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Abstract
Model compression is widely employed to deploy convolu-
tional neural networks on devices with limited computational
resources or power limitations. For high stakes applications,
such as autonomous driving, it is, however, important that
compression techniques do not impair the safety of the sys-
tem. In this paper, we therefore investigate the changes intro-
duced by three compression methods – post-training quan-
tization, global unstructured pruning, and the combination
of both – that go beyond the test accuracy. To this end, we
trained three image classifiers on two datasets and compared
them regarding their performance on the class level and re-
garding their attention to different input regions. Although the
deviations in test accuracy were minimal, our results show
that the considered compression techniques introduce sub-
stantial changes to the models that reflect in the quality of
predictions of individual classes and in the salience of input
regions. While we did not observe the introduction of sys-
tematic errors or biases towards certain classes, these changes
can significantly impact the failure modes of CNNs and thus
are highly relevant for safety analyses. We therefore conclude
that it is important to be aware of the changes caused by
model compression and to already consider them in the early
stages of the development process.

1 Introduction
Deep Neural Networks (DNNs) enable many complex ap-
plications such as autonomous vehicles or automated man-
ufacturing processes. Especially for perception tasks, Con-
volutional Neural Networks (CNNs) have shown impressive
results and have been adopted widely. However, to achieve
a high degree of performance, these networks often have
millions of parameters that require significant computing
power for inference, impeding the deployment on edge or
low-power mobile devices (Cheng et al. 2018). One way
to approach this problem is to compress the models, e.g.,
via pruning – i.e. removing parts of the network with a
low contribution to the predictions – or quantization – i.e.
reducing the number of bits required for each parameter.
These methods allow to reduce the memory footprint, in-
crease computational efficiency, and in turn also decrease
the power demands, enabling the deployment of DNNs on
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low-power devices. Compressing models using pruning or
quantization techniques can significantly reduce their size
without severely impacting the overall performance regard-
ing test accuracy. However, especially for safety-critical ap-
plications test accuracy on its own is not sufficient and un-
derlying negative effects, e.g., on the long tail of data distri-
butions have been shown (Hooker et al. 2021). Furthermore,
since model compression is often not explicitly addressed in
development and assurance frameworks, such as Assurance
of Machine Learning for use in Autonomous Systems (AM-
LAS) (Hawkins et al. 2021), an introduction of additional
failure modes by compression techniques might lead to ad-
ditional efforts required in the development if the effects are
considered too late during the process or in the worst case
might lead to failures during operations if not considered
at all. To this end, in this paper we investigate the effects of
model compression when using global unstructured pruning,
post-training quantization, and their combination. We there-
fore aim to provide insights towards the question what and to
which extent changes occur on a deeper level and how that
could potentially impact efforts towards arguing the safety
of the system by making the following contributions:

• We investigate the effects of model compression on the
class and sample level regarding their predictive quality
over three different models and two datasets

• Additionally, for model pruning we investigate the ef-
fects on the attention of the models regarding compared
to the initial models by analyzing their saliency maps

2 Related Work
In the following, we present the related work regarding
CNNs compression and its relevance towards arguing the
safety for ML-based systems.

2.1 Pruning
Model pruning is a common technique for various ML al-
gorithms, such as decision trees (Mingers 1989) and induc-
tive logic programming (Kazmi, Schüller, and Saygin 2017),
not only for compression but also to improve generaliza-
tion capabilities. For neural networks, pruning is not a novel
idea (LeCun, Denker, and Solla 1989), but has gained inter-
est in recent years due to the increased popularity of neural



