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Abstract
In recent years, DeepFake techniques have advanced to generate so realistic forged content that it could jeopardize personal
privacy and national security. We observe the distribution discrepancy between genuine faces and tampered faces manip-
ulated by DeepFake techniques. It can be described that embedding vectors of genuine faces are tightly distributed in the
embedding space, while tampered faces are comparatively scattered. We, therefore, propose a novel DeepFake detection
method based on Multi-metric Loss. Specifically, real and fake faces are mapped onto the embedding space, which is of
intra-class compactness and inter-class separation. Then by adding Weight-Center Loss to project genuine faces onto a
more compact region in the embedding space, the distance between the two types of sample clusters is further expanded,
thereby improving the separability of genuine and tampered samples. Moreover, the Adaptive Hardness-aware Expander is
designed to further improve feature description ability of the model because the metric is always challenged with proper
difficulty. Extensive experiments show that our approach can achieve state-of-the-art performance on present datasets.
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1. Introduction
Of various digital media, videos containing digital hu-
man faces, especially the ones involving personal identi-
fication information, are most vulnerable to be attacked.
These assaults are collectively referred to as DeepFake
manipulations. Therefore, to develop effective methods
capable of detecting DeepFake videos carries substant
weight. Since the existing manipulations tamper with
specific areas frame by frame, the artifacts and noises
appear in the spurious videos. So previous researchers
have proposed many handcrafted methods [1, 2, 3, 4] and
data-driven methods [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]
to find manipulation traces.
Due to uncertain counterfeit methods and manipu-

lation quality in DeepFake videos, the spurious data is
scattered in the whole feature space. Relatively, gen-
uine human faces concentrate close to a non-linear low-
dimensional manifold [17] in the feature space. As shown
in Figure 1, the vectors of real faces are tightly distributed,
while the fakes are comparatively scattered. Therefore,
we consider that this distribution discrepancy also exists
in the embedding space obtained by the feature space
mapping. The existing detection schemes, however, do
not consider the distribution discrepancy between the
two types of samples.

To this end, we propose the DeepFake detection frame-
work with Multi-metric Loss, as shown in Figure 2.
Triplet Loss, Cross-Entropy Loss andWeight-Center Loss
together constitute Multi-metric Loss acting on differ-
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(a) DFDC (b) Celeb-DF

Figure 1: DFDC and Celeb-DF dataset distribution visualiza-
tion by t-SNE. The projections of real face features are tightly
distributed, while the fakes are comparatively scattered.

ent levels and face sample cluster with diverse labels
(real/fake). Under the restriction of Triplet Loss and
Cross-Entropy Loss, the real faces and fake faces are
mapped onto the embedding space, which is intra-class
compactness and inter-class separation. Then through
adding Weight-Center Loss, the real faces are projected
to a more compact region. The method of excavating
fundamental distinction between the two types of sam-
ples is, therefore, to extend the distance between the
two types of sample clusters in the embedding space,
thereby improving the separability of genuine and spu-
rious videos. In the end-stage of training, in order to
further improve the feature description ability of the
model, we designed the Adaptive Hardness-aware Ex-
pander (AHE). The rigorous experiments on FaceForen-
sics++ [6], DFDC [18] and Celeb-DF [19] datasets show
that the proposed method based on Multi-metric Loss
is highly effective and achieves state-of-the-art perfor-
mance.
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Figure 2: The framework of our method. Use MTCNN to crop the video frames into facial area maps and send them to the
backbone network to get the embedding vectors. The Cross-Entropy Loss and Triple Loss of all original embedding vectors and
theWeight-Center Loss of genuine embedding vectors, are calculated. In the end-stage of training, Adaptive Hardness-aware
Expander continuously synthesizes samples with adaptive hardness.

