
Oases of Cooperation: An Empirical Evaluation of Reinforcement Learning in the
Iterated Prisoner’s Dilemma

Peter Barnett, John Burden 1

1 Centre for the Study of Existential Risk, University of Cambridge
peterbarnettnz@gmail.com

Abstract

In the creation of safe AI systems it is extremely important
to ensure cooperative behaviour of these systems, even when
there are incentives to act selfishly. In many cases, even when
game-theoretic solutions allow for cooperation, actually get-
ting the AI systems to converge on these solutions through
training is difficult. In this paper we empirically evaluate how
reinforcement learning agents can be encouraged to cooperate
(without opening themselves up to exploitation) by selecting
appropriate hyperparameters and environmental perceptions
for the agent. Our results in the multi-agent scenario indicate
that in hyperparameter-space there are isolated “oases” of
mutual cooperation, and small changes in these hyperparam-
eters can lead to sharp drops into non-cooperative behaviour.

Introduction
In a world where AI systems are becoming ever more ubiq-
uitous, it is increasingly important that these systems coop-
erate effectively. The notion of cooperation is certainly not
unique to AI, it is a key facet of human society as well as
certain animal populations such as ant colonies. Large parts
of AI research, however, have focused on either single sys-
tems interacting alone in a domain or multiple agents di-
rectly competing against each other, where cooperation can-
not occur. Non-cooperative behaviour can easily arise when
systems have conflicting goals. Even when goals of systems
are aligned, non-cooperation can occur if the agent is valu-
ing its own contribution more than “global” outcome. For
example, consider an vacuum cleaner that is rewarded for
the amount of dirt it cleans from the floor. In a scenario with
multiple vacuum cleaners, even though they have the exact
same goal, they each have an incentive to incapacitate other
cleaners other than itself in order to clean more of the dirt
themselves. This can be mitigated (as with humans) by get-
ting the system to instead value the global outcome. How-
ever, this is often easier said than done, as has been shown in
Game Theoretic analyses, notably the Prisoner’s Dilemma,
where the Nash Equilibrium (NE) occurs at non-cooperation
(Rapoport, Chammah, and Orwant 1965). Even when Game
Theory can encourage cooperation, with many AI systems
there is the added difficulty of training them to reach these

Copyright © 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0)

Player 2
Cooperate Defect

Player 1 Cooperate (3, 3) (0, 5)
Defect (5, 0) (1, 1)

Table 1: Payoff matrix for the Prisoner’s Dilemma. The tu-
ples are the rewards for each player depending on the actions
taken, for example if Player 1 plays cooperate and Player 2
plays defect, then Player 1 receives a reward of 0 and Player
2 receives a reward of 5.

points of cooperation. Within deep reinforcement learning
(RL) there are often no guarantees about the type of policy
that will ultimately be reached.

In this paper we present an empirical exploration of en-
couraging cooperative and robust strategies for the Iterated
Prisoner’s Dilemma. We aim to identify the properties of
training and of the environment representation that enable
more cooperative policies to be learnt.

Iterated Prisoner’s Dilemma

In the Iterated Prisoner’s Dilemma (IPD) two players play
a series of Prisoner’s Dilemma games, each turn the play-
ers receive reward according to the payoff matrix in Table
1 depending on the actions of both players. This is a very
simple game, where each player locally has an incentive to
defect, but mutual cooperation is globally preferable. In the
case of a single PD game, the only Nash Equilibrium (NE) is
mutual defection (Rapoport, Chammah, and Orwant 1965).
In the IPD with a finite (and known) number of rounds, the
only NE is still mutual defection each turn which follows
from a simple backwards-induction argument. However, if
the number of rounds is not known (or infinite) then it has
been shown that mutual defection is no longer the only NE
(Aumann 1959), opening opportunities for cooperation.

A well known strategy for the IPD is tit-for-tat, arising
in (and winning) Axelrod’s seminal IPD tournament (Axel-
rod 1980), tit-for-tat cooperates on the first turn, and after
that always plays the opponents previous move. This strat-
egy rewards the other player for continuing to cooperate and
punishes defections, but also allows for “forgiveness”.



