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Abstract

Transformer based architectures like vision transformers
(ViTs) are improving the state-of-the-art established by con-
volutional neural networks (CNNs) for computer vision tasks.
Recent research shows that ViTs learn differently than CNNs,
that provides an appealing choice to developers of safety-
critical applications for redundant design. Moreover, ViTs
have been shown to be robust to image perturbations. In
this position paper, we analyze the properties of ViTs and
compare them to CNNs. We create an ensemble of a CNN
and a ViT and compare its performance to individual mod-
els. On the ImageNet benchmark, the ensemble shows minor
improvements in accuracy relative to individual models. On
the image corruption benchmark ImageNet-C, the ensemble
shows up to 10% improvement over the individual models,
and generally performs as well as better of the two individual
networks.

Introduction

Machine learning plays an important role in computer vision
applications. Safety critical applications like autonomous
vehicles and robotics increasingly depend on machine learn-
ing for computer vision. Deep neural networks (LeCun,
Bengio, and Hinton 2015) based on Convolutional Neu-
ral Networks (CNN) are well-known and widely used for
their powerful representation. For instance, in the field of
autonomous driving, various CNN models have been used
for object detection and image segmentation algorithms that
serve as perception units to process camera (e.g., Pilot-
Net (Bojarski et al. 2016), Fast RCNN (Wang, Shrivastava,
and Gupta 2017)) and Lidar (e.g., VoxelNet (Zhou and Tuzel
2018)) data. However, the success of CNNs comes at the
cost of restricting the computation to leverage data limited
spatially by using convolutional layers. The performance of
CNNs has gradually saturated, and the ML research com-
munity has been exploring alternative architectures for com-
puter vision.

One of these alternative architectures that challenges
the dominance of CNNs is based on the transformer
model (Vaswani et al. 2017). First proposed for natural lan-
guage processing tasks, transformers have been adapted for
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computer vision tasks by different approaches. For example,
the vision transformer model (ViT) (Dosovitskiy et al. 2020)
uses self-attention layer instead of convolution layers, effec-
tively removing the spatial inductive bias introduced by the
convolution operation and enables the network to use full
image data to its advantage.

The development of safety critical systems relies on strin-
gent safety methodologies, designs, and analyses to prevent
hazards during operation. Automotive safety standards like
1SO26262 (International Standards Organization 2018-12)
and ISO/PAS 21448 (International Standards Organization
2019-01) mandate methodologies for system, hardware, and
software development for automotive systems. Furthermore,
these standards have been extended with best practices to
use machine learning based components in safety critical
systems. Ashmore et al. (Ashmore, Calinescu, and Pater-
son 2019) describe the ML safety lifecycle that establishes
best practices across the ML development cycle from data
management, model selection, training to deployment. Sim-
ilarly, the industry whitepaper titled Safety First for Auto-
mated Driving (Aptiv et al. 2019) specifies techniques for
developing, deploying, and monitoring neural networks for
safety critical systems. In general, these guidelines recom-
mend to identify common causes of failures, avoid over-
fitting to training data, quantify uncertainty in prediction,
and make networks robust to natural perturbations.

Based on these proposals for using machine learning in
safety critical systems, we investigate the behavior of ViTs
in comparison and conjunction with CNNs. We explore
whether CNNs and ViTs could be combined into an en-
semble (Dietterich 2000) for better accuracy. The fact that
ViTs are based on a different architecture than CNNs is
valuable for developing safety-critical systems, as this al-
lows to reason about two independent network models, one
based on convolution and the other on self-attention. We
also investigate the robustness of the ensemble compared
to individual networks. We consider the ImageNet-C bench-
mark (Hendrycks and Dietterich 2019) to create perturba-
tions like gaussian noise, defocus blur, artificially added fog,
and lowered image contrast. The ensemble shows an im-
provement of up to 10% compared to individual networks
on these robustness benchmarks.

The paper is organized as follows. Section 2 describes
the properties of vision transformers, motivating their use



in safety-critical applications and comparing them to CNNss.
Section 3 provides a quantitative analysis of CNNs and ViT
(and their ensemble) on image classification. Section 4 dis-
cusses related work. Section 5 concludes the paper with a
summary of our ongoing work and future directions.

