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Abstract
Stego synthesis-based data hiding aims to directly produce a plausible natural image to convey secret message. However,
most of the existing works neglected the possible communication degradations and forensic actions, which commonly occur
in practice. In this paper, we devise a generative adversarial network (GAN)-based framework to synthesize facial stego
images. The framework consists of four components: generator, extractor, discriminator and forensic network. Specifically,
the generator is deployed to generate a realistic facial stego image from the secret message and key, while the extractor aims at
extracting the secret message from the stego image with the provided secret key. To combat forensics, we explicitly integrate
a forensic network into the proposed framework, which is responsible for guiding the update of generator. Three degradation
layers are further incorporated, enforcing the generator to characterize the communication degradations. Experimental results
demonstrate that the proposed framework could accurately extract the secret message and effectively resist the forensic
detection and certain degradations, while attaining realistic facial stego images.
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1. Introduction
Data hiding aims to embed the secret message into a
cover signal, without incurring awareness of an adver-
sary. It is widely used in many applications, e.g., covert
communication [1] and multimedia data protection [2, 3].
The primitive ad-hoc Least-Significant Bit (LSB) replaces
the bit in least significant bit-plane of each pixel with
the secret bit. While the modern data hiding methods at-
tempt to eliminate the traces of data hiding action and im-
prove the steganographic capacity. For example, content-
adaptive steganography [1] designed sophisticated dis-
tortion function according to prior knowledge and used
Syndrome-Trellis coding to embed the secret message.
Recently, neural network-based data hiding is becoming
one of the active research directions. Baluja [4] employed
convolutional neural networks to hide an entire secret
image into the cover image in an end-to-end fashion. The
work SSGAN [5] attempted to exploit GAN to synthesize
a cover image which is more suitable for the subsequent
steganographic data embedding. ASDL-GAN [6] inte-
grated the content-adaptive steganography and GAN, in
which the generator was able to produce the modifica-
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tion probability maps. For the methods HayersGAN [7],
HiDDeN [8] and SteganoGAN [9], they all designed an
encoder-decoder alike framework based on GAN. These
methods could automatically learn the suitable areas for
embedding the secret bitstream message.
For the last several years, the adversarial examples

to neural networks meet data hiding, and continuously
drawing extensive attention from the community. Some
studies, e.g., [10, 11], found that adding slight pertur-
bations to the input data would paralyze the prediction
capability of learning-based classifiers. As the opponent
of data hiding, steganalysis aims to expose the data hiding
on stego signal and usually involves machine-learning
classifiers. Therefore, it is possible for data hiding meth-
ods to bypass steganalysis by borrowing some strategies
from the adversarial examples-related works. Tang et al.
[12] presented the Adversarial Embedding (ADV-EMB)
method that adjusts the modification cost of image ele-
ments, according to the gradients that back-propagated
from the target steganalytic neural network. The con-
structed adversarial stego could effectively fool the ste-
ganalytic network, revealing the vulnerability of the deep
learning-based steganalyzer.
Note that, all aforementioned data hiding techniques

are based on the cover modification. The common char-
acteristic is that these methods can not be independent of
the modification on the given cover image. As such, it in-
evitably leaves artifacts exposing to steganalysis. On the
contrary, stego synthesis-based data hiding, e.g., [13, 14],
refers to synthesizing the stego image directly from the

mailto:dongli@nbu.edu.cn
mailto:1811082196@nbu.edu.cn
mailto:wangrangding@nbu.edu.cn
mailto:yuanmanli@szu.edu.cn
mailto:sunweiwei.sww@alibaba-inc.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


secret message. It could pose more challenges for ste-
ganalysis. Under this concept, traditional methods tried
to produce stego image based on some hand-crafted des-
ignations. Although the capacity was relatively higher,
they were limited to synthesizing patterned images, such
as textures and fingerprints. As an alternative solution,
some methods [15, 16] use GAN to synthesize stego im-
ages with rich semantics, e.g., face and food. However,
the accuracy of message extraction was unsatisfactory
under image degradations. Moreover, the synthesized
stego images can be easily identified by a well-trained
forensic detector. It is thus urgent to further improve
the robustness of message extraction and anti-forensic
capability of stego synthesis-based data hiding methods.

