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Abstract
This paper is the first to explore an automatic way to detect
bias in deep convolutional neural networks by simply looking
at their weights, without the model inference for a specific
input. Furthermore, it is also a step towards understanding
neural networks and how they work. We analyze how bias is
encoded in the weights of deep networks through a toy exam-
ple using the Colored MNIST database and we also provide a
realistic case study in gender detection from face images us-
ing state-of-the-art methods and experimental resources. To
do so, we generated two databases with 36K and 48K bi-
ased models each. In the MNIST models we were able to
detect whether they presented strong or low bias with more
than 99% accuracy, and we were also able to classify between
four levels of bias with more than 70% accuracy. For the face
models, we achieved 83% accuracy in distinguishing between
models biased towards Asian, Black, or Caucasian ethnicity.

Introduction
Artificial intelligence is generating more and more expecta-
tions. But is it really living up to those expectations? Its use
is being reviewed in all areas, from natural language pro-
cessing for virtual assistants, to computer vision for citizen
monitoring systems or medical follow-up (Stone et al. 2016).
Deep Neural Networks play a key role in the deployment of
machine learning models in these applications. But although
these algorithms achieve impressive prediction accuracies,
their structure makes them very opaque. Data-driven learn-
ing processes make it difficult to control the factors and un-
derstand the information from the input data that actually
drive their decisions. In this environment new efforts are be-
ing devoted to making systems more understandable and in-
terpretable by humans (Mahendran and Vedaldi 2015; Mon-
tavon, Samek, and Müller 2018; Bau et al. 2020). More con-
cretely, new techniques are being developed to understand
and visualize what machine learning models learn (Zeiler
and Fergus 2014; Koh and Liang 2017), as well as models
that generate text-based explanations of the decisions they
make (Barredo Arrieta et al. 2020; Ortega et al. 2021).

On the other hand, thanks to adequate public outreach and
debate, more and more investigations are emerging that un-
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Figure 1: Traditional bias detection test based on inference
analysis and the demographic parity measure p% (Zhang,
Lemoine, and Mitchell 2018). The Model i is a gender clas-
sifier and the sensitive attribute z is ethnicity. In this exam-
ple, Test A suggests that the Model i is biased with respect to
ethnicity. Test B revealed that the difference in p% is caused
not by ethnicity but by glasses.

cover some erratic and biased behaviors of these artificial in-
telligence systems. These errors and biases are calling into
question the safety of AI systems, both because of privacy
issues (Fierrez, Morales, and Ortega-Garcia 2021) and unin-
tended side effects (Serna et al. 2020).

One way to build trust into AI systems is to relate their
inner workings to human-interpretable concepts (Bau et al.
2020). But research is showing that not all representations
in the convolutional layers of a DNN correspond to natural
parts, raising the possibility of a different decomposition of
the world than humans might expect, requiring further study



into the exact nature of the learned representations (Yosinski
et al. 2015; Geirhos et al. 2019).

In this regard, bias detection is a major challenge to en-
sure trust in machine learning and its applications (Ntoutsi
et al. 2020; Terhorst et al. 2022). Recent approaches for
bias detection focus on the analysis of model outcomes or
the visualization of learned features at the data input level
(Alvi, Zisserman, and Nellåker 2018; Zhang, Wang, and Zhu
2018). That is, they are data-bound and need inference to
gain insight (see Fig. 1). We propose a novel approach fo-
cused solely on what the Neural Networks learn (i.e., the
weights of the network), freeing our method from the pit-
falls of possible conflated biases in the considered datasets
used for inference. The main contributions of this work can
be summarized as:

• We propose IFBiD, a novel bias detector trained with
weights of biased and unbiased learned models.

• We analyze how bias is encoded in the weights1 of deep
networks through two different Case Studies in image
recognition: A) digit classification, and B) gender detec-
tion from face biometrics.