ViTs for Safety

The original transformer model (Vaswani et al. 2017)
for natural language processing takes a sequence of one-
dimensional token embeddings as input, and relies on self-
attention to capture long-range data dependencies. Trans-
formers have become the dominant network architecture for
natural language tasks. A straightforward application of the
transformer model to computer vision tasks would require
attention between every pair of pixels - this does not scale to
realistic image sizes due to quadratic cost in the number of
pixels. The ViT model (Dosovitskiy et al. 2020) avoids this
limitation by reshaping an image into a sequence of flattened
patches of size P x P, reducing the effective sequence in-
put length P? times. Generally, the patch size P is chosen to
be 16 or 32. We now describe desirable properties of neural
network architectures for use in safety-critical applications.
Reusability. Transfer learning (Pan and Yang 2009) is a
commonly used technique for training ML models, where
a model is trained for a particular context, and then re-used
in a different context with limited training data. It is a power-
ful technique that reduces computational effort and increases
confidence in the trained model. CNNs are well suited for
transfer learning since convolutional layers allow to encode
features in the input space. It has been shown (Dosovitskiy
et al. 2020) that ViTs also attain excellent results when they
are trained at sufficient scale and then transferred to new
tasks with relatively fewer datapoints. Especially when pre-
training data is in abundance and transfer data is scarce (few-
shot learning), ViTs outperform state-of-the-art CNNs.
Robustness. For use in safety-critical applications, it is im-
portant that the network is robust against image pertur-
bations. For example, an automotive perception network
trained under sunny weather conditions should perform well
also in rainy and snowing situations. To simulate such ef-
fects, several image corruption benchmarks (Hendrycks and
Dietterich 2019), (Michaelis et al. 2019) have been created
and the performance of different network architecture stud-
ied. Bhojanapalli et al. (Bhojanapalli et al. 2021) investigate
the performance of ViTs and CNNs in images with corrup-
tions like noise and blur. They demonstrate that with a sig-
nificant size of the pre-training dataset, ViTs are at least
as robust as CNNs, and sometimes more robust on artifi-
cially corrupted data. Similarly, Naseer et al. (Naseer et al.
2021) show that ViTs are robust against severe occlusions of
foreground objects and random patch locations compared to
state-of-the-art CNNs.

Detection of Distribution Shift. In addition to robustness
against image perturbations, it is also essential that the net-
work can identify distribution shift during deployment, i.e.
scenarios where the network is observing data that is differ-
ent from its training data - this is because unseen data might
result in incorrect predictions. For example, an automotive
perception network trained to detect pedestrians should be

Model Top-1 Top-5 Top-10
CNN 0.84788 0.97258 0.98678
ViT 0.85152 0.97412 0.98762

CNN + ViT | 0.86710 0.98128 0.99198

Table 1: Comparison of accuracy for CNN and ViT on Ima-
geNet benchmark

able to distinguish cyclists as being different from pedes-
trians. Fort et al. (Fort, Ren, and Lakshminarayanan 2021)
show that pre-trained transformers perform better in detect-
ing out-of-distribution (OOD) samples than CNNs. Also,
transformers are better suited to few-shot outlier exposure
than CNNs, where a network is shown a few outlier samples
in order to improve distribution shift.

Redundancy. Self-attention allows ViTs to integrate global
information about the image even in the lower layers. ViTs
have more uniform representation across layers, preserving
input spatial information. This is contrary to CNNs where
global information is available only in higher layers. More-
over, CNNs have an intrinstic local neighborhood structure
in each layer. The translational invariance in CNNs also in-
troduces an inductive bias. Raghu et al. (Raghu et al. 2021)
show that ViTs and CNNs indeed learn differently, and this
is reflected in their internal structures after training. This
fundamental difference in how ViTs and CNNs learn pro-
vides a powerful tool for redundant design of safety critical
applications. In addition, independent models can be pre-
trained on different datasets and executed on different hard-
ware platforms at runtime. An ensemble of CNN and ViT
can argue the safety based on the fact that the two individ-
ual architectures differ in their detection mechanism (con-
volution and self-attention respectively) and thus the ensem-
ble does not suffer from common-cause failures like an en-
semble of multiple CNNs or multiple ViTs would. For ex-
ample, Bhojanapalli et al. (Bhojanapalli et al. 2021) show
that adversarial perturbations do not transfer across ViTs and
CNNgs.

Quantitative Analysis

We start with an investigation whether CNNs and ViTs can
be combined for more accurate detection. We compare the
accuracy of the individual architecture with the ensemble
model.

We choose the Vision Transformer(ViT) (Dosovitskiy
et al. 2020) and Big Transfer(BiT) (Kolesnikov et al. 2019)
models for our comparsion. The specific ViT that we picked
for our experiments is the largest, publicly available ViT-L
using patches of 16x16 pixels, pretrained at ImageNet21K
and fine-tuned to ImageNet2012 images at resolution of
384x384!. It consists of 307M trainable parameters. Big
Transfer model is a CNN architecture based on well-known

'available here:  gs://vit_models/augreg/L_16-i21k-300ep-
Ir_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0--imagenet2012-
steps_20k-1r_0.01-res_384.npz



(a) Correct label: Mountain (b) Correct label: Remote con-
bike trol

Figure 1: Sample images from ImageNet where the ensem-
ble provides the correct classification and the individual net-
works do not

ResNet networks with a few improvements, enabling it to
be transferable between the datasets similarly to ViTs. Here,
we also picked the biggest available checkpoint called BiT-
M, based on ResNet152x4, pretrained on ImageNet21K and
fine-tuned to ImageNet20122. BiT consists of 937M pa-
rameters. Using these two models, we create an ensemble
model. It combines the output of both CNN and ViT, and
treats them as individual probabilities distribution over all
1000 ImageNet classes. The distributions are then multiplied
element-wise to obtain values proportional to each class’
likelihood. Such approach is just one of many possible tech-
niques to combine the results of models’ inferences. We plan
to research other ensemble models in future work.