In this work, we propose a Facial Stego Image Synthe-
sis method for data hiding with GAN, which is termed as
FSIS-GAN. Unlike the cover modification-based data hid-
ing methods, FSIS-GAN is designed without providing
a cover image beforehand. Compared with the existing
stego synthesis-based methods, FSIS-GAN can not only
synthesize realistic facial stego images, but also achieve
superior performance in terms of robustness and anti-
forensic capability. Experimental results conducted on
the public facial dataset validate such merits of our pro-
posed method. The main contributions of this work can
be summarized as follows,

• We explicitly consider the image degradation dur-
ing the covert communication, and integrate mul-
tiple degradation layers into the framework. This
boost the robustness performance in terms of the
message extraction.

• We incorporate a forensic network during train-
ing FSIS-GAN. By exploiting the gradients from
such a forensic network, the stego image pro-
duced by the learned generator could effectively
fool the forensic network.

• We explicitly adopt the secret key into the data
hiding procedure of FISI-GAN, which could fur-
ther improve the reliability of the secret message
extraction.

The rest of this paper is organized as follows. Section
II briefly reviews the related work on stego synthesis-
based data hiding. Section III describes the proposed FSIS-
GAN, including network architecture and loss function.
Section IV presents the experimental results, and the final
conclusions are drawn in Section V.

2. Stego Synthesis-based Data
Hiding

The majority of data hiding method involves the modifi-
cation on the given cover images. However, such cover
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Figure 1: Overview of the proposed FSIS-GAN framework.

modification would leave embedding traces that can be
detected. To resist the detection by steganalyzer, stego
synthesis-based data hiding method could directly pro-
duce the stego images from the given secret message.
For early attempts, Wu et al. citewu2014steganography
proposed a texture image synthesis-based method, which
selectively distributes the source patches of the original
texture image onto the synthesized stego image. The
message hiding and extraction depend on the choice of
source patches. Motivated by the fingerprint biomet-
rics, Li et al. [14] proposed to use the hologram phase
constructed from the secret message to synthesize fin-
gerprint stego image. The hologram phase consists of
two phases: The first spiral phase encodes the secret
message to the two-dimensional points with different po-
larities, and the second continuous phase is to synthesize
fingerprint images. It is worth noting that conventional
stego image synthesis-based methods can only synthe-
size patterned stego image such as textures, lacking rich
semantics, which limits their practical applications.
Instead, Hu et al. [15] suggested using the genera-

tor of GAN to synthesize a facial stego image from the
secret message. Meanwhile, the secret message can be
extracted from the stego image by the corresponding ex-
tractor network. Similarly, Zhang et al. [16] exploited
GAN to generate stego image with different semantic
labels, which could improve the robustness of data ex-
traction but significantly scarifying the steganographic
capacity. The main advantage of the GAN-based works is
that they could synthesize stego images with rich seman-
tics. However, we shall note that stego images can be
easily identified by some well-trained forensic networks.
In addition, there is no trade-off between capacity and
extraction accuracy.

3. Facial Image Data Hiding via
Generative Stego Synthesis

In this section, we first give an overview of the proposed
FSIS-GAN framework and then introduce each compo-
nent of the framework, accompanied with thorough dis-
cussion on the loss function, network structure and train-



ing procedure.

3.1. Overview of FSIS-GAN
The proposed FSIS-GAN framework is illustrated in Fig-
ure 1. In general, it is an end-to-end framework consist-
ing of three parts, where each part is designed to achieve
a specific goal. First, the part of facial stego image syn-
thesis and message extraction contains a generator G, an
extractor E and the degradation layers N. The generator
G is deployed to convert the secret message along with
the secret key into a facial stego image. The degradation
layers N are used to simulate possible common image
degradations within the communication channel. The
extractor E is learned to recover the secret message from
the degraded stego image. Second, there is a discrimina-
tor D in the part of adversarial training, which aims at
distinguishing the genuine data sample from the ones pro-
duced by the generator G. Third, a well-trained existing
forensic network F𝜃 (parameterized by 𝜃) is introduced
in the part of anti-forensics, which could distinguish the
genuine from the synthesized facial stego image. Note
that this target forensic network is treated as a fixed
adversary, and its network parameters are always frozen.