networks and the need to deploy them on computationally-
restricted devices (Cheng et al. 2018). Pruning generally can
be performed either in a structured (He et al. 2018) or un-
structured (Han, Mao, and Dally 2016) manner. The first one
removes – based on a norm for scoring the importance of
the individual elements – connected groups of parameters,
e.g., on a per-channel or per-filter basis. The structured ap-
proach therefore not only provides improvements regarding
memory usage, but also provides reduced inference times
on regular hardware. Compared to structured pruning, un-
structured pruning removes individual parameters, allowing
to decrease model sizes significantly more while retaining
test accuracy. Since only individual parameters are removed,
the overall network structure does not change and sparsity is
introduced. Therefore, specialized hardware is required to
benefit from inference speedups besides the improvements
in memory requirements (Luo and Wu 2020). ML frame-
works, such as PyTorch or TensorFlow, come with imple-
mentations for the most common pruning techniques. Be-
yond that, research continues in that domain, for instance,
AutoPruner (Luo and Wu 2020) improves significantly upon
the state-of-the-art by combining pruning and fine-tuning
steps, EagleEye (Li et al. 2020) proposes an efficient eval-
uation strategy to identify the best performing subnetworks
as pruning candidates, and with ShrinkBench (Blalock et al.
2020) a benchmarking framework has been proposed to fa-
cilitate the comparison of pruning techniques.

2.2 Quantization
Another widespread model compression technique is quanti-
zation that aims to reduce the number of bits required to rep-
resent the parameters of a DNN. DNNs are usually trained
on hardware accelerators, such as GPUs or TPUs, that use
floating points, usually 32bit or 16bit, to represent the pa-
rameters. A common technique is to quantize the parameters
to 8-bit integers, effectively reducing the size by a factor of
4 or 2 respectively and allowing the exploitation of 8-bit op-
timized computations of mobile CPUs, while having mini-
mal impact on the model performance (Wu et al. 2016). In
practice, post-training quantization and quantization-aware
training are common. With post-training quantization, the
parameters of a model are quantized after the training phase
without requiring any fine-tuning. In contrast, quantization-
aware training models the parameter quantization during
training and is able to achieve even lower bit-widths. As
with pruning, both variants have implementations in com-
mon ML frameworks. Research in that domain focuses on
achieving lower bit-widths, while only minimally impacting
the performance of models (Banner, Nahshan, and Soudry
2019; Hubara et al. 2018) or on further simplifying the quan-
tization process, e.g., by eliminating the need for calibration
data (Cai et al. 2020).

2.3 Further Model Compression Techniques
Besides pruning and quantization, other model compression
techniques have been proposed. For instance, N2N learn-
ing (Ashok et al. 2018) removes parts of a network and
afterwards shrinks them using a reinforcement learning ap-
proach. With Knowledge distillation, one or more networks

are trained to serve as teacher models which a smaller stu-
dent model is trained to mimic (Hinton, Vinyals, and Dean
2015). Approaches based on low-rank factorization such as
(Swaminathan et al. 2020) use matrix decomposition to re-
construct linear transformations of a network into counter-
parts with less redundancy and therefore fewer parameters.
Lastly, although not necessarily a compression technique,
neural architecture search can be utilized to find efficient ar-
chitectures as is done, e.g., in MnasNet (Tan et al. 2019)
that optimizes towards the real-world inference latency of
DNNs.

2.4 Effects of Model Compression on Robustness
Compressed models have been extensively studied regard-
ing their robustness against adversarial attacks. For in-
stance, (Bernhard, Moellic, and Dutertre 2019) concluded
that post-training quantization and quantization-aware train-
ing slightly improve the robustness of a network against at-
tacks. Similarly, (Duncan et al. 2020) found that quantiza-
tion can reduce the transferability of adversarial examples
by up to 50%. The adversarially trained model compression
framework (Gui et al. 2019) incorporates objectives regard-
ing adversarial robustness in the compression process to fur-
ther improve upon it. Apart from adversarial examples, some
research has been conducted regarding other aspects of ro-
bustness. For instance, (Ferianc et al. 2021) demonstrated
that a uniform quantization scheme does not considerably
impact the quality of uncertainty quantification in Bayesian
neural networks. (Hooker et al. 2021) studied the effects of
model compression beyond test accuracy and found that a
small subset of the data is systematically more impacted
and that the sensitivity towards distributional shifts corre-
lates significantly with model sparsity.