Related Work
Previous empirical evaluations of reinforcement learning
agents’ performance on the IPD have been limited to tab-
ular Q-learning and (very) small recurrent neural networks
(Sandholm and Crites 1996), occurring before the rise of
deep reinforcement learning of the last decade. These studies
showed the difficulty of attaining reliable cooperation within
the the IPD domain, particularly with the neural network-
based approaches. More recent work (Harper et al. 2017)
has shown that RL techniques can learn very strong policies
for the IPD, though the focus here was on training a single
agent to perform well in a tournament setting rather than en-
couraging cooperative behaviour between agents.

In (Vassiliades and Christodoulou 2010), the authors
demonstrate that evolutionary algorithms can be used to im-
prove the rate of cooperation by altering the payoff values
within the IPD game matrix (while retaining requisite con-
ditions). (Vassiliades, Cleanthous, and Christodoulou 2009)
demonstrates that so-called spiking neural networks can be
made to perform more cooperatively in the IPD by giving
the networks “stronger memory” in the form of longer eligi-
bility traces.

In (Wang et al. 2019) the authors extend the concept of the
Iterated Prisoner’s Dilemma into so-called Sequential Pris-
oner’s Dilemma, where the focus is on creating a class of
environments that require temporally-extended cooperation
in the form of 2D gridworld environments that mimic the
dynamics of the prisoner’s dilemma.

Distinguishing our work in this paper is an empirical anal-
ysis of training more robust agents within the single-agent
setting, where we widen the range of hyperparameters where
the tit-for-tat strategy is learnt, as well as identifying which
properties contribute to encouraging cooperation within the
multi-agent scenario. Our focus is not on training agents that
achieve high scores against other agents, but rather on trying
to ensure and encourage mutual cooperation.

Environment
Reinforcement Learning (RL) (Sutton and Barto 2018) is a
machine learning paradigm in which an agent interacts with
an environment. The agent learns to take actions based on
observations of the environment and learns to update its pol-
icy based on received reward. The agent’s goal is to find a
policy π∗ that maximises the expected cumulative reward
received over a single episode.

Within RL the environment is often assumed to be a
Markov Decision Process (MDP), where the next state de-
pends only on the current state and the action taken, and
not explicitly on any previous state. Intuitively, this can be
thought of as the system being “memoryless”. However, for
agents to implement strategies in iterated games they must
have a memory of previous moves. We can therefore store
an agent’s “memory” in the environment; the environment is
used as a ledger for moves that each player has made so far.
An alternative to this would be for observations to simply be
the turns played for the previous game, and use agents with
an internal memory such as an LSTM network (Hochreiter
and Schmidhuber 1997).

To implement the IPD as an MDP, we must de-
fine a suitable state-space, action-space, reward func-
tion and transition function. The action-space is simply
{cooperate, defect}. For each game there is a vector of
length four representing whether each agent cooperated or
defected. These vectors are then essentially concatenated
and flattened. The resulting possible vectors are the set of
possible states subject to the constraints that an agent cannot
both cooperate and defect in a single game and must select
at least one. The reward function simply rewards each agent
appropriately according to the payoff matrix in Table 1. Fi-
nally, the transition function “shifts down” each component
si of s four indices, and setting s0 through s3 appropriately
to match the agent’s choices in the game that has just oc-
curred.

The initial state has every entry as 0, and the environment
“fills up” as games are played. For ease of learning good
strategies, the most recent turn is always at the start, the sec-
ond most recent is second, and so on. A strategy such as
tit-for-tat only requires knowledge of the last turn, and so
it should be easier to learn this kind of strategy if the last
turn is always in the same place. The environment could be
designed such that the first game is first and so on, but this
would mean that the agent would have to learn to focus on a
different part of the observation each turn. Having the most
recent move in the same place needn’t stop the agent from
learning policies which require a longer memory, as all the
game history is still stored in the environment.

