre-trained extensively on a large dataset (meta-
learning). Particularly, their approach includes an
embedder, a generator, and a discriminator. After
training on a large corpus of talking head videos
of different faces with adversarial training, their
approach can transform facial landmarks from
a source frame into realistically-looking person-
alized photographs with a few photos of a new
target person, and further mimic the target.

• StyleGAN dataset [8]. StyleGAN is a high-level
style controlling approach that governs its gen-
erator through adaptive instance normalization
(AdaIN) and Gaussian noise adding in each con-
volutional layer. Furthermore, by proposing two
novel metrics such as perceptual path length and
linear separability, the generated images are less
entangled and have different factors of variation.

• StarGAN dataset [9]. StarGAN is a unifiedmodel
architecture that is able to train onmultiple datasets
across different domains. By proposing a simple
mask vector, the StarGAN is able to flexibly uti-
lize multiple datasets containing different label
sets, and achieve competitive results in the facial
attribute transfer tasks. This new approach with
only a single generator and a discriminator has
addressed the scalability and robustness limita-
tions of many previous research.

• Adversarial LatentAutoEncoder (ALAE) dataset
[10]. ALAE is an autoencoder-based generative
model that is capable to learn the disentangled

representations in the latent space with adversar-
ial settings. The ALAE model can not only syn-
thesize high-resolution images comparing with
StyleGAN, but also can further manipulate or re-
construct the new input facial images.

Details of each dataset in our experiment are summa-
rized in Table 1. In our experiment, the number of real
and GAN fake images are equal in both training and test
sets. We further provide the histograms to visualize the
distributions of six descriptive features of these datasets
in Supp. Section A.

3.2. Experimental Results
To demonstrate the discriminative power of our proposed
features, we perform three different experiments.

Binary classification. Our experimental results are
shown in Table 2. We can observe that both unsuper-
vised and supervised methods are able to produce high
performance with our newly introduced frequency fea-
tures. The accuracy scores of the unsupervised method
on Fake Head Talker and ALAE dataset are competitive,
compared to the supervised approaches. At the same
time, they are still higher than 80% on StyleGAN and
StarGAN. Meanwhile, the supervised method’s accuracy
scores are always higher than 95% on the four datasets.
We can conclude that our proposed features based on the
asynchronous in the frequency spectrum can effectively
capture the characteristics of the GAN-generated images,
and provide the foundation for distinguishing fake from
real images.

Unbalanced training datasets. Furthermore, to study
the feasibility of training with an unbalanced dataset us-
ing our features, we gradually reduce the number of fake
images in each training dataset to 25%, 5%, and 1% of
the total training data size. After that, we apply the SVM
as our learning model. To demonstrate our approach’s ef-
fectiveness, we compare our method with FakeTalkerDe-
tect model [13], which deployed a pre-trained AlexNet
and Siamese network trained on RGB images. The results
are presented in Table 3. We can observe that our method
with the hand-crafted features outperforms the AlexNet
and FakeTalkerDetect on both balanced and unbalanced
datasets. Therefore, we can conclude that our simple yet
effective features are capable to characterize the fake
image much better in the unbalanced training dataset
scenario, as well.

Unsupervised domain adaptation. In this task, we
propose an algorithm using our proposed features that
allows a pre-trained SVM model on one source dataset
(e.g., StyleGAN) can detect fake images in a new target
dataset (e.g., ALAE) with the only prior knowledge of the
target feature expectations.



Table 1
Details of datasets used in our experiment.

Datasets Resolution Source datasets
Training size Test size
(real+ fake) (real+ fake)

Fake Head Talker [7] 224× 224 VoxCeleb2 [12] 18,800 18,800
StyleGAN [8] 1024× 1024 FFHQ 1 2,000 2,000
StarGAN [9] 256× 256 CelebA [14] 2,000 1,998
ALAE [10] 1024× 1024 FFHQ 2,000 2,000

Table 2
Experimental results of GMM and SVM on four datasets with our discriminative features.

Datasets
GMM SVM

Accuracy Recall Precision F1 Accuracy Recall Precision F1
Fake Head Talker 0.996 1.000 0.991 0.996 0.9972 0.994 1.000 0.997
StyleGAN 0.849 0.762 0.915 0.831 0.951 0.938 0.963 0.950
StarGAN 0.903 0.807 1.000 0.893 0.972 0.949 0.994 0.971
ALAE 0.992 0.984 1.000 0.992 0.999 0.997 1.000 0.998

Table 3
Comparison between our approach using proposed descrip-
tive features and AlexNet and FakeTalkerDetect method on
Fake Head Talker dataset. The precision, recall and F1 scores
of AlexNet and FakeTalkerDetect from [13], and their values
are rounded to second decimal