• Our results demonstrate that bias can be detected in the
learned weights of Neural Networks. This work opens a
new research line to improve the transparency of these
algorithms.

• We present two novel databases composed by 84K mod-
els trained with different types of biases. These databases
are unique in the field and can be used to further research
on bias analysis in machine learning.

Related Works
To the best of our knowledge there are no prior works that
have attempted to detect the bias of a network by modeling it
from learned weights. Existing literature in bias analysis fo-
cuses on the performance (outcome) (Bolukbasi et al. 2016;
Alvi, Zisserman, and Nellåker 2018; Geirhos et al. 2019;
Chen et al. 2019) and those focused on learned represen-
tations are few (Stock and Cisse 2018; Serna et al. 2021).

Bias Explainability
There is significant work on understanding neural networks
learning processes, which has been useful for diagnosing
CNN representations to gain a deep understanding of the bi-
ased features encoded in a CNN. In general, they map an
abstract concept (e.g. a predicted class) into a domain that
the human can make sense of, e.g. images or text; or they
collect features of the interpretable domain that have con-
tributed for a given example to produce a decision.

When an attribute often appears alongside other specific
visual features in training images, the CNN may use these
features to represent the attribute. Thus, features that appear
together, but are not semantically related to the target at-
tribute, are considered biased representations. Zhang, Wang,
and Zhu (2018) presented a method to discover such poten-
tially biased representations of a CNN.

1We used the terms parameters and weights indistinctly to refer
the learned filters of a Neural Network.

Nagpal et al. (2019) used Class Activation Maps (CAMs
(Zhou et al. 2016)) to obtain the most discriminative regions
of interest for input face images in deep face recognition
models, and observed that activation maps vary significantly
across races.

Also, some investigations show how psychology-inspired
approaches can help elucidate bias in DNNs. Examples in-
clude Ritter et al. (2017); Geirhos et al. (2019), who found
that CNNs trained on ImageNet exhibit a strong bias towards
recognizing textures rather than shapes or color. This con-
trasted sharply with evidence from human behavior, and re-
vealed fundamentally different classification strategies be-
tween CNNs and humans.

Bias Detection
Research on bias analysis focuses largely on detecting
causal connections between attributes in the input data and
outcomes of the learned models (Balakrishnan et al. 2021).
This kind of research relies primarily on observational stud-
ies where the main conclusions are drawn from benchmark-
ing the learned models. However, in real life applications, it
is highly difficult to measure the impact of different covari-
ates on the outcome of a learned model (i.e., it is necessary
to demonstrate that correlation implies causation). Balakr-
ishnan et al. (2021) proposed the use of Generative Models
to develop causal benchmarks applied to face analysis al-
gorithms. These Generative Models allow manipulation of
attributes in the input data, but as the authors mentioned, the
synthesis methods are far from being fully controllable and
there are still hidden confounders to be considered in these
benchmarks.

Stock and Cisse (2018) used an adversarial example ap-
proach to model critique (Kim, Khanna, and Koyejo 2016)
by feeding the model with a carefully hand-selected subset
of examples to subsequently determine whether or not it is
biased. Schaaf et al. (2021) introduced different metrics to
reliably measure several attribution maps’ techniques (Grad-
CAM, Score-CAM, Integrated Gradients, and LRP-ε) capa-
bility to detect data biases. Glüge et al. (2020) attempted to
quantify racial bias by clustering the embeddings obtained
from the model, but observed no correlation between sepa-
ration in embedding space and bias.

Our work goes beyond proposals that seek to model bias
through the observation of the model outcome in response to
particular inputs. Adebayo et al. (2018) already reported the
inconsistency of some widely deployed saliency methods,
as they are not independent of the data. The present work
follows a similar strategy to Serna et al. (2021), who uses
the information learned from the model to discover bias by
observing the activation of neurons to particular attributes
in the inputs. The present work, however, relies solely on
the information encoded in the model, without looking at
particular input/outputs of the model, thus in an Inference-
Free way, with the significant benefits that this represents
with respect to all previous works.

