
Concurrent Argumentation with Time: an Overview
Stefano Bistarelli1, Maria Chiara Meo2 and Carlo Taticchi1

1University of Perugia, Perugia, Italy
2University “G. d’Annunzio” of Chieti-Pescara, Chieti-Pescara, Italy

Abstract
The Timed Concurrent Language for Argumentation (tcla) is a framework to model concurrent interac-
tions between communicating agents that reason and take decisions through argumentation processes,
also taking into account the temporal duration of the performed actions. Time is, indeed, a crucial fac-
tor when dealing with dynamic environments in real-world applications, where agents need to act in a
coordinated fashion to reach their own goals. In this paper, we discuss the syntax and the operational
semantics of tcla, providing insights on how its constructs can be used to realise complex interactions
between agents.

Keywords
argumentation, time, concurrency

1. Introduction

Argumentation Theory pursues the objective of studying how conclusions can be reached,
starting from a set of assumptions, through a process of logical reasoning. This process is very
similar to the human way of thinking and involves features which can be traced to a form
of dialogue between two (or more) people. Abstract Argumentation Frameworks [1], AFs in
short, are used to study the acceptability of arguments according to given selection criteria.
Frameworks like the Timed Abstract Argumentation Framework (TAF) [2] have been proposed
to meet the need for including the notion of time into argumentation processes. Time is a
particularly important aspect of cooperative environments: in many “real-life” applications the
activities have a temporal duration (that can even be interrupted) and the coordination of such
activities has to take into consideration this time dependence. A mechanism for handling time is
therefore required to better model the behaviour of intelligent agents involved in argumentation
processes.

In this paper, we introduce the Timed Concurrent language for Argumentation (tcla) [3],
a timed extension of cla [4, 5, 6], which models dynamic interactions between agents and
uses notions from Argumentation Theory to reason about shared knowledge. We consider a
paradigm where parallel operations are expressed in term of maximal parallelism.

5𝑡ℎ Workshop on Advances In Argumentation In Artificial Intelligence (AI3 2021)
" stefano.bistarelli@unipg.it (S. Bistarelli); mariachiara.meo@unich.it (M. C. Meo); carlo.taticchi@unipg.it
(C. Taticchi)

© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:stefano.bistarelli@unipg.it
mailto:mariachiara.meo@unich.it
mailto:carlo.taticchi@unipg.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

2. Argumentation Theory

Argumentation Theory aims to understand and model the human natural fashion of reasoning,
allowing one to deal with uncertainty in non-monotonic (defeasible) reasoning. In his seminal
paper [1], Dung defines the building blocks of abstract argumentation.

Definition 1 (AFs). Let 𝑈 be the set of all available arguments1, that we call “universe”. An Ab-
stract Argumentation Framework is a pair ⟨𝐴𝑟𝑔,𝑅⟩where𝐴𝑟𝑔 ⊆ 𝑈 is a set of adopted arguments
and 𝑅 is a binary relation on 𝐴𝑟𝑔.

For two arguments 𝑎, 𝑏 ∈ 𝐴𝑟𝑔, the notation (𝑎, 𝑏) ∈ 𝑅 represents an attack directed from
𝑎 against 𝑏. Acceptability of arguments is then computed through methodologies like the
reinstatement labelling presented in [7], starting from attack relations in the framework.

Definition 2 (Reinstatement labelling). Let F = ⟨𝐴𝑟𝑔,𝑅⟩ be an AF and consider the set
of labels L = {in, out, undec}. A labelling of F is a total function 𝐿 : 𝐴𝑟𝑔 → L. We define
𝑖𝑛(𝐿) = {𝑎 ∈ 𝐴𝑟𝑔 | 𝐿(𝑎) = in}, 𝑜𝑢𝑡(𝐿) = {𝑎 ∈ 𝐴𝑟𝑔 | 𝐿(𝑎) = out} and 𝑢𝑛𝑑𝑒𝑐(𝐿) = {𝑎 ∈
𝐴𝑟𝑔 | 𝐿(𝑎) = undec}. We say that 𝐿 is a reinstatement labelling if and only if it satisfies the
following:

• ∀𝑎 ∈ 𝐴𝑟𝑔 : 𝑎 ∈ 𝑖𝑛(𝐿) ⇐⇒ ∀𝑏 ∈ 𝐴𝑟𝑔 | (𝑏, 𝑎) ∈ 𝑅 : 𝑏 ∈ 𝑜𝑢𝑡(𝐿)

• ∀𝑎 ∈ 𝐴𝑟𝑔 : 𝑎 ∈ 𝑜𝑢𝑡(𝐿) ⇐⇒ ∃𝑏 ∈ 𝐴𝑟𝑔 | (𝑏, 𝑎) ∈ 𝑅 ∧ 𝑏 ∈ 𝑖𝑛(𝐿)

A labelling-based semantics [8] associates with an AF a subset of all the possible labellings.
In Figure 1 we show an example of reinstatement labelling on an AF in which arguments 𝑎 and
𝑐 highlighted in green are in, red ones (𝑏 and 𝑑) are out, and the yellow argument 𝑒 (that attacks
itself) is undec.

Figure 1: Example of reinstatement labelling.

Given a labelling 𝐿, it is possible to identify a correspondence with the extension-based
semantics [8]. In particular, the set of in arguments coincides with a complete extension, while
other semantics can be obtained through restrictions (as shown in Table 1 of [7]). In the
following, we use 𝐿 ∈ 𝑆𝜎(𝐹) to denote a labelling 𝐿 corresponding to an extension of the
semantics 𝜎. Besides computing a labelling for a certain semantics 𝜎, one of the most common
tasks performed on AFs is to verify whether an argument 𝑎 has a certain label 𝑙 in some labelling
(credulous test) or in all labellings (sceptical test).

1The set 𝑈 is not present in the original definition by Dung and we introduce it for our convenience.

3. tcla Syntax and Semantics

The syntax of tcla is presented in Table 1, where 𝑃 , 𝐶 , 𝐴 and 𝐸 denote a generic process, a
sequence of procedure declarations (or clauses)2, a generic agent and a generic guarded agent,
respectively. In Table 2, then, we give the definitions for the transition rules.

Table 1
tcla syntax.

𝑃 ::= 𝐶.𝐴, 𝐶 ::= 𝐶.𝐶

𝐴 ::= 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 | 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 | 𝑎𝑑𝑑(𝐴𝑟𝑔,𝑅) → 𝐴 | 𝑟𝑚𝑣(𝐴𝑟𝑔,𝑅) → 𝐴 | 𝐸 | 𝐴‖𝐴
𝐸 ::= 𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔,𝑅) → 𝐴 | 𝑐-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴 | 𝑠-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴 | 𝐸 + 𝐸 | 𝐸 +𝑃 𝐸 | 𝐸‖𝐺𝐸

Communication between tcla agents is implemented via shared memory, similarly to cla [5]
and CC [9]. In the following, we denote by ℰ the class of guarded agents and by ℰ0 the class
of guarded agents such that all outermost guards have 𝑡 = 0. Suppose we have an agent 𝐴
whose knowledge base is represented by a framework 𝐹 = ⟨𝐴𝑟𝑔,𝑅⟩. An 𝑎𝑑𝑑(𝐴𝑟𝑔′, 𝑅′) action
performed by the agent results in the addition of a set of arguments 𝐴𝑟𝑔′ ⊆ 𝑈 (where 𝑈 is
the universe) and a set of relations 𝑅′ to 𝐹 . When performing an addition, (possibly) new
arguments are taken from 𝑈 ∖ 𝐴𝑟𝑔. Intuitively, 𝑟𝑚𝑣(𝐴𝑟𝑔,𝑅) allows to specify arguments
and/or attacks to be removed from the knowledge base. The removal of an argument from an
AF also involves removing all attack relations outgoing from and incoming to that argument,
thus making 𝐹 preserve the structure of an AF.