3.2. Stego Image Synthesis and Message
Extraction

The part of facial stego image synthesis and message
extraction achieve two functionalities. First, by using
the generator G, one can convert the given secret mes-
sage into a facial stego image. Second, the extractor E is
responsible for extracting the secret message from the
input stego image. Furthermore, a secret key is intro-
duced to ensure the communication reliability and high
diversity of the generated facial stego image.
Generally, generator G and extractor E aim to learn

two mappings, i.e., mapping the given secret message
into a stego image, and vice versa. More formally, let
m ∈ {0, 1}𝑙𝑚 and k ∈ {0, 1}𝑙𝑘 be the binary secret message
and the secret key, respectively. Generator G is intended
to learn the first mapping, transforming the message m
along with the secret key k into a stego image:

S = G(m,k), (1)

where S denotes the synthesized facial stego image of
shape 𝐶 × 𝐻 ×𝑊. To recover the secret message, we next
introduce the extractor E. Considering that the facial
stego image S may be degraded during transmission, the
secondmapping should be from the degraded stego image
along with the secret key k to the secret message, which
can be expressed by

m′ = E(N(S),k), (2)

where N(⋅) models the image degradation process, and
N(S) is the degraded stego image. Here, m′ ∈ (0, 1)𝑙𝑚
denotes the extracted secret message. It shall be noted
that the extracted messagem′ shall be (approximately)
equals the original secret messagem, and thus one can
employ error correcting mechanism to fully correct the
erroneous bits.

To measure the distortion between the original secret
message m and the extracted message m′, we use the
cross-entropy loss to calculate the message extraction loss
LE, which is given by

LE(m,m′) = − 1
𝑙𝑚

𝑙𝑚
∑
𝑖=1

[𝑚𝑖log(𝑚′
𝑖 ) + (1 − 𝑚𝑖)log(1 − 𝑚′

𝑖 )],

(3)
where𝑚𝑖 and𝑚′

𝑖 is 𝑖-th element ofm andm′, respectively.
Note that, our proposed FSIS-GAN framework explic-

itly receiving a secret key as an input, which is designed
to satisfy the Kerckhoffs’ principle. It means that even
the extractor E network is completely exposed to an at-
tacker, the secret message m will be recovered only if
the receiver obtain both the secret key k and the facial
stego image S. It is worth emphasizing that, for most of
the existing GAN-based methods, e.g., [15, 16], there is
no involvement of a secret key. Further notice that as
the input of the extractor E, the dimensions of secret key
k is greatly smaller than that of the facial stego image
S. Thus, the extractor E tends to discard the secret key
because it carries much less information. To mitigate this
issue, we propose to use randomly generated incorrect
secret key k̃ ∈ {0, 1}𝑙𝑘 , where k̃ ≠ k, as input during train-
ing stage. Instead of directly using the correct secret key
and minimize the difference between the extracted and
original message, we maximize the differences between
the extracted and original message when applying incor-
rect secret key. Mathematically, the loss term inverse loss
L
Ẽ
, can be expressed by the negative cross-entropy loss:

L
Ẽ
(m, m̃′) = 1

𝑙𝑚

𝑙𝑚
∑
𝑖=1

[𝑚𝑖log(�̃�′
𝑖 ) + (1 − 𝑚𝑖)log(1 − �̃�′

𝑖 )], (4)

where �̃�′
𝑖 is the 𝑖-th element of the extracted message ̃m′

with the incorrect key k̃, i.e., ̃m′ = E(N(S), ̃k).
Enhancing robustness with degradation layers:

In a practical communication channel, there often ex-
ists degradations on the synthesized stego image S, when
transmitting the stego to a receiver. To this end, the data
hiding system requires certain robustness to ensure the
accuracy of message extraction. Therefore, in this work,
we take three representative degradations into account,
i.e., image noise pollution, blurring, and compression.
For noise pollution, we consider the one of the most
widely-used noise models: Gaussian noise. For blurring,
the Gaussian blurring is used. For signal compression,
JPEG image compression is employed, which is exten-
sively used for reducing the bandwidth of transmission



process. In experiments, we implement these three types
of degradation as neural network layersN to degrade the
stego image. Specifically, three network layers are used
for simulating each type of degradation. Gaussian noise
layer (GNL) is to add Gaussian noise to the facial stego
image S. Gaussian blurring layer (GBL) blurs S. For JPEG
compression, considering that the quantitation operation
is non-differentiable, we approximate the quantization
operationwith a differentiable polynomial function. Such
differentiating technique can also be referred to the work
HiDDeN [8].