2.5 Safety Assurance for ML-based Systems
Arguing the safety of ML-based systems is an emerging field
and highly relevant to enable the use of ML in safety-critical
applications. A promising direction are holistic assurance
strategies (Burton, Gauerhof, and Heinzemann 2017) that in-
corporate an analysis of the operational domain and the sys-
tem, as well as a sound validation and verification strategy to
design confidence arguments that provide evidence towards
the safety of the system (Burton et al. 2019). The approach
itself is domain agnostic and so far has been applied to, e.g.,
the automotive (Burton et al. 2021a) and medical (Picardi
et al. 2019) domain. While it provides a general framework
towards arguing the safety of ML-based systems and frame-
works such as AMLAS (Hawkins et al. 2021) provide addi-
tional guidance, further research regarding the design of safe
ML algorithms and effective testing methods is required to
provide sufficient evidence for the assurance case.

3 Evaluation
In this section, we discuss our results and observed findings
regarding the changes beyond test accuracy introduced when
compressing image classifiers with pruning or quantization
techniques.



3.1 Design of Experiments
To analyze the influence model architecture, we considered
three different networks. A ResNet-18 (~11m parameters)
(He et al. 2016) for its widespread usage, a SqueezeNet
(~750k parameters) (Iandola et al. 2016) for its computa-
tional efficiency, and a LeNet-5 (~62k parameters) (Lecun
et al. 1998) for its small size. We trained the models on
CIFAR-10 (Krizhevsky 2009) and the German Traffic Sign
Recognition Benchmark (GTSRB) (Stallkamp et al. 2011).
CIFAR-10 consists of 60,000 32x32px images, equally di-
vided into 10 classes, e.g., cat, dog, automobile, or ship. GT-
SRB contains 51,839 images of 43 different German traffic
signs that we rescaled to 32x32px. The distribution of the
traffic signs thereby is imbalanced, with the most frequent
sign, Speed limit (50 km/h) occurring more than 10 times
as often as the least frequent one, Dangerous curve to the
left. The class imbalance within GTSRB allows us to study
if any negative biases towards the underrepresented classes
are introduced by the model compression techniques.

We trained each model by minimizing the negative log-
likelihood using Adam as an optimizer. To prevent overfit-
ting, we stopped the training after the loss did not decrease
for 40 epochs. To improve the base accuracy on CIFAR-
10, we transformed each image at each epoch by randomly
flipping it horizontally and by randomly cropping it back to
32x32px after adding a 4px padding each side.

To compress the models, we used the implementations for
pruning and quantization provided by the ML framework
PyTorch. We choose global unstructured pruning, using the
L1 norm to score the parameters of the model, whereby
the ones scored lowest are removed. We applied no subse-
quent fine-tuning as it yielded the best results in our ex-
periments. Compared to structured pruning it is not as ap-
plicable to practical applications, as without sparse tensor
computations it only affects the memory requirements of the
model. However, unstructured pruning is widely considered
in academia (LeCun, Denker, and Solla 1989; Renda, Fran-
kle, and Carbin 2019) and with improvements in sparse ten-
sor support on embedded hardware might become the pre-
dominant method for practical applications in the future. Af-
ter the training phase, we pruned each model with the target
to maximize the amount of dropped connections while main-
taining a comparable level of accuracy to the original model.

For quantization, we chose a non-intrusive post-training
approach with per-channel bit allocation, as it gave the best
results in our experiments. We chose to quantize the weights
of all models once to 8bit and once to 4bit. The first case en-
ables the utilization of integer-based hardware accelerators,
while the second one would require specialized hardware to
gain additional benefits, apart from increased memory effi-
ciency, compared to the 8-bit variant. The activation preci-
sion was kept at 8bit for both cases, as values below that
severely impacted the accuracy of the models. Finally, we
also combined both compression approaches by quantizing
the pruned models with 8-bit precision for weights and acti-
vations. Table 1 lists all models and their compressed vari-
ants, stating their test accuracy and memory footprint. We
do not provide a measure of the inference time as it greatly
depends on the execution platform, e.g., if it can exploit the
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Figure 1: Difference (in percentage points) between the con-
fusion matrices for the uncompressed and pruned ResNet-18
trained on GTSRB. Targets and predictions are ordered by
the frequency of the respective class with class 2 being the
most frequent and class 0 being the most infrequent one.

sparseness of the pruned models or if it is optimized towards
floating point or integer computations.