The 𝑐-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴, 𝑠-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴 and 𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔,𝑅) → 𝐴 constructs are ex-
plicit timing primitives that allow for the specification of timeouts. The operator 𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔′, 𝑅′)
(rules Ch (1)-(3) in Table 2) realises a timed construct and is used to verify whether, in a given
time interval, the specified arguments and attacks are contained in the knowledge base, without
introducing any further change. If 𝑡 > 0 and the check is positive, the operation succeeds and
the agent 𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴 can perform the subsequent action (rule Ch (1)). If 𝑡 > 0 but
the check is not satisfied, then the control is repeated at the next time instant and the value of
the counter 𝑡 is decreased (rule Ch (2)). Axiom Ch (3) shows that, if the timeout is exceeded, i.e.,
the counter 𝑡 has reached the value of 0, then the process 𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴 fails. The rules
for credulous tests CT (1)-(3) and sceptical tests ST (1)-(3) in Table 2 require the specification
of an argument 𝑎 ∈ 𝐴𝑟𝑔, a label 𝑙 ∈ {in, out, undec} and a semantics 𝜎 [1]. 𝑐-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎)
succeeds if there exists at least one extension of 𝑆𝜎(𝐹) whose labelling 𝐿 is such that 𝐿(𝑎) = 𝑙,
while 𝑠-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) succeeds if 𝑎 is labelled 𝑙 in all possible labellings 𝐿 ∈ 𝑆𝜎(𝐹).

The operator +𝑃 (If (1)-(2) in Table 2) is left-associative and realises an if-then-else construct:
if we have 𝐸1 +𝑃 𝐸2 (with 𝐸1, 𝐸2 ∈ ℰ) and the guards of 𝐸1 succeed, than 𝐸1 is chosen over
𝐸2.In order for 𝐸2 to be selected, it has to be the only one such that its guards succeed and will
be selected only after 𝐸1 fails. If the guards of 𝐸1 do not fail, the execution can either move to
any consequent agent 𝐴1 which does not belong to ℰ , or proceed with 𝐸′

1 +𝑃 𝐸2 ∈ ℰ .

2Note that infinite sequences of procedure declarations are also allowed.

Table 2
tcla operational semantics.

⟨𝑎𝑑𝑑(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩ −→ ⟨𝐴, ⟨𝐴𝑟𝑔 ∪𝐴𝑟𝑔′, 𝑅 ∪𝑅′′⟩⟩
with 𝑅′′ = {(𝑎, 𝑏) ∈ 𝑅′ | 𝑎, 𝑏 ∈ 𝐴𝑟𝑔 ∪𝐴𝑟𝑔′}

Ad

⟨𝑟𝑚𝑣(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩ −→ ⟨𝐴, ⟨𝐴𝑟𝑔 ∖𝐴𝑟𝑔′, 𝑅 ∖ {𝑅′ ∪𝑅′′}⟩⟩
with 𝑅′′ = {(𝑎, 𝑏) ∈ 𝑅 | 𝑎 ∈ 𝐴𝑟𝑔′ ∨ 𝑏 ∈ 𝐴𝑟𝑔′}

Re

𝐴𝑟𝑔′ ⊆ 𝐴𝑟𝑔 ∧𝑅′ ⊆ 𝑅 𝑡 > 0

⟨𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩ −→ ⟨𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩
Ch (1)

𝐴𝑟𝑔′ ̸⊆ 𝐴𝑟𝑔 ∨𝑅′ ̸⊆ 𝑅 𝑡 > 0

⟨𝑐ℎ𝑒𝑐𝑘𝑡(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩ −→ ⟨𝑐ℎ𝑒𝑐𝑘𝑡−1(𝐴𝑟𝑔′, 𝑅′) → 𝐴, ⟨𝐴𝑟𝑔,𝑅⟩⟩
Ch (2)