The observation an agent receives can be any length ‘win-
dow’ of previous games, ranging from length 1 (where there
agent only receives knowledge of the last game), to the
length of the entire history.

Evaluation Metrics
The RL agents are trained using the rewards received from
playing multiple episodes of the IPD. However, the total re-
wards for each IPD episode isn’t a perfect evaluation metric.
For example, when playing against a fixed opponent em-
ploying tit-for-tat, a strong (but not quite optimal) strategy
is to always cooperate. But if an agent learns to simply al-
ways cooperate, then it is vulnerable to opponents playing
other strategies (for example, always-defect).

For this reason, it seems desirable for agents to learn a
strategy similar to tit-for-tat. This means than an agent will
cooperate with cooperative opponents, but not be as vulner-
able to opponents defecting. We can evaluate how similar a
learned strategy is to tit-for-tat by deducing the fraction of
moves in which the agent would choose the same action as
tit-for-tat. We refer to this measure as “tit-for-tat similarity”.

This is calculated by sampling valid observations from the
state-space, and for each observation checking the action of
the agent against tit-for-tat. A similarity of 1 means the agent
is playing exactly tit-for-tat, a fraction of 0.5 means the agent
is playing a strategy uncorrelated with tit-for-tat (for exam-
ple, playing randomly, always-cooperate, or always-defect),
and a fraction of 0 means that the agent is always playing
the action tit-for-tat doesn’t play, “tat-for-tit”. In this sam-
pling approach we ensure that observations are generated so
that each stage of the game is equally likely.



This measure can be expressed succinctly as

tit-for-tat similarity =
1

n

n∑
i

1 (πRL(si) = πtft(si))

where πRL and πtft are the policies of the RL agent and tit-
for-tat respectively and are applied to the randomly gener-
ated state si, 1 is the indicator function, and n is the number
of sampled states.

Additionally, we can calculate the rate of agent coopera-
tion on sampled states, further allowing us to determine the
type of policy learnt. This can be similarly expressed as

cooperation similarity =
1

n

n∑
i

1 (aRL(si) = cooperate)

Experimental details
Within our experiments we will make use of two common
RL algorithms: Deep Q-Networks (DQN) (Mnih et al. 2013)
and Proximal Policy Optimization (PPO) (Schulman et al.
2017). These two algorithms were selected to help make
the empirical evaluation more general; DQN uses value-
iteration and PPO uses policy-iteration. Further, DQN is off-
policy while PPO is on-policy.

In this work we have used the DQN and PPO implemen-
tations from the Ray RLlib library (Liang et al. 2018). The
default configurations were used, with the following modifi-
cations: DQN used a noisy network, PPO used a minibatch
size of 32 and trained on 20 epochs for each batch. Unless
otherwise specified, an episode consisted of 100 PD games.
As per the default RLlib configurations, one training iter-
ation is 1000 timesteps for DQN, and 4000 timesteps for
PPO.

Single Agent Training
We begin by training single agents fixed policies to inves-
tigate what strategies developed. Hyperparameter sweeps
were performed over the learning rate and the discount rate
γ. For each hyperparameter configuration the agents were
trained for 200 iterations, and then evaluated to see what
type of strategies had developed. The IPDs were 100 games
in length, and the agents received the full history as obser-
vations. In these experiments DQN has a a hidden layer net-
work of [1024, 512, 256, 32, 8] and PPO has [124,16].

Learning with tit-for-tat
The similarity measures for tit-for-tat and cooperation for
agents trained against a tit-for-tat policy are shown in Fig-
ure 1. Agents trained against a tit-for-tat policy learned sim-
ple strategies, often always cooperating or always defecting.
The learned strategies were not at all correlated with tit-for-
tat. There were regions of the hyperparameter space where
agents learned always-cooperate or always-defect, this was
especially prominent for the DQN agents. This is gener-
ally what is expected; the policy yielding the largest reward
against a fixed tit-for-tat agent is to cooperate in every game
except the last. However, the choice of hyperparameters can

prevent this policy from being learnt. An agent that is too
slow to learn how to respond to tit-for-tat will likely receive
more defections from the fixed policy and instead learn to
also defect in order to minimise losses. We can see that in
all cases, the policy learnt is essentially uncorrelated with tit-
for-tat. It’s worth highlighting that while we want the agents
to be cooperative in application, due to the fact that the eval-
uation is done using the agent’s response to sampled valid
states it isn’t necessarily better for agents to have a very
large cooperation similarity, in this case the agent is likely
opening itself up to exploitation from possible opponents.