3.3. Adversarial Training Part
As aforementioned, the hand-crafted stego synthesis-
based data hiding methods [13, 14] only could synthesize
patterned images such as texture and fingerprint, limiting
their practical applications. Synthesizing a natural image
with semantics is a challenging task. However, this prob-
lem can be alleviated with the guidance of adversarial
training. In this part, the purpose of the discriminator
D is to conduct adversarial training with the generator
G and improve the plausibility of the synthesized facial
stego images.

More specifically, let I be the genuine facial image sam-
ple of shape 𝐶 × 𝐻 × 𝑊 from a publicly available genuine
facial image dataset. The discriminator D estimates the
probability that a given image sample belonging to a syn-
thesized by the generator G. The generator G attempts to
fool the discriminatorD. Through such adversarial train-
ing, the generator G is encouraged to synthesize much
more realistic facial stego images. As a variant of GAN,
the network structure and loss function of BEGAN [17]
provides a good reference for improving training stability.
Thus, we in this work employ the adversarial training
loss used in BEGAN. Mathematically, the adversarial loss
Ladv for the generator G can be calculated as

Ladv(D(S), S) = 1
𝐶𝐻𝑊

[|D(S) − S|], (5)

where the shape of outputD(S) is same as the facial stego
image. The adversarial loss LD for the discriminator D
is

LD(I, S) = 1
𝐶𝐻𝑊

[|D(I) − I| − ℎ𝑡 ⋅ |D(S) − S|], (6)

where ℎ𝑡 controls the discrimination ability of D in the
𝑡-th training step to equilibrate the adversarial training.
It can be computed as

ℎ𝑡+1 = ℎ𝑡 +
𝜆

𝐶𝐻𝑊
[𝛾|D(I) − I| − |D(S) − S|]. (7)

Here the parameter 𝜆 is the learning rate of training,
and 𝛾 is a hyper-parameter to control the diversity of
synthesized facial images. The quality and diversity of
the facial stego images can be freely adjusted by tuning
the parameter 𝛾.

3.4. Anti-forensics Part
Remind that there is no explicit cover images involved in
stego synthesis-based data hiding methods. This merit
makes such type of data hiding method could effectively
resist to conventional steganalysis detection. However,
as pointed in [15], a well-trained forensic network could
readily distinguish a synthesized stego image from the
genuine one, even the synthesized stego image is of no
perceptual differences to an observer.

Although F𝜃 is an expert in such a detection task, some
studies [10, 11] have shown that deep neural network-
based classifiers are vulnerable to adversarial examples.
Inspired by this, we propose to apply strategies of ob-
taining adversarial examples to evade the stego detection
network as a way for realizing anti-forensics. In FSIS-
GAN framework, we consider a white-box scenario, i.e.,
assuming one has full knowledge of the target foren-
sic network. The target forensic network F is trained
with the genuine images from a publicly available facial
dataset and the synthesized images that produced by BE-
GAN [17]. Then, we integrate the well-trained F𝜃 into
the FSIS-GAN framework, in which F𝜃 receives the syn-
thesized facial stego image S and output the confidence.
The gradients that back-propagated by the F𝜃 are used
to update the parameters of the generator G. To measure
the loss of resisting forensic detection, we define the anti-
forensic loss LF𝜃 to computes the cross-entropy between
the output of F𝜃 and our target genuine image label:

LF𝜃(S) = − log (1 − F𝜃(S)), (8)

where F𝜃(S) ∈ (0, 1) is the confidence output by F𝜃.
Clearly, the decrement of LF𝜃 indicates the probability
increment of S being identified as a genuine image by F𝜃.

3.5. Network Structure and Training
Strategy

The network architecture of the generator G and the
extractor E are shown in Figure 2. For generator G, the
secret key vector k is first concatenated to the secret
message vector m and then fed to subsequent layers.
Then, G applies two fully-connected (FC) layers and three
convtranspose (ConvT) layers to produce the facial stego
image S. In particular, after each FC layer or ConvT
layer, we apply batch normalization (BN) [18] and ReLU
activation function to process intermediate vectors. In
experiments, we found that both m and k are composed
of binary number 0 or 1, and such form is not suitable
as input and the adversarial training loss would diverge.
To solve this issue, additional BN layers were added, and
normalization operation is carried out inside the network.
Experiential results show that this trick could greatly
alleviate the divergence problem.
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(b) Network structure of the extractor E

Figure 2: Network structure of the generatorG and the extrac-
tor E. “Concat”, “FC”, “ConvT”, “BN”, “Conv” denote the con-
catenation, fully-connected layer, convtranspose layer, batch
norm, and convolution layer, respectively.