Table 1 shows the Top-1, Top-5, and Top-10 accuracy of
the CNN, ViT, and the ensemble. CNN and ViT perform
very similarly, with ViT being consistently slightly better,
while an ensemble performs better across all metrics, signif-
icantly at Top-1.

Next, we investigate examples where the ensemble of
CNN and ViT predicts the correct class (Top-1), while the
individual models do not. Figure 1 shows two such exam-
ples. Figure 1a shows a bicycle handlebar where a large part
of the bike is outside the image. This poses a challenge to
correctly comprehend the image. Figure 1b shows an old re-
mote control for an Apple device. We see its back, what is an
unusual way of presenting the remote control. It’s also not
common to see such remotes as most of us associate Apple
and its logo with iPhones and MacBooks.

Table 2 provides the softmax probabilities for the top-5
predictions per network for these examples. We observe that
both networks predict different class (top-1) for both cases,
while the correct prediction appears in the top-5 of both net-
works. We also observe that for the remote control, the CNN
predicts it as a hard disc with significantly high probability
(0.48), whereas the ViT does not predict it as a hard-disc in
the top-5 predictions.

Robustness. Next, we ask the question: how robust are
ViTs to perturbations for image classification in comparison
to CNNs and can we somehow leverage their unique ways

Zavailable here:
ilsvrc2012_classification/1

https://tthub.dev/google/bit/m-r152x4/

Correct label | CNN ViT

for image
(joystick, 0.19682) | (microphone,
0.15267)
Mountain bike g.ri%l;r;tg)in bike, | (tripod, 0.05060)
(disk brake, | (stopwatch,
0.11440) 0.03436)
(tripod, 0.07354) (mountain  bike,
0.02978)

(screw, 0.06855) (joystick, 0.02686)

(hard disc, | (iPod, 0.27300)
0.47829)

Remote control grzrél(())g : control, | (packet, 0.18125)
(pencil box, | (remote control,
0.04867) 0.15923)

(modem, 0.01540) | (modem, 0.14748)

(hand-held com-
puter, 0.03882)

(cellular tele-
phone, 0.01256)

Table 2: Top-5 predictions and probabilities for the samples
in Figure 1

of comprehending the image to our advantage with the en-
semble?

We continue to work with the ViT and BiT models men-
tioned earlier, but we choose a different checkpoint for the
ViT?, as we change the images resolution from 384x384 to
224x224. The respective BiT model in our analysis has a de-
graded performance as there is no checkpoint available for
smaller images.

To validate the performance on the corrupted data, we
have chosen ImageNet-C dataset (Hendrycks and Dietterich
2019) and selected a few corruptions: Gaussian noise, defo-
cus blur, contrast and fog. For each corruption, we prepro-
cessed the data with the highest level of corruption sever-
ity (sample image can be seen in Figure 2. The corruption
was applied to original ImageNet images by TensorFlow
dataset.*). We use first 10% of the ImageNet validation data
(5000 images) with aforementioned corruptions added. We
took pre-trained checkpoints mentioned in the section above
and run inference using NVIDIA Quadro A6000 GPU.

Table 3 compares the Top-1, Top-5, and Top-10 accuracy
of BiT, ViT, and their ensemble. For every corruption except
Gaussian noise, the ensemble is superior to both CNN and
ViT working separately, while in case of the Gaussian noise
it is slightly worse. It is also interesting how the individual
models perform on various corruptions: ViT is much better

Savailable here:  gs://vit_models/augreg/L_16-i21k-300ep-
Ir_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0--imagenet2012-
steps_20k-1r_0.01-res_224.npz

“https://www.tensorflow.org/datasets/catalog/imagenet2012_
corrupted



at Gaussian noise and fog, while it seems to be on par with
CNN on defocus blur, and performs worse in the contrast
corruption.