(a) DQN trained against tit-for-tat

(b) PPO trained against tit-for-tat

Figure 1: The tit-for-tat similarity and cooperativity for RL
agents trained against tit-for-tat, across a range of values for
the learning rate and discount rate γ. Different algorithms
(DQN and PPO), and different numbers of hidden layers
were used. These were evaluated after 200 training itera-
tions. These agents do not learn strategies close to tit-for-
tat. There are hyperparameter regions where agents are more
likely to learn always-cooperate or always-defect.

Learning with tit-for-tat-then-defect
In order to address the agent’s vulnerability we train our
agent against a different strategy, this new strategy begins
each IPD by following a tit-for-tat policy, but then on a ran-
dom turn begins defecting forever. The intention behind this
strategy is that the RL agent will learn to cooperate (as it did
against pure tit-for-tat) until the fixed opponent begins de-
fecting, when the agent then needs to switch to defection in
order to “defend” itself. Against this “tit-for-tat-then-defect”



opponent the agent needs a policy much closer to tit-for-tat
in order to perform well.

Learning a strategy similar to tit-for-tat may be helpful
for multi-agent training, if the two agents are both playing a
strategy close to tit-for-tat then cooperating and continuing
to play tit-for-tat will be rewarded, and defecting punished.
This would mean both players playing tit-for-tat could be
stable and self-reinforcing.

The results for RL agents learning against this tit-for-
tat-then-defect policy are plotted in Figure 2. Similarly to
when playing against tit-for-tat there are regions of the
hyperparameter-space which lead to different strategies be-
ing learned. There are regions of the space which robustly
lead to strategies very similar to tit-for-tat (as high as a 0.85
similarity).

(a) DQN trained against tit-for-tat-then-defect

(b) PPO trained against tit-for-tat-then-defect

Figure 2: Similarity scores to tit-for-tat and cooperation for
RL agents trained against the tit-for-tat-then-defect strategy.
Otherwise the same setup as Figure 1. Learning against this
strategy lead the agents to learn strategies similar to tit-for-
tat. The highest tit-for-tat similarity found for the different
agents represented in separate rows was 0.85 (top row), 0.80
(middle row), 0.82 (bottom row). There were regions of this
hyperparameter space which lead to agents learning strate-
gies more similar to tit-for-tat. For DQN, particularly high
and low learning rates seemed to lead to the agent learning
always-defect.

For the DQN agents, the regions where they learn strate-
gies similar to tit-for-tat are quite sharply defined, and out-
side these regions the agents generally learn to almost al-

ways defect. The regions where the DQN agents learn strate-
gies correlated with tit-for-tat seems defined primarily by
the choice of learning rate; if the learning rate is either too
large or too small the agents will learn to defect. For the
PPO agents, the regions where they learn strategies correlat-
ing to tit-for-tat is not as well defined. There again seems to
be a band of learning rates where the PPO agents can learn
strategies which are both generally cooperative and similar
to tit-for-tat. Outside of this band, if the learning rate is too
large then the agents tend to learn simple always-cooperate
or always-defect strategies, and if the learning rate is too
small, it appears that no learning has occurred as behaviour
appears to be mostly random — there is no correlation with
tit-for-tat or cooperation.