⟨𝑐ℎ𝑒𝑐𝑘0(𝐴𝑟𝑔′, 𝑅′) → 𝐴,𝐹 ⟩ −→ ⟨𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝐹 ⟩ Ch (3)

∃𝐿 ∈ 𝑆𝜎(𝐹) | 𝑙 = 𝐿(𝑎) 𝑡 > 0

⟨𝑐-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩ −→ ⟨𝐴,𝐹 ⟩
CT (1)

∀𝐿 ∈ 𝑆𝜎(𝐹).𝑙 ̸= 𝐿(𝑎) 𝑡 > 0

⟨𝑐-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩ −→ ⟨𝑐-𝑡𝑒𝑠𝑡𝑡−1(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩
CT (2)

⟨𝑐-𝑡𝑒𝑠𝑡0(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩ −→ ⟨𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝐹 ⟩ CT (3)

∀𝐿 ∈ 𝑆𝜎(𝐹).𝑙 = 𝐿(𝑎) 𝑡 > 0

⟨𝑠-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩ −→ ⟨𝐴,𝐹 ⟩
ST (1)

∃𝐿 ∈ 𝑆𝜎(𝐹) | 𝑙 ̸= 𝐿(𝑎) 𝑡 > 0

⟨𝑠-𝑡𝑒𝑠𝑡𝑡(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩ −→ ⟨𝑠-𝑡𝑒𝑠𝑡𝑡−1(𝑎, 𝑙, 𝜎) → 𝐴,𝐹 ⟩
ST (2)

⟨𝑠-𝑡𝑒𝑠𝑡0(𝑎, 𝑙, 𝜎) −→ 𝐴,𝐹 ⟩ −→ ⟨𝑓𝑎𝑖𝑙𝑢𝑟𝑒, 𝐹 ⟩ ST (3)

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩, 𝐸1 ̸∈ ℰ0, 𝐴1 ̸∈ ℰ
⟨𝐸1 +𝑃 𝐸2, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩

If (1)

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐸′
1, 𝐹 ⟩, 𝐸1 ̸∈ ℰ0, 𝐸′

1 ∈ ℰ
⟨𝐸1 +𝑃 𝐸2, 𝐹 ⟩ −→ ⟨𝐸′

1 +𝑃 𝐸2, 𝐹 ⟩
𝐸1 ∈ ℰ0, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩
⟨𝐸1 +𝑃 𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩

If (2)

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩, 𝐸1, 𝐸2 ̸∈ ℰ0, 𝐴1 ̸∈ ℰ
⟨𝐸1‖𝐺𝐸2, 𝐹 ⟩ −→ ⟨𝐴1‖𝐴2, 𝐹 ⟩

GP (1)

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐸′
1, 𝐹 ⟩, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐸′

2, 𝐹 ⟩, 𝐸1, 𝐸2 ̸∈ ℰ0, 𝐸′
1, 𝐸

′
2 ∈ ℰ

⟨𝐸1‖𝐺𝐸2, 𝐹 ⟩ −→ ⟨𝐸′
1‖𝐺𝐸′

2, 𝐹 ⟩
GP (2)

𝐸1 ∈ ℰ0, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩
⟨𝐸1‖𝐺𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩

GP (3)

⟨𝐴1, 𝐹 ⟩ −→ ⟨𝐴′
1, 𝐹

′⟩, ⟨𝐴2, 𝐹 ⟩ −→ ⟨𝐴′
2, 𝐹

′′⟩
⟨𝐴1‖𝐴2, 𝐹 ⟩ −→ ⟨𝐴′

1‖𝐴′
2, *(𝐹, 𝐹 ′, 𝐹 ′′)⟩

Pa

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩, 𝐸1 ̸∈ ℰ0, 𝐴1 ̸∈ ℰ
⟨𝐸1 + 𝐸2, 𝐹 ⟩ −→ ⟨𝐴1, 𝐹 ⟩