Related work

Since the introduction of ViTs in 2020, their properties have
been extensively studied. Naseer et al. (Naseer et al. 2021)
observe that ViTs are resilient to domain shifts and occlu-
sions. Bhojanapalli et al. (Bhojanapalli et al. 2021) show
robustness of ViTs against adversarial and natural perturba-
tions. Fort et al. (Fort, Ren, and Lakshminarayanan 2021)
study the performance of vision transformers on out-of-
distribution detection. Ranftl et al. (Ranftl, Bochkovskiy,
and Koltun 2021) use vision transformers for monocu-
lar depth estimation and semantic segmentation. Raghu et
al. (Raghu et al. 2021) investigate the difference between the
learning representation of ViTs and CNNs. There have also
been architectures that combine CNNs and ViTs. For exam-
ple, CNNs meet Transformers (CMT) (Guo et al. 2021) is
an architecture where the input image is fed into a sequence
of convolutional blocks for fine-grained feature extraction,
followed by CMT blocks (transformer with depth-wise con-
volution) for representation learning.

Conclusion

We investigated how the introduction of vision transformers
as an alternative to CNNs impacts network design in safety
critical systems for computer vision. We compare CNNs and
ViTs as well as their ensemble on image classification tasks.
We also show that for many common image corruptions,
ViTs are relatively more resilient than CNNs. Moreover,
an ensemble of a CNN and a ViT provides up to 10%
higher accuracy than individual networks on the corruptions
provided in the ImageNet-C benchmark.

Ongoing and future Work. Vision transformers are an
exciting development for safety-critical applications of
computer vision. Not only do they learn differently from
CNNgs, but also are more robust against natural and adver-
sarial perturbations. We believe that vision transformers
alone or in conjunction with CNNs need to be extensively
investigated to develop stronger safety guarantees of ML
based components. This is ongoing work, and we continue
to investigate the following:

* How does the performance of transformers compare
to CNNs on object detection benchmarks with and
without corruption? We plan to use the corruption
datasets (Michaelis et al. 2019) corresponding to com-
mon object detection benchmarks like Pascal, Coco,
Cityscapes, and compare the performance of transformer
based object detection networks like Swin (Liu et al.
2021) to CNNs. We also plan to combine Swin with CNN
models and use ensemble techniques for object detec-
tion (Wei, Ball, and Anderson 2018).

* How good are vision transformers for detection distribu-
tion shift after deployment? We are investigating the per-
formance of transformers on automotive benchmarks for

OOD detection (Nitsch et al. 2021) with different met-
rics like maximum over softmax probabilities and Ma-
halanobis distance. We plan to compare zero-shot versus
few-shot OOD detection for different architectures.

* How to implement redundant design in resource-
constrained systems? The current performant ViTs are
large, and challenges exist in scaling performance to
smaller models (Liu et al. 2021) that are robust as well
as suitable for resource-constrained domains like auto-
motive and robotics. In future work, we plan to address
these challenges.

References
Aptiv; Audi; Baidu; BMW; Continental; Daimler; FCA;
Here; Infineon; Intel; and Volkswagen. 2019. Safety First
For Automated Driving. In Safety First For Automated Driv-
ing, 116-132.
Ashmore, R.; Calinescu, R.; and Paterson, C. 2019. Assur-
ing the Machine Learning Lifecycle: Desiderata, Methods,
and Challenges. CoRR, abs/1905.04223.
Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D
Unterthiner, T.; and Veit, A. 2021. Understanding
Robustness of Transformers for Image Classification.
arXiv:2103.14586.
Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316.
Dietterich, T. G. 2000. Ensemble Methods in Machine
Learning. In Multiple Classifier Systems, 1-15. Berlin,
Heidelberg: Springer Berlin Heidelberg. ISBN 978-3-540-
45014-6.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Fort, S.; Ren, J.; and Lakshminarayanan, B. 2021.
Exploring the Limits of Out-of-Distribution Detection.
arXiv:2106.03004.
Guo, J.; Han, K.; Wu, H.; Xu, C.; Tang, Y.; Xu, C.; and
Wang, Y. 2021. CMT: Convolutional Neural Networks Meet
Vision Transformers. arXiv:2107.06263.
Hendrycks, D.; and Dietterich, T. 2019. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. In International Conference on Learning Represen-
tations.
International Standards Organization. 2018-12. ISO 26262:
Road Vehicles - Functional Safety, Parts 1 to 11. In Road
Vehicles - Functional Safety, Second Edition.
International Standards Organization. 2019-01. ISO/PAS
21448: Road Vehicles - Safety of the intended functional-
ity. In Road Vehicles - Safety of the intended functionality.
Kolesnikov, A.; Beyer, L.; Zhai, X.; Puigcerver, J.; Yung,
J.; Gelly, S.; and Houlsby, N. 2019. Large Scale Learn-
ing of General Visual Representations for Transfer. CoRR,
abs/1912.11370.



(a) Original image

(b) Gaussian noise

(c) Fog

(d) Defocus Blur
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