Methods Accuracy Recall Precision F1
AlexNet (50% fake) 0.981 0.98 0.98 0.98
FakeTalkerDetect 0.984 0.98 0.98 0.98
SVM (ours) 0.997 0.994 1.00 0.997

AlexNet (25% fake) 0.971 0.95 0.95 0.96
FakeTalkerDetect 0.986 0.98 0.98 0.98
SVM (ours) 0.998 0.995 1.000 0.997

AlexNet (5% fake) 0.964 0.98 0.80 0.87
FakeTalkerDetect 0.988 0.99 0.91 0.94
SVM (ours) 0.997 0.997 0.997 0.997

AlexNet (1% fake) 0.963 0.98 0.61 0.67
FakeTalkerDetect 0.988 0.99 0.74 0.82
SVM (ours) 0.992 0.999 0.986 0.992

In particular, we first take the two Gaussian expecta-
tion values of two mixture distributions of each feature
from both source and target dataset. These expectation
values are kept as our prior knowledge about the target
dataset. We then scale the source training set features
such that their two Gaussian expectation values are nor-
malized between 0 and 1 , to better fit the training dataset
with the SVM model. In the testing phase, with our prior
knowledge above, we can scale the testing features from
the target dataset using the known expectation values
and feed them to the pre-trained SVMmodel to make pre-
diction. This adaptation learning process is summarized
in the Algorithm 1.

We experiment with the four fake dataset and present
the results in Table 4. We can observe that with our

Algorithm 1 Unsupervised domain adaptation with
SVM using our proposed descriptive features

Require: Labeled source set {𝑋𝑠, 𝑌 𝑠}, unlabeled tar-
get set 𝑋𝑡, where 𝑋𝑠 and 𝑋𝑡 includes the six
proposed features [𝑓𝑠

1 , .., 𝑓
𝑠
6 ], respectively. The

prior knowledge of Gaussian expectation values:[︀
𝑚𝑠

𝑖,0,𝑚
𝑠
𝑖,1

]︀
𝑖=1,...,6

and
[︀
𝑚𝑡

𝑖,0,𝑚
𝑡
𝑖,1

]︀
𝑖=1,...,6

.

1: Step 1: Scale each feature in 𝑋𝑠 and 𝑋𝑡:
𝑓𝑠
𝑖̄ =

(︀
𝑓𝑠
𝑖 −𝑚𝑠

𝑖,0

)︀
/
(︀
𝑚𝑠

𝑖,1 −𝑚𝑠
𝑖,0

)︀
,

𝑓 𝑡
𝑖
¯ =

(︀
𝑓 𝑡
𝑖 −𝑚𝑡

𝑖,0

)︀
/
(︀
𝑚𝑡

𝑖,1 −𝑚𝑡
𝑖,0

)︀
2: Step 2: Fit source set

{︀
[𝑓𝑠

1̄ , .., 𝑓
𝑠
6̄ ], 𝑌

𝑠
}︀
with SVM

model.
3: Step 3: Use pre-trained SVM to predict target set label

from [𝑓 𝑡
1
¯ , .., 𝑓 𝑡

6
¯ ].

suggested features the pre-trained SVM shows its strong
detection ability in the new target domain, where all the
detection performance is above 80% of accuracy for any
pair of source and target dataset. This preliminary exper-
iment shows that our proposed features can be utilized
in domain adaptation tasks with more complex learning
models in the future.

4. Conclusion
Although GANs have significantly advanced in the past,
we discover that there are some areas that GANs’ can-
not mimic the real images effectively in the frequency
domain. Thus, in this work, we propose a preliminary
approach that reveals the asynchronous in frequency do-
main of the three channels in GAN images. By mining
statistical features in frequency domain, our simple yet



Table 4
Experimental results of domain adaptation task using our proposed features

Source dataset Target dataset Accuracy Recall Precision F1

Fake Head Talker
StyleGAN 0.800 0.908 0.745 0.819
StarGAN 0.918 0.844 0.992 0.912
ALAE 0.994 0.995 0.993 0.994

StyleGAN
Fake Head Talker 0.965 0.932 0.998 0.964
StarGAN 0.906 0.814 0.998 0.896
ALAE 0.991 0.982 1.000 0.991

StarGAN
Fake Head Talker 0.983 0.982 0.983 0.983
StyleGAN 0.832 0.980 0.756 0.854
ALAE 0.996 0.997 0.994 0.996

ALAE
Fake Head Talker 0.993 0.989 0.998 0.993
StyleGAN 0.890 0.955 0.845 0.897
StarGAN 0.929 0.871 0.985 0.925

effective unsupervised and supervised learning methods
can easily discriminate the real and GAN-based synthetic
facial images without utilizing deep learning methods.
Our extensive experiments demonstrates that the pro-
posed features’ power in three scenarios: 1) unsupervised
and supervised binary classification, 2) unbalanced train-
ing dataset, and 3) domain adaptation task. For future
work, we plan to explore and exploit more on these as-
pects of GAN-generated images to combat against mis-
uses from attackers, and extend our work to deepfake
detection.