For the evaluation, we additionally generated saliency
maps by computing the gradients for each input pixel regard-
ing the target class and normalizing them to the range [0; 1]
following (Simonyan, Vedaldi, and Zisserman 2014). Since
PyTorch does not support gradient calculation for quantized
tensors, we only generated saliency maps for the original
and pruned variants of the models.

3.2 Results and Discussion
Table 1 shows the test accuracies of all configurations. Most
configurations show only a slight drop in accuracy of less
than 1 percentage point (pp), with the exception of some net-
works quantized with 4-bit weight precision. These are not
considered further in the following sections as their substan-
tial drop in accuracy already implies significant changes.

3.3 Changes at the Class Level
Pruning The accuracy on the entire test dataset did not
reduce significantly after applying pruning for most con-
figurations as Table 1 shows. However, we observe signif-
icant changes at the class level for many configurations,
especially for GTSRB. For instance, Figure 1 shows the
difference between the confusion matrices for the original
and pruned ResNet-18 on GTSRB. While the test accuracy



Architecture Dataset Percentage
Pruned

Uncompressed
Accuracy

Pruning
Accuracy

Difference

4-bit Quant.
Accuracy

Difference

8-bit Quant.
Accuracy

Difference

Pruning +
8-bit Quantization

Accuracy Difference

LeNet GTSRB 54.8% 92.3% -0.4pp -0.4pp -0.2pp -0.7pp
CIFAR-10 39.8% 74.8% -0.5pp -7.9pp -0.1pp -0.6pp

SqueezeNet GTSRB 49.4% 93.0% -0.8pp -2.2pp -0.2pp -0.8pp
CIFAR-10 49.4% 84.5% -0.4pp -4.0pp 0pp -0.4pp

ResNet-18 GTSRB 67.4% 95.4% 0pp -0.2pp -0.1pp -0.1pp
CIFAR-10 72.4% 86.5% 0pp -0.9pp -0.1pp -0.2pp

Table 1: Accuracies on the test dataset for each model and its compressed variants. The column Percentage Pruned states how
much of the respective network was removed and only applies to the Pruning and Pruning + Quantization (8bit) variants.
Significant deviations in accuracy of more than 1pp from the uncompressed model are indicated in bold.

stayed the same, the accuracies and confusions of a few in-
dividual classes change significantly. As an example, class
0 (Speed limit 20km/h) is confused ~8pp more often with
class 1 (Speed limit 30km/h) but on the other hand, class 40
(Roundabout mandatory) is mistaken ~11pp less often as
class 37 (Go straight or left). Furthermore, class 40 is pre-
dicted more accurately by ~11pp whereas the accuracy of
class 0 drops by ~10pp. Many more classes have changes in
the accuracy or confusion in the range of up to 4pp that –
depending on the concrete application – might also be rel-
evant. Upon closer inspection, we find that for class 40 the
correct predictions of the uncompressed model are a proper
subset for the ones of the pruned network. For the remain-
ing samples that were only predicted correctly by the pruned
model, we find that the confidence is between 18pp and 24pp
higher for the pruned model. This means, that for these par-
ticular samples there is a significant difference in how much
support each of the networks generates for them and the in-
crease in the correct predictions for this class by the pruned
model is not just based on slight differences. Figure 2 sum-
marizes the difference in confidence for the predicted class
between the uncompressed and pruned ResNet-18. While
the vast majority of predictions show a similar (≤ 2.5pp)
confidence, for some samples the confidence changes sig-
nificantly, up to 27.5pp. Although this only affects a small
subset of all samples and the overall number of samples that
are predicted differently is small with 0.6%, it is something
to be aware of since it might have been caused by the in-
troduction of additional failure modes. Depending at which
stage of the system development model compression is con-
sidered this might have several implications. In the worst
case, if model compression is performed immediately prior
to the deployment without an extensive verification phase af-
terwards, these failure modes are not addressed, potentially
leading to system failures during operations. But even in
cases, where it is considered before the model verification
it can significantly impact the development. As additional
failure modes must be met with proper mitigation measures
– e.g., in the form of safety monitors or considerations re-
garding the operational domain –, the development process
can be prolonged if model compression is not considered as