For extractor E, we shall ensure the secret key vector
k and the facial stego image matrix S in a way such
that the extractor E would not neglect the information
provided by the secret key. To this end, the extractor
E first applies FC layer to the secret key to form the
intermediate matrix, i.e., 1×𝑊 ×𝐻. Then, the facial stego
image S and the intermediate matrix are concatenated,
and then feed the fused tensor to the four convolutional
(Conv) layers. Finally, the extractor E applies the FC layer
and Sigmoid activation function to produce the message
vector m′ (or ̃m′) with size of 1 × 𝑙𝑚.

For the discriminator D, we adopt the auto-encoder
alike structure from BEGAN [17]. For the target forensic
network F, we use Ye-Net [19], which is a widely-used
steganalytic method.

The training process of the proposed FSIS-GAN frame-
work is iteratively optimize the loss function of each
network, except the well-trained forensic network F𝜃.
We apply the extraction loss LE and the adversarial loss
LD as the loss function for the extractor E and the dis-
criminator D, respectively. In particular, The total loss
LG for the generator G is a proper fusion of the four
losses aforementioned as follows

LG = Ladv + 𝛼(LE + L
Ẽ
) + 𝛽LF𝜃 , (9)

where Ladv is the adversarial loss for G, L
Ẽ
is the in-

verse loss, and LF𝜃 is the anti-forensic loss. The hyper-
parameters of 𝛼 and 𝛽 are used to control the relative
importance among the four losses.

4. Experiment results
In this section, we first introduce the experimental setup.
Then, to verify the robustness of our proposed FSIS-GAN,
it is evaluated under image degradation and without
degradation, respectively. Finally, the anti-forensic capa-
bility of FSIS-GAN is validated.

4.1. Experimental Setup
Our experiments are conducted on the CelebA dataset
[20], where the region with face is identified and ex-
tracted. All images are reshaped into 3 × 64 × 64. The
following three metrics are used for evaluation:

• Fréchet Inception Distance (FID) [21], which
is a widely-used perceptual image quality assess-
ment metric for synthesized images. FID is a de
facto metric for assessing the image quality cre-
ated by generator of GANs’. Lower FID score
indicates better consistency with human’s per-
ception on natural images.

• Accuracy of message extraction (ACC) that is
computed byACC = 𝐿Ext

𝐿 , where 𝐿Ext is the length
of correctly extracted message and 𝐿 is the length
of secret message m.

• Probability of missed detection (PMD). This
metric can be calculated by PMD = 𝐹𝑁

𝐹𝑁+𝑇𝑃 , where
𝐹𝑁 (False Negative) is the ratio for case “synthe-
sized facial image is misclassified as a genuine
one”, and 𝑇𝑃 (True Positive) is the ratio for case
“synthesized facial image is correctly detected”.
Larger PMD indicates higher resisting ability to
the forensic network.

The proposed FSIS-GAN framework is implemented
with PyTorch and train on four NVIDIA GTX1080Ti
GPUs with 11GB memory. The number of training
epochs is set to 400 with a mini batch-size of 64. We
use Adam [22] as the optimizer with a learning rate of
2 × 10−4. For the hyper-parameters 𝛼 and 𝛽 in (9), with
a number of trials and errors, we empirically set them
as 0.1 in experiments. The parameter 𝛾 in (7) is set to
0.7, which is expected to produce reasonably diverse fa-
cial stego images. The competing method is the most
related work [15]. We implement this work by ourselves
because there is no publicly available code. With certain
tweaking and fine-tuning, the tested results were com-
parable to the originally reported data from [15]. For a
fair comparison, the length of the secret message 𝑙𝑚 and
the secret key 𝑙𝑘 are all set to 100, so as to the payload is
identical to that of work [15].



Figure 3: Comparison of exemplar synthesized stego images.
Top: Hu et al. [15]; Bottom: Proposed FSIS-GAN-WD.