Figure 2 highlights concerns for AI systems in the real
world; there are sudden jumps in the hyperparameter-space
where agents suddenly transition from playing a strategy
close to tit-for-tat to playing always-defect. This behaviour
is especially clear with the DQN agents. Although there may
be some range of hyperparameters which is “safe” in terms
of agents trying to cooperate, straying outside of this range
at all may be “unsafe” Additionally, for PPO, the region of
the hyperparameter-space which generally leads to policies
being more similar to tit-for-tat still contains learnt poli-
cies which are uncorrelated with tit-for-tat. Here the choice
of hyperparameters which leads to the most similar policy
(learning rate of 0.0001, discount rate of 0.96) to tit-for-tat
is directly adjacent to a policy which is completely uncorre-
lated with tit-for-tat (learning rate of 0.0003, discount rate of
0.95). Similar behaviour is seen in Figure 1 where regions of
always-cooperate are right next to regions of always-defect.
For PPO, if the learning rate is too high then potentially de-
sirable (if vulnerable) always-cooperate strategies are found
right next to potentially dangerous always-defect strategies.

Multi-Agent training
So far, we have only considered training an agent against a
fixed opponent. In more realistic scenarios the both agents
can adapt their own policies in response to the other’s. We
carried out the same experiment as in the previous section
but with both agents learning in order to see how RL agents
would behave when they can both learn. In this scenario,
each player in the IPD is an RL agent, and the training of
both agents happens simultaneously. Similar hyperparame-
ter sweeps to the single agent training were performed. In
general the multi-agent training was run for 100 training it-
erations, where a single iteration is still 1000 timesteps for
DQN, and 4000 timesteps for PPO. All agents in this section
have network sizes of [1024, 512, 256, 32, 8].

Naive Training
We begin by comparing agents with the same algorithm and
architecture (but no weight sharing) for a fixed number of
games. Both PPO and DQN agents were evaluated for tit-
for-tat and cooperation similarities as shown in Figure 3.
This time, as well as using the sampling approach, we also
show the “observed” results for the tit-for-tat and cooper-
ation similarities which are found by seeing what actions



the two agents take when in the IPD with each other. These
observed results are found by having two agents play 20
episodes (2000 games) IPDs together. These sampled sim-
ilarity and observed similarity can be very different: The
sampled similarity is based on a uniform distribution over all
valid states, but the observed similarity is based on a distri-
bution of states dependent on the opponent’s policy. Within
the evaluation of multi-agent games both of these measures
are important.

For DQN in Figure 3a, the agents quite robustly learn to
always defect, and do not learn strategies close to tit-for-tat.
This is likely due to the agents being unable to overcome
the local “optimum” of mutual defection. These agents ap-
pear to play “tit-for-tat” based on their opponent’s move, but
this is a trivial, illusory case due to mutual defection. We
can see from their behaviour given random states that they
are actually playing always-defect rather than tit-for-tat. For
PPO in Figure 3b, the agents appeared similarly incapable
of learning tit-for-tat. These agents still defected the major-
ity of the time, but not nearly as much as DQN. The results
here are expected; the number of games is finite, fixed, and
in a sense “known” to the agent because the agent can ob-
serve the vector representing the state-space “fill up”. The
Nash Folk Theorem for finitely repeated games (Benoit and
Krishna 1985) shows that in this case (and by backward in-
duction) that we expect this mutual-defection.

Random Game Length
The always-defect behaviour in the naive training for the
DQN agents is not unexpected because the IPDs are of fixed
length. It is known that the only Nash Equilibrium here is
always-defect (Rapoport, Chammah, and Orwant 1965). The
agents both have incentives to defect on the last round, be-
cause the opponent cannot retaliate to punish this defection.
If they both defect on the last round, then they also have in-
centives to defect on the second last round, and so on. But
if games do not have a fixed length, then it is possible for
cooperation to be sustained indefinitely (Aumann 1959). Al-
though this is possible according to game theory, it is a sepa-
rate question whether RL algorithms are capable of reaching
and sustaining this cooperation equilibrium. This is because
multi-agent training is difficult for RL agents: for each agent
the environment is non-stationary. The agents don’t explic-
itly model their opponent, and so the opponent actions are
treated as part of the environment dynamics. Because both
agents are learning, this means that the effective environ-
ments are changing during training. This can cause an agent
to start learning a good strategy which becomes obsolete as
the other other agent changes in response.