2. Related works
With huge risks posed by face forgery technology, there
is currently an urge to investigate DeepFake detection
methods. Existing detection techniques mainly fall into
two categories: handcrafted and data-driven methods.
Handcrafted Methods. For the limited face manipu-
lation techniques at that time, early works achieved the
DeepFake detection through handcraft features. This
methods mainly include eye blinking [1], incomplete de-
tails in the eye and teeth [2], face warping [3] and head
poses [4]. With the development of generative adver-
sarial network (GAN) [20],a variety of tampering tech-
nologies have emerged and forgery faces have become
more realistic. Therefore, the effectiveness of formerly
handcrafted methods has gradually been weakened.
Data-driven Methods. Given the powerful feature
representation capabilities of deep neural network, the
data-driven methods have received widespread attention.
Firstly, some classification networks were applied to de-
tect fake faces likeMesoNet [5], XceptionNet [6], Capsule
network [7], R3D and C3D [8] etc. Then Zhou et al. [9]
proposed to use the Two-stream neural network to cap-
ture tampering artifacts and local noise residuals. The
adaptive face weighting layer [10] was designed with
it focus forgery details. The model [11] was trained to
mark the blending boundary for forged images. Consid-
ering inconsistent warping left by manipulation in the
inter-frame, the methods [12, 13, 14] were proposed. The
methods [15, 16] introduced the Deep Metric Learning
to DeepFake detection for the first time.
Kumar et al. [15] mainly explored the method’s ef-

fectiveness for detecting videos with high compression
factor. Feng et al. [16] used the difference of the full face
image in videos as the feature for DeepFake detection. Al-

though they also mapped data onto the embedding space
based onDeepMetric Learning, they just followed the tra-
ditional metric strategy and imposed the same constraint
on two types of samples. In our work, considering the
distribution discrepancy of real and fake data, different
levels of classification constraints are imposed on these
two kinds of sample clusters. Specifically, we design the
Multi-metric Loss to further widen the distance between
the real cluster and the fakes by capturing fundamental
distinction between spurious videos and genuine videos,
and the Adaptive Hardness-aware Expander to further
improve the feature description ability of the model.

3. Proposed Approach
In this section, we give an overview of our framework.
As aforementioned, the embedding vectors of real faces
are aggregative in the embedding space, while the fakes
are relatively scattered. Motivated by this observation,
two key components are integrated into the framework:
1) Multi-metric Loss is designed to mine fundamental
distinction between real and fake faces so as to improve
separability; 2) Adaptive Hardness-aware Expander can
be used to further improve the feature description ability
of the model. The framework is depicted in Figure 2.

3.1. Multi-metric Loss
Let 𝒳 denote the data space where we sample a set of
facial area maps X = [𝑥1, 𝑥2, · · · , 𝑥𝑁 ]. Each data 𝑥𝑖

has a label 𝑙𝑖 ∈ {0, 1} representing real or fake. Let

ℎ : 𝒳 ℎ−→ 𝒴 be the mapping from the data space to the
feature space, where the extracted feature 𝑦𝑖 preserves
semantic characteristics of its corresponding data point
𝑥𝑖. Then the feature is projected onto the embedding
space 𝒵 with the mapping 𝑔 : 𝒴 𝑔−→ 𝒵 . Since the



Figure 3: The proposed Multi-metric Loss with Triplet Loss, Cross-Entropy Loss and Weight-Center Loss. Weight-Center
Loss, which only acts on the cluster of real samples, imposes larger penalty on samples that deviate from the center, and
imposes smaller penalty on adjacent samples, while continuously updating the center of the real sample cluster.

projection can be incorporated into the deep network, we

can directly learn themapping 𝑓 (·; 𝜃)=ℎ∘𝑔 : 𝒳 𝑓−→ 𝒵
from the data space to the embedding space, where 𝜃 is
network parameters.
Based on the data distribution discrepancy, namely,

embedding vectors of real faces are tightly distributed,
while the fakes are comparatively scattered. We deem
that various levels of classification constraints should be
imposed, so as to mine fundamental distinction between
spurious videos and genuine videos, as shown in the
Figure 3. Multi-metric Loss is formulated as follows:

Loss = ℒ𝑊𝑒𝑖𝑔ℎ𝑡−𝐶𝑒𝑛𝑡𝑒𝑟 + 𝛽ℒ𝑇𝑟𝑖𝑝𝑙𝑒𝑡 + 𝜒ℒ𝐶𝐸 (1)