Acknowledgments
This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government
(MSIT) (No.2019-0-00421, AI Graduate School Support
Program (SungkyunkwanUniversity)), (No. 2019-0-01343,
Regional strategic industry convergence security core
talent training business) and the Basic Science Research
Program through National Research Foundation of Ko-
rea (NRF) grant funded by Korea government MSIT (No.
2020R1C1C1006004). Additionally, this researchwas partly
supported by IITP grant funded by the Korea govern-
ment MSIT (No. 2021-0-00017, Original Technology De-
velopment of Artificial Intelligence Industry) and was
partly supported by the Korea government MSIT, under
the High-Potential Individuals Global Training Program
(2019-0-01579) supervised by the IITP.

References
[1] T. Quandt, L. Frischlich, S. Boberg, T. Schatto-

Eckrodt, Fake news, The international encyclopedia
of Journalism Studies (2019) 1–6.

[2] S. Cole, We are truly fucked: Everyone is
making ai-generated fake porn now, 2018.
URL: https://www.vice.com/en/article/bjye8a/
reddit-fake-porn-app-daisy-ridley.

[3] X. Zhang, S. Karaman, S.-F. Chang, Detecting and
simulating artifacts in gan fake images, in: 2019
IEEE InternationalWorkshop on Information Foren-
sics and Security (WIFS), IEEE, 2019, pp. 1–6.

[4] S.-Y. Wang, O. Wang, R. Zhang, A. Owens, A. A.
Efros, Cnn-generated images are surprisingly easy
to spot... for now, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, 2020, pp. 8695–8704.

[5] J. Frank, T. Eisenhofer, L. Schönherr, A. Fischer,
D. Kolossa, T. Holz, Leveraging frequency analysis
for deep fake image recognition, in: International
Conference on Machine Learning, PMLR, 2020, pp.
3247–3258.

[6] T. Dzanic, K. Shah, F. Witherden, Fourier spectrum
discrepancies in deep network generated images,
arXiv preprint arXiv:1911.06465 (2019).

[7] E. Zakharov, A. Shysheya, E. Burkov, V. Lempit-
sky, Few-shot adversarial learning of realistic neu-
ral talking head models, in: Proceedings of the
IEEE/CVF International Conference on Computer
Vision, 2019, pp. 9459–9468.

[8] T. Karras, S. Laine, T. Aila, A style-based generator
architecture for generative adversarial networks,
in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp.
4401–4410.

[9] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, J. Choo,
Stargan: Unified generative adversarial networks
for multi-domain image-to-image translation, in:
Proceedings of the IEEE conference on computer
vision and pattern recognition, 2018, pp. 8789–8797.

[10] S. Pidhorskyi, D. A. Adjeroh, G. Doretto, Adver-

https://www.vice.com/en/article/bjye8a/reddit-fake-porn-app-daisy-ridley
https://www.vice.com/en/article/bjye8a/reddit-fake-porn-app-daisy-ridley


sarial latent autoencoders, in: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2020, pp. 14104–14113.

[11] M. Khayatkhoei, A. Elgammal, Spatial frequency
bias in convolutional generative adversarial net-
works, arXiv preprint arXiv:2010.01473 (2020).

[12] A. Nagrani, J. S. Chung, W. Xie, A. Zisserman, Vox-
celeb: Large-scale speaker verification in the wild,
Computer Science and Language (2019).

[13] H. Jeon, Y. Bang, S. S. Woo, Faketalkerdetect: Ef-
fective and practical realistic neural talking head
detection with a highly unbalanced dataset, in: Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, 2019, pp. 0–0.

[14] Z. Liu, P. Luo, X. Wang, X. Tang, Deep learning
face attributes in the wild, in: Proceedings of Inter-
national Conference on Computer Vision (ICCV),
2015.



A. Distribution of Statistical Descriptive Features
The histogram distributions of our six proposed statistical features in the frequency domains are present in the Fig.
3. We can observe that these feature distributions are highly separable between real and fake images across four
datasets.



Figure 3: The histogramdistributions of our six statistical descriptive features from four datasets: FakeHead Talker, StyleGAN,
StarGAN and ALAE.



B. Example GAN-based Synthetic Images
We provide example images from four datasets used in our experiment.
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