To see if we can achieve stable levels of cooperation, ex-
periments identical to those demonstrated in Figure 3 were
run, but instead of a fixed game length the games end on
a random turn (so the IPDs can have anywhere from 1 to
100 games). Having a random game length did not help in-
crease the cooperativity or correlation with tit-for-tat of the
learned policies (Figure 4). Additionally, having both a ran-
dom length and no “done” signal at the end of each episode
was investigated and did not improve these metrics. Even
though cooperation is one of the possible Nash Equilibria

(a) DQN

(b) PPO

Figure 3: The tit-for-tat similarity and the cooperation sim-
ilarity for two DQN agents (3a) and two PPO agents (3b)
trained with each other in an IPD, for a range of learning
rates and discount rates γ. The first two columns are eval-
uated by seeing what the agents would play given random
observations of turns played so far, the second two columns
show how the agents act when playing with each other. The
two rows are for the two agents.



in this scenario, it is not easily found by RL agents starting
from random initialisation.

For AI systems interacting with each other in the real
world, there are likely to be scenarios where one system
may defect for individual gain. These results from simple
IPDs show that just because cooperation is a strong strategy
according to game-theory it can still be difficult to achieve
convergence with typical RL algorithms. This is likely due
to the fact that strategies such as tit-for-tat are not very sta-
ble, slight deviations from tit-for-tat, caused by agent explo-
ration or slightly imperfect agent, can prevent cooperation
from occurring and being learnt.

(a) DQN

(b) PPO

Figure 4: The tit-for-tat similarity and the cooperation sim-
ilarity for the DQN (4a) and PPO (4b) agents, as in Figure
3 but here the IPDs are all of random length. Training with
random lengths does not seem to effect the learned strate-
gies.

Observation Window Size
So far we been using a window-length of 100, the observa-
tion the agent receives contains the entire history of both
players’ interaction with the game. We also experiments
evaluating the effect of having shorter window lengths.
There are two primary reasons that this may be beneficial.
First, training may be faster simply because there are fewer
features for the agent to use and therefore more episodes and
games can be played in the same amount of time. Second,for
short windows there are fewer possible strategies that can be

developed. By essentially shortening the agents’ memory,
we effectively reduce their ability to hold onto a “grudge”.

Agents were trained in the same setup as in Figure 4, play-
ing against another agent of the same type in IPDs of random
length. But rather than the observation being the entire his-
tory of moves that had been played, the observations were
only of the last 1 move or last 5 moves, this is referred to
as the window-length. The results are plotted in Figure 5.
DQN agents with a window-length of 1 and PPO agents with
a window-length of 5 (Figures 5a and 5d) performed very
similarly to the multi-agent training seen so far; the DQN
agents here learned to always defect, and the PPO agents
did not learn strategies which were cooperative or similar to
tit-for-tat.

There were more interesting results for the PPO agents
with a window-length of 1 and the DQN agents with a
window-length of 5 (Figures 5b and 5c) . These agents of-
ten learned to always defect, but within these hyperparame-
ter sweeps there are a few small “oases” of cooeprative be-
haviour, but these are few and far between. Here the PPO
agents with a learning rate of 1 × 10−6 and a discount rate
of 0.9 were able to learn to cooperate when playing with
each other. However, right next to this in the hyperparam-
eter space (learning rate of 1 × 10−5 and a discount rate
of 0.9), one agent has learned tit-for-tat while the other has
learned to defect; this results in the agents both generally de-
fecting when playing with each other. The DQN agents with
a state length of 5 here have not learned to cooperate quite
as robustly, but there is a small region in the hyperparameter
space around learning rate of 5× 10−5 and discount rate of
0.8 where the agents seems generally less likely to always
defect and even develop moderately cooperative strategies.