3.1.1. Triplet Loss
Under the constraint of Triplet Loss, the mapping from
high-dimensional sparse features into low-dimensional
dense vectors is learned. Reflected in the embedding
space, the distribution of data is characterized by intra-
class compactness and inter-class separation.
Let 𝑓 (𝑥𝑎; 𝜃) be the anchor embedding vector. The

embedding vector with the same and different label rel-
ative to 𝑓 (𝑥𝑎; 𝜃), are defined as 𝑓 (𝑥𝑝; 𝜃) and 𝑓 (𝑥𝑛; 𝜃),
respectively. Triplet Loss is formulated as follows:

ℒ𝑇𝑟𝑖𝑝𝑙𝑒𝑡 := [S𝑎𝑛 − S𝑎𝑝 + 𝜅]+ (2)

where S𝑎𝑝 = ⟨𝑓 (𝑥𝑎; 𝜃) , 𝑓 (𝑥𝑝; 𝜃)⟩ indicates the simi-
larity of positive pair, S𝑎𝑛 = ⟨𝑓 (𝑥𝑎; 𝜃) , 𝑓 (𝑥𝑛; 𝜃)⟩ is the
similarity of negative pair, ⟨·, ·⟩ denotes dot product, and
𝜅 is metric margin.

3.1.2. Cross-Entropy Loss
In our approach, Cross-Entropy (CE) Loss and the Triplet
Loss act jointly. Specifically, CE Loss encourages the sep-
aration of real embedding vectors from the fakes. Simul-
taneously, the Triplet Loss is used to achieve intra-class
compactness and inter-class separation, so as to initially
separate the two types of sample clusters.

3.1.3. Weight-Center Loss
Considering the distribution discrepancy of genuine and
tampered data, we hope to further widen the distance
between two categories of sample clusters by capturing
the fundamental distinction between real videos and fake
videos. Under the action of Triplet Loss and CE Loss, the
network has acquired preliminary classification capabil-
ity. On this basis, we design Weight-Center Loss for real
sample cluster to capture the fundamental distinction
between two types of samples.
Some embedding vectors are far from the center of

the real sample cluster, it may be due to certain interfer-
ence, which has nothing to do with judging real and fake
videos. Therefore, Weight-Center Loss is proposed which
only acts on the cluster of real samples. We define the
sample that is far from the center of the real sample clus-
ter compared to the surrounding samples as the deviating
sample. It adaptively imposes larger penalty on deviat-
ing samples, and imposes smaller penalty on adjacent
samples. Simultaneously, the center of the real sample
cluster is continuously updated. Based on the above oper-
ations, real faces are projected to a more compact region
in the embedding space, so as to broaden the distance be-
tween the real sample cluster and the fake sample cluster.
Weight-Center Loss is formulated as follows:

ℒ𝑊𝑒𝑖𝑔ℎ𝑡−𝐶𝑒𝑛𝑡𝑒𝑟 =
1

𝛼
log

[︃
1 +

∑︁
𝑘∈𝑃

𝑒−𝛼(𝑆𝑘𝑐−𝜆)

]︃
(3)

where 𝑃 is the collection of real embedding vec-
tors, 𝑆𝑘𝑐 is the similarity of the center sample pair
{𝑓 (𝑥𝑘; 𝜃) , 𝑓 (𝑥𝑐; 𝜃)}, 𝑓 (𝑥𝑘; 𝜃) and 𝑓 (𝑥𝑐; 𝜃) are real
embedding vectors and the iterative center and 𝛼, 𝜆 are
fixed hyperparameters. It is worth noting that the center
is iterated continuously.

Based on [21], we can get the generic definition about
the penalty weight of sample pair. Then the penalty
weight of the center sample {𝑓 (𝑥𝑘; 𝜃) , 𝑓 (𝑥𝑐; 𝜃)} in



Figure 4: Adaptive Hardness-aware Expander module. The
synthetic samples

{︀
𝑧−1 ,𝑧−2 ,. . .,𝑧−𝑖

}︀
, which are generated by

the distance of tuple
{︀
𝑧, 𝑧+, 𝑧−

}︀
and CE Loss.