4.2. Performance Without Degradations
Notice that the competing method [15] does not consider
the image degradations. To verify the effectiveness of
the proposed method under same settings and make a
fair comparison. We in this subsection to evaluate the
performance without degradation layers N. The facial
stego image S will be transmitted to extractor E without
any degradation. To avoid confusion, this variation of
our proposed method is termed as FSIS-GAN-WD (WD is
abbreviated for Without Degradations). We first compare
the visual quality of the facial stego images with the
competingmethod [15]. As can be seen from Figure 3, the
proposed FSIS-GAN-WD could synthesize more realistic
facial stego images in comparison with Hu et al. [15].
With more careful inspection, one can notice that the
stego images produced by FSIS-GAN-WD are more vivid
and with more correct semantic structures. It is difficult
for a common human to aware the inauthenticity of the
facial stego images synthesized by FSIS-GAN-WD. In
contrast, the stego images generated by Hu et al. [15] are
typically blurry and severely distorted, which apparently
draw attentions from a forensic analyzer. For the FID
evaluation experiment, we use 10, 000 pairs of genuine
images and synthesized facial stego images to compute
the FID score. The FID score of FSIS-GAN-WD is 23.20,
which is much smaller than that of Hu et al. [15]’s 32.07.

Then, we evaluate the extraction accuracy for the case
of without degradation. The results are tabulated in Table
1. To demonstrate the impact of the inverse loss L

Ẽ
on

the extraction accuracy, the ablation experiments are also
conducted, by excluding the inverse loss during training.
This L

Ẽ
-ablated version is denoted as FSIS-GAN-WD (ex

L
Ẽ
). From the Table 1, one can draw the following con-

clusions. First, the extraction accuracy of FSIS-GAN-WD
with the correct secret key k is 98.76%, which dramati-
cally outperforms 85.23% of the competing method [15].
Second, by comparing FSIS-GAN-WD and FSIS-GAN-
WD (ex L

Ẽ
), one can see that, the extraction accuracy of

FSIS-GAN-WD with a correct secret key k slightly infe-
rior to that of FSIS-GAN-WD (ex L

Ẽ
). This suggests that

the introduced inverse loss would marginally harm the
extraction accuracy. However, when comparing the case
of incorrect key k̃, the participation of the inverse loss L

Ẽ

Table 1
Comparison of message extraction accuracy (%) for the case
of no communication degradations. Here, k and k̃ denote
the correct and incorrect secret key, respectively. FSIS-GAN-
WD is a variant of the proposed method by excluding the
degradation layers, and FSIS-GAN-WD (exLẼ) represents the
FSIS-GAN-WD trained without inverse loss LẼ.

Scheme
Hu et al.

[15]

FSIS-GAN-WD FSIS-GAN-WD (ex LẼ)

with k with k̃ with k with k̃
Accuracy 85.23 98.76 71.50 99.41 97.01

would significantly deduce the extraction accuracy from
97.01% to 71.50%, while FSIS-GAN-WD almost retains
the same extraction accuracy. This phenomena means
that the involvement of the secret key will not work if
we exclude the inverse loss. In contrast, FSIS-GAN-WD
(ex L

Ẽ
) with the incorrect key k̃ still attains a quite high

extraction accuracy of (> 97%). In a short summary, with-
out the inverse loss L

Ẽ
, the variant FSIS-GAN-WD (ex

L
Ẽ
) will violate the Kerckhsoffs’ principle.

4.3. Performance With Degradations
In this subsection, we test the robustness performance
of the proposed framework under certain image degra-
dations. The image degradation type and level are given
as prior knowledge. This scenario is common in practice
because one can obtain some prior knowledge on the
degradation through probing the communication chan-
nel. Thus, one can fix the degradation layers N and its
associated parameters during training stage. Specifically,
in our experiments, the standard deviation 𝜎1 of the Gaus-
sian noise layer (GNL) is set to 0.2. The kernel width 𝑑
and the standard deviation 𝜎2 of the Gaussian blurring
layer (GBL) are set to 3 and 1, respectively. The differ-
entiable JPEG compression layer (JCL) is implemented
as suggested by the work HiDDEN [8] For referring sim-
plicity, this variation is termed as FSIS-GAN-FD (FD is
abbreviated for Fixed Degradation) in the sequel.

Firstly, the stego images synthesized by FSIS-GAN-FD
are provided in Figure 4. One can observe that some
speckle noises emerge in the generated stego images,
which can be clearly seen from the highlighted regions
with red line in Figure 4 (b). Quantitatively, the FID score
of FSIS-GAN-FD is 41.40, which is inferior to that of
FSIS-GAN-WD (23.20) and Hu et al. [15] (32.07). Never-
theless, the stego images produced by FSIS-GAN-FD are
intuitively more realistic than that of Hu et al. [15].