Pretraining
When naively training RL agents against each other in
IPDs the default option seems to be for the agents to fall
into defect-defect equilibria (especially for DQN agents),
even if there are certain small oases in the hyperparameter-
space where they do learn to cooperate. A potential strat-
egy to avoid this defect-defect behaviour would be to pre-
train agents against fixed policies before training them with
each other. If the agents have learned a strategy similar to
tit-for-tat from the pretraining, then this learned behaviour
may be good for playing against another learning RL agent.
If the agent receives a high reward for continuing to play its
learned strategy (which is close to tit-for-tat), then this be-
haviour will be reinforced and hopefully stable. We can then
also see if the behaviour of generally cooperative agents will
be retained if they start playing against another cooperative
agent.

Pairs of RL agents were initially trained with a fixed pol-
icy in order to instil a certain behaviour; training with tit-for-
tat-then-defect to make them learn a policy correlated with
tit-for-tat, and training with standard tit-for-tat to make them
learn a cooperative policy. Then these agents were trained
with each other to see the effect that this initial training had
on the policies they developed. The similarity to tit-for-tat
and cooperativity (evaluated with the previously used sam-
pling approach) were calculated throughout training with the



(a) DQN, state length: 1

(b) PPO, state length: 1

(c) DQN, state length: 5

(d) PPO, state length: 5

Figure 5: The tit-for-tat similarity and the cooperation sim-
ilarity of DQN and PPO agents with state lengths of 1 and
5. The IPDs here are all of random length. DQN with a state
length of 1, and PPO with a state length of 5 lead to simi-
lar results as previously seen. PPO with a state length of 1,
and DQN with a state length of 5 are able to learn strategies
which are correlated with tit-for-tat and cooperative.

fixed policies and throughout training with each other (Fig-
ure 6).

For the DQN agents (Figure 6a), the training to be coop-
erative is extremely non-robust, both agents learn to cooper-
ate during the pretraining with tit-for-tat, and then extremely
rapidly both learn to always defect. Pretraining with tit-for-
tat-then-defect appears to somewhat help with sustaining co-
operation; both agents develop policies which reach around
0.8 tit-for-tat similarity during pretraining, and although this
decreases when they train with each other they do not im-
mediately learn to always defect. However, these agents still
defect more often than cooperate and the training with each
other is quite unstable.

The PPO agents pretrained with tit-for-tat do not learn
to always cooperate and also do not rapidly collapse into
always-defect, as is consistent with Figures 3b and 4b.
Throughout training these agents remain marginally more
likely to cooperate than defect. When training PPO agents
with the tit-for-tat-then-defect policy, these agents learn
strategies slightly more similar to tit-for-tat than the DQN
agents learned (Figure 6a). The tit-for-tat similarity rapidly
decays as the agents begin to play against each other, but
rather than falling into defecting these PPO agents develop
cooperative polices. The PPO agents here learn strategies
which cooperate at 0.9 cooperation similarity, although these
learned strategies are not similar to tit-for-tat.

Conclusion and Future Work

We have presented an empirical analysis emphasising the
difficulty in achieving cooperation with reinforcement learn-
ing agents in the Iterated Prisoner’s Dilemma. We have
highlighted an approach to reduce agent vulnerability when
learning against a fixed policy in the single-agent setting
by using more adversarial opponents. We have further tried
to identify which properties can help improve agents’ be-
haviour to be more cooperative and employ strategies like
tit-for-tat. By far the most effective approach has been to re-
duce the history of interaction available to the agent to the
previous game, however hyperparameters still play a vital
role in achieving this behaviour. In general we have found
very sharp changes in behaviour arising from small alter-
ations to hyperparameters, finding only a few oases of coop-
eration in an otherwise vast desert of defection.

There are enumerable ways to continue this work, we
have simply shown that RL agents can struggle to achieve
the types of strategies advocated by game-theory. Solutions
to this could take the form of more robust training or better
incentives to prevent uncooperative behaviour. These would
be of large benefit to the AI and RL safety communities, and
would be tentative first steps towards the design and imple-
mentation of AI systems that can be safely deployed in the
real world where similar (though often far more complex)
problems arise.