ℒ𝑊𝑒𝑖𝑔ℎ𝑡−𝐶𝑒𝑛𝑡𝑒𝑟 is calculated as follows:

𝑤𝑘𝑐 =
1

𝑒−𝛼(𝜆−𝑆𝑘𝑐) +
∑︀

𝑖∈𝑃,𝑖 ̸=𝑘 𝑒
−𝛼(𝑆𝑖𝑐−𝑆𝑘𝑐)

(4)

where 𝑓 (𝑥𝑘; 𝜃) is one embedding vector of set,
𝑓 (𝑥𝑖; 𝜃) is the other in the set except sample 𝑓 (𝑥𝑘; 𝜃).
𝑆𝑘𝑐 and 𝑆𝑖𝑐 indicate the similarity of sample pair
{𝑓 (𝑥𝑘; 𝜃) , 𝑓 (𝑥𝑐; 𝜃)} and {𝑓 (𝑥𝑖; 𝜃) , 𝑓 (𝑥𝑐; 𝜃)}.

Eq.4 shows that the penalty weight for sample pair is
determined by its relative similarity, measured by com-
paring it with the distance from surrounding samples
with the center, which is fundamentally different from
Center Loss [22]. According to the relative position rela-
tionship in the set, there are two different situations, as
shown in Figure 3. Firstly, the embedding vector 𝑓 (𝑥𝑘; 𝜃)
is far from the center of set relative to other samples
𝑓 (𝑥𝑖; 𝜃), as described by the deviating sample in Fig-
ure 3, and the formula is expressed as 𝑆𝑖𝑐 > 𝑆𝑘𝑐. We
consider that the current embedding vector extracted con-
tains certain interference, which has nothing to do with
judging real and fake videos, so the larger penalty weight
is imposed. When the embedding vector is closer to the
center of set relative to other samples, as described by
the adjacent sample in Figure 3, the formula is expressed
as 𝑆𝑖𝑐 ≤ 𝑆𝑘𝑐. Smaller penalty weight is imposed and the
network parameters are fine-tuned to find the features
that could best represent the fundamental distinction
between spurious videos and authentic videos.

3.2. Adaptive Hardness-aware Expander
In the end-stage of training, considering that original
samples are already well separable under the action of
Multi-metric Loss. Continuing to train original samples
cannot further improve the model’s feature description
ability. To address this limitations, we propose the Adap-
tive Hardness-aware Expander, as shown in Figure 4.

We construct the hardness-aware triplet
{︀
𝑧, 𝑧+, 𝑧−𝑖

}︀
in the embedding space, where manipulation of the dis-
tances among samples will directly alter the hard level
of the triple. The distances of negative pairs

{︀
𝑧, 𝑧−𝑖

}︀
is

manipulated, and for other samples
{︀
𝑧, 𝑧+

}︀
, we perform

no transformation. Then the reduction in the distance be-
tween negative pairs will create rise of the hard level, so
that the measurement process is always at an appropriate
level of difficulty during the training cycle. As shown in
the Figure 4, in order to simplify the representation, we
use 𝑧, 𝑧+, 𝑧− to represent the anchor embedding vector
𝑓 (𝑥𝑎; 𝜃), the positive embedding vector 𝑓 (𝑥𝑝; 𝜃), and
the negative embedding vector 𝑓 (𝑥𝑛; 𝜃), respectively.
Firstly, a toy example that constructs an augmented

harder negative sample 𝑧− by linear interpolation, is
presented:

𝑧− = 𝑧 + 𝜔
(︀
𝑧− − 𝑧

)︀
, 𝜔 ∈ [0, 1] (5)

However, samples too close to the anchor are likely to
cause confusion in the label. Therefore, we exploit the CE
Loss in the previous section to control the hardness of the
generated negative samples, since it is a good indicator
of training process. If the CE Loss is small, the generated
negative sample will be closer to the anchor point, but
will not cross the positive sample. Adaptive Hardness-
aware Expander can be represented as:

𝑧−=

{︃
𝑧+

[︀
𝜂𝑑−+(1−𝜂) 𝑑+

]︀ (𝑧−−𝑧)
𝑑− if 𝑑−>𝑑+

𝑧− if 𝑑−≤𝑑+
(6)

where 𝜂 = 𝑒
− 𝛾

ℒ𝐶𝐸 is a balance factor to control
the hardness of the generated negative samples, 𝛾 is
the pulling factor used to balance the scale of ℒ𝐶𝐸 ,
𝑑+ =

⃦⃦
𝑧− − 𝑧

⃦⃦
2
and 𝑑− =

⃦⃦
𝑧+ − 𝑧

⃦⃦
2
are the distance

between positive pair and negative pair, respectively.
In the early stage of training, the generated hard sam-

ples can not represent related face information, consider-
ing that the embedding space has no accurate semantic
structure. It may even cause the model to be trained in
the wrong direction from the beginning. As the training
progresses, however, the model is growing more tolerant
of hard samples, that is, the metric is always challenged
with proper difficulty. Thereby Adaptive Hardness-aware
Expander can improve the feature description ability of
the model.