integral part of the system development.
For GTSRB, the overall effects regarding pruning are sim-

ilar but more pronounced for LeNet and SqueezeNet com-
pared to the ResNet-18. Here, for some classes the change
in confusion or accuracy is a bit more noticeable with up
to 15pp and the proportion of samples that are predicted
differently is higher with 3.5% and 3% respectively. Also
the mean difference in the confidence for each sample is
significantly increased, even to the extent where a small
fraction of samples for one variant generates full support
for the target class and for the other one none, as Figure
3 highlights. The increase in the observed effects is likely
due to the smaller initial sizes of LeNet and SqueezeNet
compared to the ResNet-18. Although 72% of the ResNet-
18’s connections were pruned, it still has more than 7 times
(SqueezeNet) and 89 times (LeNet) the number of parame-
ters, potentially still containing redundant features.

One important finding on the imbalanced GTSRB is that
pruning did not introduce significant biases against the in-
frequent classes for any of the networks. This also is evident
when considering the diagonal in Figure 1, where no corre-
lation between the change in accuracy and the frequency of
the class is present. It is to mention, that the significant drop
in accuracy for the most infrequent class 0 is only present
for ResNet-18, for the other networks it is not present.

On CIFAR-10, the overall effects of pruning are similar to
GTSRB but significantly less pronounced as Figure 4 shows.
For SqueezeNet and LeNet the change in class-wise accura-
cies does not exceed 2.5pp or 4pp respectively. However, for
these two networks it is to note that the overall number of
samples that are predicted differently by the uncompressed
and pruned variant is increased with 4.2% and 7.2% respec-
tively. Referring to Figure 4 this effect can be explained as
a result of previously wrong predictions that after apply-
ing pruning to the network are still predicted incorrectly but
towards another class. Here, it is to highlight that for the
classes airplane and horse this effect is the most prominent,
with the first one being overall predicted less and the lat-
ter one being predicted more often by the pruned network,
therefore introducing a slight bias respectively against or to-
wards these classes. Overall, the increase in the intra-class
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Figure 2: Difference (in percentage points) between the con-
fidence in the target class for the uncompressed and pruned
ResNet-18 trained on GTSRB. The upper plot shows the dif-
ference where the predictions of the both networks differ, the
lower one where they are equal. In parenthesis we state the
number of samples underlying the respective diagram, e.g.,
the n = 77 in the upper plot shows that for 77 samples the
uncompressed and pruned model yielded a different classi-
fication result.

confusion compared to GTSRB likely can be attributed to
the different complexity of the tasks. While GTSRB has only
very limited inter-class variance – a Speed limit (20km/h)
sign always has the same shape and surface, the differences
in the images stem from different lighting, viewing angles,
etc. – for CIFAR-10 samples from the same class can vary
greatly, increasing the likelihood of confusion.

Lastly, considering ResNet-18 on CIFAR-10, virtually
no difference is observable between the uncompressed and
pruned network. Only two samples are predicted differently
and neither the uncompressed nor the pruned variant arrive
at the correct prediction. Additionally, the confidence differ-
ence regarding the predicted class between both variants in
all cases is ≤ 2.5pp. The likely reason for this similarity is
that although 72.4% of the network have been pruned, the
pruned network still contains enough redundancy to mimic
the initial model and further pruning would be required to
elicit any effects. In turn this also highlights that if pruning
is performed conservatively and not to the absolute limit, i.e.
until even slight changes in the overall accuracy are notice-
able, a compressed variant might be achievable that virtually
mimics the initial network.