The code to reproduce the research in this paper can be
found here: https://github.com/peterbarnettnz/rl-ipd



(a) DQN

(b) PPO

Figure 6: The tit-for-tat similarity and the cooperation sim-
ilarity for DQN and PPO RL agents. Dashed lines indicate
the agents are pretraining against a fixed policy, solid lines
indicate the same agents are now training against an agent
trained with the same fixed policy. The red lines are for the
agents pretrained with tit-for-tat-then-defect, the blue lines
are for agents trained with tit-for-tat (each shade of a colour
represents a different agent). The DQN agents have a learn-
ing rate of 1 × 10−3 and a discount rate of 0.8, the PPO
agents have a learning rate of 1 × 10−4 and a discount rate
of 0.96. The agents were trained with the fixed policies for
200 training iterations, and a further 200 training iterations
with the other RL agent.

References
Aumann, R. J. 1959. Acceptable Points in General Coop-
erative n-Person Games. In Contributions to the Theory of
Games (AM-40), Volume IV, 287–324. Princeton University
Press.
Axelrod, R. 1980. Effective Choice in the Prisoner’s
Dilemma. Journal of Conflict Resolution, 24(1): 3–25.
Benoit, J.-P.; and Krishna, V. 1985. Finitely Repeated
Games. Econometrica, 53(4): 905–922.
Harper, M.; Knight, V.; Jones, M.; Koutsovoulos, G.; Gly-
natsi, N. E.; and Campbell, O. 2017. Reinforcement learn-
ing produces dominant strategies for the Iterated Prisoner’s
Dilemma. PLOS ONE, 12(12): 1–33.
Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-term
Memory. Neural computation, 9: 1735–80.
Liang, E.; Liaw, R.; Nishihara, R.; Moritz, P.; Fox, R.; Gold-
berg, K.; Gonzalez, J. E.; Jordan, M. I.; and Stoica, I. 2018.
RLlib: Abstractions for Distributed Reinforcement Learn-
ing. In International Conference on Machine Learning
(ICML).
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. 2013. Play-
ing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.
Rapoport, A.; Chammah, A. M.; and Orwant, C. J. 1965.
Prisoner’s dilemma: A study in conflict and cooperation,
volume 165. University of Michigan press.
Sandholm, T. W.; and Crites, R. H. 1996. Multiagent re-
inforcement learning in the Iterated Prisoner’s Dilemma.
Biosystems, 37(1): 147–166.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal Policy Optimization Algorithms.
arXiv:1707.06347.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. Cambridge, MA, USA: A Bradford
Book. ISBN 0262039249.
Vassiliades, V.; and Christodoulou, C. 2010. Multiagent Re-
inforcement Learning in the Iterated Prisoner’s Dilemma:
Fast cooperation through evolved payoffs. In The 2010 In-
ternational Joint Conference on Neural Networks (IJCNN),
1–8.
Vassiliades, V.; Cleanthous, A.; and Christodoulou, C. 2009.
Multiagent Reinforcement Learning with Spiking and Non-
Spiking Agents in the Iterated Prisoner’s Dilemma. In
Alippi, C.; Polycarpou, M.; Panayiotou, C.; and Ellinas, G.,
eds., Artificial Neural Networks – ICANN 2009, 737–746.
Berlin, Heidelberg: Springer Berlin Heidelberg. ISBN 978-
3-642-04274-4.
Wang, W.; Hao, J.; Wang, Y.; and Taylor, M. 2019. Achiev-
ing Cooperation through Deep Multiagent Reinforcement
Learning in Sequential Prisoner’s Dilemmas. In Proceedings
of the First International Conference on Distributed Artifi-
cial Intelligence, DAI ’19. New York, NY, USA: Association
for Computing Machinery. ISBN 9781450376563.



Acknowledgements
This work was done as part of the Cambridge Existential
Risks Initiative (CERI) Summer Research Fellowship 2021,
we would like to thank CERI for their organisation and sup-
port. We would also like to thank the Stanford Existential
Risks Initiative for additional funding and support.