4. Experiments
In this section, we first explore the optimal settings for
our approach and then present extensive experimental
results to demonstrate the effectiveness of our method.

4.1. Implement Details
For all real/fake video frames, we use face extractor
MTCNN to detect faces and save the aligned facial images
as inputs with the size of 256× 256. 𝛽, 𝜒 in Eq.1 and 𝛼
in Eq.3 is set to 2.0, 1.0, 2.0 to impose different levels of
classification constraints. The margin of Triplet Loss in
Eq.2 is set to 1.0. Optimization is performed using SGD
optimizer with weight decay 5𝑒−4. The initial learning
rate is kept at 0.01 and divided by 10 after every 3000
iterations. We adopt ResNet-34, which is pre-trained on



Table 1
Testing ACC(%) and AUC(%) score of our method and other methods on FaceForensics++ dataset.

Methods
FF++/df FF++/ff FF++/fs FF++/nt

ACC AUC ACC AUC ACC AUC ACC AUC
MesoNet [5] 0.827 0.853 0.562 0.634 0.611 0.679 0.502 0.596

XceptionNet [6] 0.948 0.986 0.928 0.972 0.903 0.933 0.807 0.835
Li et al. [3] 0.969 0.995 0.972 0.987 0.963 0.990 0.890 0.913
Capsule[7] 0.941 0.960 0.963 0.958 0.972 0.974 0.887 0.948

Feng et al. [16] 0.953 0.991 0.938 0.957 0.921 0.940 0.841 0.902
Kumar et al. [15] 0.960 0.990 0.932 0.962 0.944 0.978 0.832 0.872
Bonettini et al.[10] 0.981 0.992 0.955 0.970 0.973 0.980 0.845 0.863

Ours 0.985 0.998 0.974 0.991 0.995 1.000 0.938 0.968

Table 2
Testing ACC(%) and AUC(%) score of our method and
other methods on DFDC and Celeb-DF dataset.

DFDC Celeb-DF
ACC AUC ACC AUC

MesoNet [5] 0.746 0.818 0.482 0.536
XceptionNet [6] 0.845 0.909 0.788 0.832

Li et al. [3] 0.793 0.861 0.571 0.628
Capsule [7] 0.861 0.933 0.791 0.879

Feng et al. [16] 0.883 0.963 0.814 0.867
Kumar et al. [15] 0.825 0.899 0.792 0.943
Bonettini et al.[10] 0.944 0.967 0.903 0.959

Ours 0.962 0.979 0.927 0.968

Table 3
The ablation study about Multi-metric Loss.

df ff fs nt
Triplet Loss 0.946 0.925 0.939 0.810

+ Cross-Entropy Loss 0.962 0.933 0.942 0.870
+ Weight-center Loss 0.985 0.974 0.995 0.938

the ImageNet dataset, as the backbone network. Our
model is trained on 4 RTX 2080Ti GPUs with batch
size 16 and the total number of iterations is set to 10, 000.

4.2. Comparsion with Previous Methods
In this section, we compare our method with previous
DeepFake detection methods. The performance of var-
ious methods on FaceForensics++ [6], DFDC [18] and
Celeb-DF [19] dataset is shown. We adopt ACC (accu-
racy) and AUC (area under Receiver Operating Charac-
teristic Curve) as the evaluation metrics for experiments.
The evaluation results of the individual datasets are

shown in Table 1 and Table 2. The results indicate that
our model trained with Multi-metric Loss and AHE have
significant improvement over previous methods with
metric learning [15, 16], especially in DFDC and Celeb-
DF dataset. The reason is that different levels of classifica-
tion constraints based on the phenomena of distribution
discrepancy is imposed to mine the fundamental distinc-
tion between spurious videos and genuine videos, so that
it can still work on tampered videos without obvious
artifacts. At the same time, the generation of adaptive

hardness-aware samples forces the network to pay more
attention to some key features that characterize the truth
and counterfeit under the constraint of Multi-metric Loss,
thereby improving the feature description ability of the
model and achieving better classification performance.
Therefore, ourmethod can achieve state-of-the-art perfor-
mance on FaceForensics++, DFDC and CelebDF datasets.