The hypothesis behind our proposed Inference-Free Bias
Detection (IFBiD) is that bias is encoded in the parameters
of a learned model and it can be detected. IFBiD is an in-
teresting and noteworthy effort to contribute to tackling the
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Figure 2: Learning framework of the IFBiD approach based on learned Neural Networks weights.

bias problem. The inference of IFBiD is performed directly
over the weights of a learned model, and therefore does not
require a causal benchmark based on input/output analysis.

Problem Statement and Proposed Approach
In this work we adopt the formulation proposed by Klein-
berg et al. (2019) and Serna et al. (2020) for the discrimina-
tion of groups of people, but applicable to any type of bias.
The formalization follows:

Definition 1 (Data). D is a dataset (collection of multi-
ple samples from different classes) used for training and/or
evaluating a model M. Samples in D can be classified ac-
cording to some criterion d. The set Dc

d ⊂ D represents all
the samples corresponding to class c of criterion d.

Definition 2 (Learned Model). The learned model M is
trained according to input data I ⊂ D, a Target function T
(e.g., digit classification or gender detection), and a learning
strategy that maximizes a goodness criterion G on that task
(e.g., typically a performance function) based on the output
O of the model and the Target function T for the input data
I.

Definition 3 (Biased Model). A learned model M is bi-
ased with respect to a specific class c of criterion d if the
goodness G on task T when considering the full set of data
D is significantly different to the goodness G(Dc

d) on the
subset of data corresponding to class c of the criterion d.

Typically, as in our case, the model M is a Neural Net-
work φ(·), parameterized by Ω, and the goodness-of-fit cri-
terion consists in minimizing an objective function (e.g. the
cross-entropy loss function).

The training process of Neural Networks is usually not de-
terministic and the resulting parameters Ω depend on several
elements: training data, learning architecture (e.g., number
of layers, number of neurons per layer, etc.), training hyper-
parameters (e.g., loss function, number of epochs, batch
size, learning rate, etc.), initialization parameters, and op-
timization algorithm.

The existing literature on bias analysis is mainly focused
on the inputs I (Tommasi et al. 2017; Zhang, Wang, and
Zhu 2018; Wang, Narayanan, and Russakovsky 2020) and
the outputs O to given inputs (Buolamwini and Gebru 2018;
Alvi, Zisserman, and Nellåker 2018; Serna et al. 2020). We
propose a novel approach to detect bias in the learned pa-

rameters Ω, regardless of the particular input I or the output
O = φ(I|Ω) (see Fig. 2).

IFBiD: Inference-Free Bias Detection Learning

The aim of the bias detection model is to find patterns in
Ω associated with biased outcomes. We designed the bias
detector as a Neural Network ψ(·) represented by its param-
eters Θ.

In our approach (detailed in next sections), we train the
bias detector using a dataset of biased and unbiased models.
The models φ(·|Ω) for task T , are biased by training them
with biased subsets of the database S1, ...,Sn ⊂ D. To build
a training set for the detector ψ(·|Θ), we train a number of
models φ(·|Ω) with each subset Si, forming {Ωi

j}
i=1,...,n
j=1,...,B

(see Fig. 2), where n is the number of biased subsets and
B is the number of models trained with each biased subset.
Ωi

j denotes the jth instance of a learned model trained with
biased subset i.

Because of the non-deterministic nature of the training
process of the network φ(·|Ω), the same training subset i is
likely to give rise to different Ω (i.e., Ωi

j 6= Ωi
k). The reason

for this is that since the solution space is very large, the so-
lution (which is iteratively approximated) typically arrives
at a local minimum that depends on the initialization, the
particular training configuration, and the order of the data
(LeCun, Bengio, and Hinton 2015). In CNNs, this translates
into the fact that filters tend to differ between networks. The
bias detector, therefore, has to be able to detect similar fil-
ters in different positions and configurations. The problem is
analogous to detecting patterns in images, where one can be
in different parts of an image.