𝐸1 ∈ ℰ0, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩
⟨𝐸1 + 𝐸2, 𝐹 ⟩ −→ ⟨𝐴2, 𝐹 ⟩

ND (1)

⟨𝐸1, 𝐹 ⟩ −→ ⟨𝐸′
1, 𝐹 ⟩, ⟨𝐸2, 𝐹 ⟩ −→ ⟨𝐸′

2, 𝐹 ⟩, 𝐸1, 𝐸2 ̸∈ ℰ0, 𝐸′
1, 𝐸

′
2 ∈ ℰ

⟨𝐸1 + 𝐸2, 𝐹 ⟩ −→ ⟨𝐸′
1 + 𝐸′

2, 𝐹 ⟩
ND (2)

The guarded parallelism GP (1)-(3) in Table 2 is designed to allow all the operations for which
the guards in the inner expression are satisfied. In more detail, the guards of 𝐸1‖𝐺𝐸2 succeed
when either the guards of 𝐸1, 𝐸2 or both succeed and all the operations that can be executed
are executed. This behaviour is different both from classical parallelism (for which all the agents
have to succeed in order for the parallel agent to succeed) and from nondeterminism (that only
selects one branch). The rule parallelism Pa in Table 2 models the parallel composition operator
in terms of maximal parallelism: we use *(𝐹, 𝐹 ′, 𝐹 ′′) := (𝐹 ′∩𝐹 ′′)∪ ((𝐹 ′∪𝐹 ′′)∖𝐹) to handle
parallel additions and removals of arguments3. Finally, any agent composed through + (rules
ND (1)-(2)) is chosen if its guard succeeds.

4. Conclusion and Future Work

In this paper, we introduced tcla, a concurrent argumentation language for modelling interacting
agents in which also time is taken into account. We presented both the syntax and the operational
semantics. Maximal parallelism has been used to realise simultaneous execution of actions
carried forward by different agents. As a future work, we want to adopt an interleaving approach
for handling this kind of processes: we plan to have a different transition system in which time
elapsing and computational steps are realised by two distinct types of actions.

References

[1] P. M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games, Artif. Intell. 77 (1995) 321–358.

[2] M. L. Cobo, D. C. Martínez, G. R. Simari, On admissibility in timed abstract argumentation
frameworks, in: ECAI, volume 215 of Frontiers in Artificial Intelligence and Applications,
IOS Press, 2010, pp. 1007–1008.

[3] S. Bistarelli, M. C. Meo, C. Taticchi, Timed concurrent language for argumentation, in:
CILC, volume 3002 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 1–15.

[4] S. Bistarelli, C. Taticchi, Towards an implementation of a concurrent language for argu-
mentation, in: AI*IA, volume 12414 of LNCS, Springer, 2020, pp. 154–171.

[5] S. Bistarelli, C. Taticchi, A concurrent language for argumentation, in: AI3@AI*IA, volume
2777 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 75–89.

[6] S. Bistarelli, C. Taticchi, Introducing a tool for concurrent argumentation, in: JELIA, volume
12678 of Lecture Notes in Computer Science, Springer, 2021, pp. 18–24.

[7] M. Caminada, On the issue of reinstatement in argumentation, in: JELIA, volume 4160 of
Lecture Notes in Computer Science, Springer, 2006, pp. 111–123.

[8] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowl.
Eng. Rev. 26 (2011) 365–410.

[9] V. A. Saraswat, M. C. Rinard, Concurrent constraint programming, in: POPL, ACM Press,
1990, pp. 232–245.

3Union, intersection and difference between AFs are intended as the union, intersection and difference of their
sets of arguments and attacks, respectively.

	1 Introduction
	2 Argumentation Theory
	3 tcla Syntax and Semantics
	4 Conclusion and Future Work