4.3. Ablation Study
To verify the effectiveness of Multi-metric Loss and Adap-
tive Hardness-aware Expander, we conduct ablation stud-
ies and results are shown in Table 3, Figure 5, Figure 6.

4.3.1. Effectiveness of Multi-metric Loss
To confirm the effectiveness of Multi-metric Loss, we
evaluate how different levels classification constraints
affect the detection accuracy. We train the model on
FF++ (c23), other hyperparameters are kept the same as
settings in Table 1.
The t-SNE plots of four different manipulation meth-

ods in FF++ datasets are reported in Figure 5. It can be
found that the separability of the sample is poor when
Triple Loss acts independently, as shown in the first row
of Figure 5. The reason is that the data selection in the
batch results in uneven data distribution, which makes
it difficult to divide the interface. When Cross-entropy
Loss is introduced, the data distribution of different ma-
nipulation in FF++ datasets is shown in the second row
of Figure 5. Among them, Cross-Entropy Loss encour-
ages the separation of real embedding vectors from fake
embedding vectors, and the Triple Loss helps constrain
the intra-class compactness and inter-class separation,
thereby improving the separability of samples. In the
third row of Figure 5, Weight-Center Loss is added and
it only acts on the real cluster. By mining the features
representing authenticity, the real sample clusters are
tightly clustered, thereby further extending distance be-
tween two types of sample clusters in the embedding
space. The ACC ablation studys about Multi-metric Loss
on FF++ are reported in Table 3, which further confirm
the effectiveness of Multi-metric Loss.
Note that Triplet Loss and Cross-Entropy Loss work

during the entire training stage, while Weight-Center



FF++/df FF++/ff FF++/fs FF++/nt

Triplet Loss

+ Cross-Entropy
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+ Weight-Center
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Real Samples Fake Samples

Figure 5: t-SNE plots of ablation study about Triplet Loss, Cross-Entropy Loss and Weight-Center Loss in FF++ dataset.

FF++/df FF++/ff FF++/fs FF++/nt

Tampering
figure

Grad-CAM
without
AHE

Grad-CAM
with AHE

Figure 6: Heatmaps generated by Grad-CAM about with or
without AHE in four manipulation methods.

Loss only works in the middle and end stages of training.
The main reason is that the center point of the real sam-
ples is unstable at the beginning of the training, which
will cause the network to optimize in the wrong direction.

4.3.2. Effectiveness of AHE
To confirm the effectiveness of Adaptive Hardness-aware
Expander, we analyze the class activation maps for four
different manipulation methods, as shown in Figure 6.

Class activation maps corresponding to the operation
of Expander indicate that synthetic samples with adap-

tive hardness force the network paying more attention to
some key features that characterize the authenticity and
the counterfeit under the constraint of Multi-metric Loss,
thereby improving the feature description ability of the
model. For example, in Figure 6, NeuralTextures (nt), a
tampering scheme only modifies the mouth area. Before
the Adaptive Hardness-aware Expander is used, class
activation map shows that the nose and mouth regions
together provide evidence that the video is tampered. Af-
ter the Adaptive Hardness-aware Expander is used, class
activation map shows that the network will pay more at-
tention to the mouth area tampered, which demonstrates
the interpretability of our proposed method.

5. Conclusion
In this work, we propose the DeepFake detection method
based on Multi-metric Loss, considering the distribution
discrepancy that the embedding vectors of genuine faces
are tightly distributed in the embedding space, while tam-
pered faces are comparatively scattered. Multi-metric
Loss improves the separability of genuine and tampered
samples through further widening distance between the
two types of sample clusters. Besides, adaptive hardness-
aware samples is generated to make the metric be always
in the proper difficulty, so as to improve the feature de-
scription ability of the model. Our method achieves good
improvements in extensive metrics.
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