It is important to underline that the approach requires the
target DNNs (i.e., ΩInput in Fig. 2) to have exactly the same
architecture as the DNNs used to train the detector. This does
not detract from the fact that the task is still challenging,
since, as we have explained before, the filters learned by a
convolutional network never appear in the same place and
are never identical due to the randomness of data presen-
tation and weight initialization (which is, incidentally, the
reason why we have also used convolutions in the detector
architecture).
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The Detector
We evaluated many different learning architectures for IF-
BiD. The design of the possible architectures has not only
taken into account the number and types of layers, but has
also depended on the selection of the parameters Ω of the
model φ(·|Ω) used as input for the detector ψ(·|Θ).

The detector architecture consists of a module to process
the weights/filters of each layer, and then a dense layer that
concatenates all the outputs of each module. The bias de-
tector architecture consists of multiple modules to process
the weights/filters of each layer (thus one module for each
layer), and then a fully connected layer that concatenates all
the outputs of each module. Fig. 3 shows the general archi-
tecture designed for a specific module variant (see below).
The components of a module are the same for all layers (con-
volution, maxpooling, etc.), as well as their order; the only
thing that changes are their parameters, which depend on the
size of the input weights.

We have developed different approaches, in which the
general architecture remains stable, and what changes are
the modules. The module variants we analyzed were the
following (where d × d is the dimension of the input fil-
ter weights, c is the number of input channels, and r is the
number of input filters):

• MLP: Flatten→ Dense(r)

• 1× 1 +conv: Conv2D (1× 1)→MaxPooling2D (d×d)
→ Conv1D (1)→MaxPooling1D (r)→ Flatten.

• 1 × 1 +max: Conv2D (1 × 1) → MaxPooling3D (d ×
d× k)→ Flatten.

• 1×1×1 +max: Conv3D (1×1×1)→MaxPooling3D
(d× d× c)→ Flatten.

Convolutions are followed by a relu activation function,
and there is always 0.1 dropout afterwards (we have seen
that it works best among the values: 0.0, 0.1, 0.2 and 0.3).

Experiments
Datasets of Biased Models

We have created two databases for experimenting in au-
tomatic bias detection: DigitWdb and GenderWdb. The
databases contain the weights Ω of the models φ(·, |Ω) used
in our experiments for the tasks of digit and gender clas-
sification. The databases include 84K models trained with
different types of biases (each model has an associated label
identifying the bias). These databases are publicly available
for further research.2

2https://github.com/BiDAlab/IFBiD/



Case Study A: Digit Classifier (DigitWdb). We have put
together a database that contains the weights Ω of 48K digit
classification networks φ(·, |Ω). For this we have used the
colored MNIST database (Kim et al. 2019), which consists
of seven replicas of the MNIST database, each with a differ-
ent level of color bias (of which we have only used four).

To synthesize the color bias, ten different colors were se-
lected and assigned to each digit category as its mean color.
Then, for each training image, a color was randomly sam-
pled from the normal distribution of the corresponding mean
color, and the digit was colorized. The level of bias of each
replica depends on the value of the variance used in the nor-
mal distribution: the lower the more bias.

The architecture is the same for all models: a CNN φ(·|Ω)
with three convolutional layers with relu activation, each fol-
lowed by a maxpool, and two fully connected layers at the
end (with 128 and 10 neurons, a relu and a softmax activa-
tion function respectively), with a dropout layer of 0.3 be-
tween the two. Each of the trained models results in a total
of 50K parameters.