Secondly, in Table 2, we report the extraction accuracy
performance under fixed degradations. Not surprisingly,
one can notice that the extraction accuracy of Hu et al.
[15] and FSIS-GAN-WD greatly degrade, which can be
attributed to the overlooking on degradation-resistant
message extraction issue. In contrast, FSIS-GAN-FD ex-



(a) (b)
Figure 4: The comparison of synthesized facial stego images,
where four images of (a) are produced by FSIS-GAN-WD;
images of (b) are stego images produced by FSIS-GAN-FD.
With the introduction of degradation layers, minor speckle
noises emerge (highlighted with red rectangular).

Table 2
Comparison of message extraction accuracy (%) under various
degradation conditions. The bold and marked value with
an asterisk (*) denote the highest extraction accuracy with
correct secret key k and the lowest extraction accuracy with
the incorrect secret key ̃k, respectively.

Scheme
Hu et al.

[15]

FSIS-GAN-WD FSIS-GAN-FD

with k with k̃ with k with k̃

W/o degradation 85.23 98.76 71.50∗ 98.22 72.08
Fixed GNL 52.72 59.78 56.23∗ 95.58 72.74
Fixed GBL 69.68 57.52 54.68∗ 98.58 73.78
Fixed JCL 65.33 61.38 58.00∗ 98.46 72.67

hibits quite promising results. Under three types of degra-
dation layers, the extraction accuracy typically exceeds
94% (though lower than that of FSIS-GAN-WD, which is
specifically designed for the non-degradation scenario).
The results verify that for the case of known degrada-
tions, the proposed framework could learn to effectively
resistant the fixed degradations, by employing the fixed
degradation layers during the training.
Finally, to illustrate how the robustness of message

extraction changes under different degradation levels,
we test different degradation types with a variety of
degradation levels. Due to space limit, we only report
the JPEG compression degradation in Figure 5. As can
be seen, with the decrement of quality factor (𝑄𝐹), the
extraction accuracy generally decreases. Although the
JCL that adopted from HiDDEN [8] could handle non-
differentiable JPEG compression, it cannot perfectly re-
produce the JPEG compression artifacts. Nevertheless,
FSIS-GAN-FD still achieve superior robustness, when
comparing with other two schemes.

4.4. Performance of Anti-forensics
Recall that, owing to that no cover images are involve-
ment for data hiding, our method has a relatively good
undetectability when exposed to a steganalyzer. How-
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Figure 5: Comparison of the message extraction accuracy (%)
under various levels of JPEG compression degradation.

ever, as pointed in [15], a well-trained forensic network
can effectively identify a synthesized image. To solve this
issue, we explicitly considered the anti-forensics scenario
and introduce the anti-forensic loss LF𝜃 .

To demonstrate the influence of anti-forensic loss LF𝜃 ,
we conduct the ablation experiment by excluding the loss
termLF𝜃 , and thus this variant is termed as FSIS-GAN (ex
LF𝜃). For a concrete example, we employ thewell-trained
forensic network Ye-Net [19] F𝜃 to detect 3000 facial
stego images produced by different methods, and record
the probability of missed detection (PMD). The PMD’s
of Hu et al. [15], FSIS-GAN (ex LF𝜃), and FSIS-GAN are
3.23%, 8.84%, and 89.91, respectively. As clearly shown,
for FSIS-GAN (ex LF𝜃), despite the facial stego images
look natural for human, they are easily exposed to the
forensic network, where the PMD value is lower than 10%.
In contrast, by introducing the anti-forensic loss term, the
value of PMD of FSIS-GAN could reach 89.91%. This
means the proposed method FSIS-GAN could effectively
bypass the existing forensic network, retaining an nice
anti-forensic capability.

5. Conclusion
In this work, we proposed a stego-synthesis based data
hiding method using generative neural network, by
explicitly considering the image degradation and anti-
forensic need. Specifically, the generator is to synthe-
size a facial stego image from the given secret message
and secret key. The extractor aims to recover the secret
message with the secret key. Through the adversarial
training with the discriminator, the generator could pro-
duce realistic facial stego images. The degradation layers
are introduced during the training, which significantly
enhance the robustness of message extraction. A forensic
network is incorporated during training, in response to
the possible adversarial forensic analysis in communi-
cation channel. Experimental results verified that, our
approach could generate more natural facial stego im-
ages, while retaining higher message extraction accuracy
and nice anti-forensic ability.
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