Quantization Referring to Table 1, 8-bit quantization
shows very limited impact on the overall accuracy while 4-
bit quantization (with 8-bit activation precision) in half of
the experiments shows a significant drop in accuracy, a com-
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Figure 3: Difference between the confidence in the target
class for the uncompressed and pruned SqueezeNet trained
on GTSRB. The upper plot shows the difference where the
predictions of the both networks differ, the lower one where
they are equal.

mon observation regarding the low precision in combination
with the static post-training quantization scheme (Banner,
Nahshan, and Soudry 2019). For GTSRB, we again observe
changes on the class level introduced by the quantization
– but to a slightly lesser extent compared to pruning, al-
though in most cases also reducing the test accuracy lesser
– as Figure 5 depicts. The same observation can be made
for SqueezeNet and LeNet, where the maximum extent of
the change in confusion or accuracy is up to 6pp or 12pp re-
spectively. Comparing the differences in the confusion ma-
trices for pruned and quantized networks, it is also evident
that classes are not necessarily affected in the same way by
both compression methods. This hints towards the finding
that not only samples that are challenging for the uncom-
pressed model are affected but that the compression tech-
niques can potentially affect any sample. Regarding CIFAR-
10, we again report the overall similar but significantly re-
duced effects compared to GTSRB, as we already observed
for pruning, with the exception that the ResNet-18 also is
slightly affected with changes in confusion and accuracy, up
to 0.6pp.

Comparing 4-bit (with 8-bit activation precision) quanti-
zation to 8-bit quantization for the configurations without a
significant drop in accuracy, we find that the observed effects
are the same but more pronounced for 4-bit quantization. As
already observed when comparing pruning and 8-bit quan-
tization, 4-bit quantization and 8-bit quantization show no
consistent patterns regarding the impacted samples, further
supporting the hypothesis that any sample or class can be
affected.
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Figure 4: Difference between the confusion matrices for the
uncompressed and pruned LeNet trained on CIFAR-10.

Combined Pruning and Quantization Lastly, we com-
bine pruning and quantization, by applying 8-bit quantiza-
tion to the pruned models. As Table 1 shows, this has a
slightly higher impact on the overall drop in accuracy than if
the compression techniques would be applied individually,
which is to be expected. Overall, the same general effects
are observable as if pruning or quantization are applied indi-
vidually as Figure 6 shows. Regarding the effect on individ-
ual classes, patterns present in both compression techniques
are combined, sometimes amplifying, other times canceling
out the effects. Potentially this could lead to drastic effects,
however, in our experiments we did not observe any. Also, it
is noticeable that generally the number of samples where the
uncompressed and the compressed model disagree is slightly
higher than for any of the single compression variants. Gen-
erally speaking, the combination of both compression tech-
niques, however, shows no peculiarities and does not intro-
duce significant additional effects.

3.4 Differences in the Relevance of Input Regions
In addition to the quantitative analysis performed in the pre-
vious section, we also qualitatively investigated the changes
introduced by model compressing. For this, we generated
saliency maps that highlight the salient input regions for a
model’s decision regarding the target class. Since statically
quantized models in PyTorch don’t support gradient calcu-
lation, we only analyze the changes between uncompressed
and pruned model variants. In order to keep the number of
images to analyze manageable, for each configuration we
selected the 20 samples where the biggest difference in the
saliency maps was present. To compare two saliency maps,

2 13 1 38 12 10 4 5 25 9 7 8 3 11 18 35 17 14 31 15 33 26 30 23 28 6 16 34 36 22 39 40 21 42 29 24 20 32 27 37 19 41 0

Prediction

2
13
1

38
12
10
4
5

25
9
7
8
3

11
18
35
17
14
31
15
33
26
30
23
28
6

16
34
36
22
39
40
21
42
29
24
20
32
27
37
19
41
0

T
ar

ge
t

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
Difference in accuracy to uncompressed model [pp]

Figure 5: Difference between the confusion matrices for the
uncompressed and 8-bit quantized ResNet-18 trained on GT-
SRB.

we first performed a 3x3 average pooling with stride 3 over
the saliency maps – to reduce the sensitivity towards pixel-
level changes in the attention, putting a stronger emphasis on
higher-level features – and afterwards computed the Mean
Absolute Deviation (MAD) between the reduced saliency
maps of the uncompressed and pruned model.