All model parameters Ω have been initialized randomly
with Glorot uniform (Glorot and Bengio 2010) to avoid pos-
sible commonalities. A diagram showing the general con-
struction of a weight database is shown in Fig. 2. The com-
position is as follows:

• Train: 40K models classified by bias level into four
groups, with 10K models per level (B = 10K). The mod-
els were trained using the first 30K training digits from
Colored MNIST. The models have been categorized into
four groups depending on the replica subset with which
they have been trained (n = 4). The level of bias of the
replica subset is what determines the level of bias of the
model. Groups are: very high bias (color jitter variance of
0.02), high bias (color jitter variance of 0.03), low bias
(color jitter variance of 0.04), and very low bias (color
jitter variance of 0.05).

• Test: 8K models classified by bias level into four groups
(2K models for each level). The models were trained us-
ing the last 30K training digits from Colored MNIST and
categorized in the same way as the training ones (i.e.,
from very high bias to very low bias).

Each Colored MNIST biased subset has 60K training dig-
its, so the 30K for train and 30K for test are independent.
This means that the DigitWdb models assigned to test have
learned with different data than the DigitWdb models as-
signed to train.

Properties. All models have the same architecture and
similar class performance. In this case study, the bias is de-
termined by the color jitter variance of the digit images.

Table 1 shows the average digit classification accuracy of
all models trained with the four subsets of different bias lev-
els, from very low bias (subset S1 with variance of 0.05) to
very high bias (subset S4 with variance of 0.02). The table
shows performance on the Colored MNIST’s test set, that is,
a set of randomly colored numbers, and therefore not biased.

Although not shown, all models exceeded 99% accuracy
during training (i.e. in their respective training subsets Si).
This means that our models learn as far as the training set

Table 1: Average digit classification accuracy (in %) in Dig-
itWdb models according to their level of bias. Classification
accuracy has been assessed with the Colored MNIST test
set, a set of randomly colored numbers, and therefore not
biased.

Model
Bias

Digit Classification Accuracy
0 1 2 3 4 5 6 7 8 9

Very Low 88 94 77 82 90 89 75 84 81 82
Low 79 85 67 69 81 83 65 76 72 69
High 66 76 54 56 72 69 49 64 58 46

Very High 49 51 42 38 59 40 40 51 43 32

Table 2: Average gender classification accuracy (%) in gen-
der classification of all GenderWdb models, according to
their class bias. Models are trained with DiveFace dataset.

Model Bias Gender Classification Accuracy
Asian Black Caucasian

Asian 89.5% 81.5% 82.9%
Black 82.0% 89.4% 83.0%
Caucasian 80.0% 83.2% 89.2%

allows. But then, in the (unbiased) test set (i.e., with all dig-
its colored randomly) the number of correct classifications
drops considerably. The reason is that the color (present in
the training set in a biased way) has been learned as a dif-
ferentiating element when classifying digits. Thus, the net-
work was not only learning to associate a number to a shape,
but also to a color. This is why, subsequently, when finding
a digit with a random color, it has much more difficulty in
classifying it correctly.

Also, Table 1 shows a clear difference in the performance
of the models as a function of the level of bias of the dataset
with which it has been trained. This difference is the basis
for the experiments carried out in this work.

Case Study B: Gender Classifier (GenderWdb). We
have gathered together a database that contains the weights
Ω of 36K gender classification networks φ(·|Ω). We are
aware there are more gender categories other than male and
female. Since establishing ground-truth genetic sex is not
possible, we use gender as a proxy for sex. We use it as a
simplified application of a real-life based problem.

To train the gender classification models that constitute
this database, we used DiveFace (Morales et al. 2021). Di-
veFace is a face dataset contaning 24K identities and three
images per identity. Identities are evenly distributed accord-
ing to gender: male and female, and three categories related
to ethnic physical characteristics: Asia, African/Indian, and
Caucasian.

As in the DigitWdb database, we have separated the data
for training into two independent sets of the same size. (This
serves to ensure the future independence of the bias detector
training and testing.)



Figure 4: Bias detection accuracy in DigitWdb for the dif-
ferent architectures given the number of training samples (x
axis).

We have trained 36K gender classification models φ(·|Ω),
divided into 30K for training and 6K for testing. The archi-
tecture is the same for all models: a CNN with six convolu-
tional layers with relu activation, each followed by a max-
pool, and two fully connected layers at the end (with 128
and two neurons, a relu and a softmax activation function
respectively). The result is a model with a total of 100K pa-
rameters.

All model parameters Ω have been initialized randomly
with Glorot uniform (Glorot and Bengio 2010) to avoid pos-
sible commonalities. The composition is as follows:

• Train: 30K models belonging to three classes of bias
(n = 3), depending on the subset Si with which the
model has been trained, with 10K models per class (B =
10K). The models were trained using the first 12K faces
of each ethnic group of DiveFace: S1 is asian biased, S2
is black biased, and S3 is caucasian biased.

• Test: 6K models with the same three types of bias as
train. The models were trained using the last 12K faces
of each ethnic group of DiveFace.

Properties. All models have the same architecture and
similar class performance. Table 2 shows the average ac-
curacy in gender classification of all models, separated by
bias. Bias has been introduced through the subset Si with
which the model has been trained. In this case study the bias
is determined by the ethnicity of the face images. What be-
comes clear from looking at the table is the strong bias in
the performance of the models in each of the groups. Note
that ethnicity attributes include the color of the skin, but also
more complex anthropomorphic face features.

Results
Bias in digit classification models (Case Study A). First of
all we have attempted a binary classification problem: detect
strong bias against minimal or no bias.

In this first case we have used models with very high bias
and very low bias. Fig. 4 shows the accuracy of bias detec-
tion in digit classification models φ(·|Ω) for the different ar-
chitectures given the number of samples the detector ψ(·|Θ)

Figure 5: Classification accuracy of the bias level in Dig-
itWdb for the different architectures given the number of
training samples (x axis).

was trained with. It can be seen that the convolutional archi-
tectures show a saturation of classification performance and
that it does not take many samples to get great performance.
In fact, with the best architectures, 100 training samples are
sufficient to achieve a performance of around 90%. These
initial results suggest that bias is encoded in the weights Ω
of the learned models φ(·) and it can be detected.

A second experiment has been trying to detect the level of
bias of a model φ(·), or in other words, to classify the mod-
els according to their level of bias. This is a more complex
problem and has required us to test more architectures for
the detector ψ(·).

Fig. 5 shows the classification accuracy of the 4 bias lev-
els (cf. initial subsection within Experiments describing the
Datasets for Case Study A) for the digit classification mod-
els φ(·|Ω) and the different architectures given the number
of samples with which the detector ψ(·|Θ) was trained. We
see that distinguishing the level of bias in digit classification
models is more complicated than simply stating bias-no bias,
and that in this case the maximum success rate we achieve
in the classification is 70% (note that random chance is 25%
for this task). Another important thing to note is the tendency
(of good architectures) to keep improving as the training set
is increased, they do not seem to be reaching their perfor-
mance limit.

Bias in gender classification models (Case Study B).
After seeing positive results, we made the leap to a more
complex problem (i.e., more covariates): detecting ethnic
bias in models trained for gender recognition.

Fig. 6 shows the bias classification accuracy of the biased
gender recognition models φ(·) for the different architec-
tures and the number of samples used for training.

The curves show that after a certain number of training
samples, the accuracy is no longer increasing in the model
with more parameters (that containing Conv3D: 1 × 1 × 1-
max). However, it can be seen that when trained with lit-
tle data, it performs similarly to the rest. The hypothesis
that best seems to explain this behavior is that, since there
are so many parameters Θ, the solution space is so large
that the choice of a better architectural configuration occurs



Figure 6: Bias classification accuracy in GenderWdb, for
the different architectures given the number of training sam-
ples (x axis). Bias is classified into three different categories
according to a ethno-demographic criterion, namely Asian,
Black, and Caucasian.

automatically, leaving unnecessary parameters unchanged,
as if they were not present (Schmidt, Kraaijveld, and Duin
1992). With little training data the model ψ(·|Θ) adjusts
very quickly to those data (losses are practically nil) and in
just a couple of epochs it no longer needs to adjust those
weights Θ. On the other hand, when the number of training
samples increases, it needs to modify more parameters in
order to correlate the training data well, thus losing the gen-
eralization capability equivalent to architectures with fewer
parameters.