Figure 7 shows five selected saliency maps that summa-
rize the observed findings. Overall, we did not observe any
systematic changes between any model and its pruned vari-
ant. For example, in some instances, the pruned model fo-
cuses better on the foreground, giving the correct prediction,
while the original model focuses on the background, classi-
fying incorrectly, as Figure 7a representatively shows. How-
ever, this is not a consistent behavior, and the opposite effect
can be observed as well, e.g., in Figure 7b, where the pruned
model puts too much attention on the sky, classifying the
image as an airplane. Furthermore, even for samples where
both networks predict the same class, we can observe sig-
nificant changes in the salience of different input regions,
i.e, the models weight features differently or even rely on
different ones. While in the previous sections we found vir-
tually no differences between the uncompressed and pruned
ResNet-18 on CIFAR-10, regarding their attention we could
find noticeable differences as Figures 7d and 7e show. This
effect is also not limited to our selected samples, as Figure 8
shows. With an average MAD of 7.7% between the saliency
maps of the uncompressed and pruned ResNet-18, it high-
lights that although the effects of model compression might
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Figure 6: Difference between the confusion matrices for the
uncompressed and the pruned + 8-bit quantized ResNet-18
trained on GTSRB.

not be noticeable at the level of dataset or even class-wise
accuracy, it is definitely important to consider them in safety
analyses, as it might, for example, introduce additional fail-
ures in corner cases where a model bases its decision on the
wrong features.

4 Conclusions and Future Work
In this paper, we investigated changes in the predictions
of networks compressed with either post-training quantiza-
tion, global unstructured pruning, or a combination of both.
While the deviations from the test accuracy of the uncom-
pressed model were minimal, we observed that the compres-
sion techniques still caused significant changes in the predic-
tions. For one thing, we found that the accuracy of individual
classes can change greatly – in our experiments up to 15pp –
and that the confusion between classes can vary to the same
extent. For another thing, our investigation showed that also
the confidence regarding the target class can change signif-
icantly, with extreme cases were the uncompressed model
has zero confidence in the target class while the compressed
variant has full confidence, and vice versa. Lastly, our com-
parison of saliency maps for uncompressed and pruned mod-
els revealed the presence of significant differences, hinting
towards the two variants relying on or weighting features
differently. It is to mention, however, that we did not ob-
serve the introduction of systematic errors, e.g., in the form
of biases against infrequent classes. Nonetheless, based on
the effects we observed, we strongly suggest to view model
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Figure 7: Comparison of saliency maps for the original
and pruned variants of the LeNet and ResNet-18 trained on
CIFAR-10. On the left is the original image with the target
class annotated. Following that are the saliency maps for the
original (middle) and pruned (right) model each annotated
with the prediction of the respective model.
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Figure 8: Distribution of the mean absolute deviations be-
tween the saliency maps of the uncompressed and pruned
ResNet-18 trained on CIFAR-10.



compression as integral part of any ML development cycle
and to consider it in early development stages. Model com-
pression can cause substantial changes in the predictions of
a network and with that bears the potential to introduce ad-
ditional failure modes. These must be addressed in the sys-
tem development and the earlier they are known, the better
mitigation measures can be integrated in the system, overall
facilitating the development process.

Regarding future work, we suggest to expand our ex-
periments also to other model architectures, datasets, and
tasks and to investigate other compression techniques, e.g.,
quantization-aware training, structured pruning, or knowl-
edge distillation, as these are also highly relevant in practice.
Furthermore, we deem it as highly important to further de-
velop methods for systematically and rigorously analyzing
machine learning systems that go beyond averaging metrics,
as these hide many peculiarities that bear the potential for
failures. Lastly, we deem it equally as important to continue
research into the direction of continuous safety assurance
(Burton et al. 2021b) in order to consider safety as integral
part of the development of ML-based systems, addressing
issues such as potentially negative effects due to model com-
pression early on.
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