The gender classifier φ(·) has more layers than the digit
classifier φ(·), twice as many. So the bias detection network
ψ(·) for these models has more parameters, and thus the per-
formance is different. The best performance is obtained with
the same architecture that also obtains the best performance
in the digit models, the architecture with two convolutions:
1× 1-conv; reaching 83% detection accuracy. The improve-
ment in the MLP, that has the most parameters, seems to
be growing steadily. The rest of the architectures seems that
from 15k training samples onwards is when doubling the
samples does not increase its performance so much. But it
would be necessary to keep doubling the number to check if
the trend holds.

We have dealt with many more architectures that are not
worth describing here: using two dense layers at the end,
adding a dense layer after each convolution, replacing con-
volutions with dense layers, playing with dropout, etc.; all
resulting in worse performance than the learning architec-
tures reported here.

SOTA Comparison
Table 3 shows the comparison with a recent state-of-the-art
bias detection method (Serna et al. 2021), which consists of
measuring the activation of the last layer upon image input.
We also use an SVM with radial basis function (RBF) ker-
nel as a baseline, trained in the same way as our detector.
The table shows the percentage of biased models detected
by InsideBias, the RBF SVM, and by our method. The 6K

Table 3: Percentage of biased models detected according to
their type of bias.

Method Bias Detection Accuracy
Asian Black Caucasian

RBF SVM 71% 30% 26%
InsideBias (Serna et al. 2021) 23% 86% 3%
IFBiD (ours) 95% 79% 79%

GenderWdb test models were used, being 2K of each type
of bias.

In order to apply InsideBias, we used 60 images from
DiveFace, with 20 of each ethnicity and the same number
of men and women. Separately, as input to the SVM, we
used the parameters of the models put together as a vector
of length 97K.

Our method shows considerable superiority: it has a good
hit performance on models with all biases, whereas the other
methods only detect well a single type of bias in the models.

Conclusion
We presented a novel approach called IFBiD (Inference-Free
Bias Detection) to analyze biases in neural networks: by au-
diting the models through their weights. Our experiments
demonstrate the existence of identifiable patterns associated
with bias in the weights of a trained Neural Network (Ter-
horst et al. 2022). We conducted experiments in two com-
puter vision use cases: digit and face gender classification
(Serna et al. 2021). This involved generating two databases
with thousands of biased models each. The first, DigitWdb,
with models trained on the Colored MNIST database (Kim
et al. 2019); and the second, GenderWdb, with models
trained on a face database, DiveFace (Morales et al. 2021).

We used each database to train bias detectors following
the proposed IFBiD principles. We have evaluated a number
of architectures and have found that in both cases it is pos-
sible to achieve a good performance in bias detection. In the
digit classification models we were able to detect whether
they presented strong or low bias with more than 99% accu-
racy, and we were also able to classify between four levels
of bias with more than 70% accuracy. For the face models,
we achieved 83% accuracy in distinguishing between mod-
els biased towards Asian, Black, or Caucasian ethnicity. In
both cases the experiments are open-ended in the absence
of increasing both databases. This has been evident in the
plots with the experiments carried out for different sizes of
the training set.

We evaluated our approach by varying the nature of the
data (i.e., digits and face images), type of architecture (i.e.,
number of layers, units), and optimization strategy (e.g., loss
function). For future work, the generalization capabilities of
our proposed bias detection approach should be studied in
more depth. The training process of the biased models used
for training IFBiD can be affected by hidden confounders
that need to be considered.
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