
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Mathieu Godbout 1, 2, 3, Maxime Heuillet 1, 2, Sharath Chandra Raparthy 3,

Rupali Bhati 1, 2, 3, Audrey Durand 1, 2, 3, *,
1 Université Laval, 2 Institut Intelligence et Données, 3 Mila, * CIFAR AI Chair

{mathieu.godbout.3@, maxime.heuillet.1@, rupali.bhati.1@, audrey.durand@ift}.ulaval.ca, raparths@mila.quebec

Abstract

Most Reinforcement Learning (RL) approaches usually aim
to find a policy that maximizes its expected return. However,
this objective may be inappropriate in many safety-critical
domains such as healthcare or autonomous driving, where it
is often preferable to optimize for a risk-sensitive measure
of the policy’s return as the learning objective, such as the
Conditional-Value-at-Risk (CVaR). Although previous litera-
ture exists to address the problem of learning CVaR-optimal
policies in Markov decision problems, it mostly relies on the
distributional RL perspective. In this paper, we solve this
problem by rather proposing an approach based on a game
theoretic perspective, which can be applied on top of any ex-
isting RL algorithm. At the core of our approach is a two-
player zero-sum game between a policy player and an adver-
sary that perturbs the policy player’s state transitions given a
finite budget. We show that, the closer the players are to the
game’s equilibrium point, the closer the learned policy is to
the CVaR-optimal one with a risk tolerance explicitly related
to the adversary’s budget. We provide a gradient-based train-
ing procedure to solve the proposed game by formulating it
as a Stackelberg game, enabling the use of deep RL architec-
tures and training algorithms. We illustrate the applicability
of our approach on a risky artificial environment, presenting
the different policies learned for various adversary budgets.

1 Introduction
Reinforcement Learning (RL) (Sutton, Barto et al. 1998) is
a branch of machine learning where the learner (agent) is
not told how to behave in an environment, but instead must
learn to do so by trial and error. RL approaches usually aim
to find agents that maximize their expected return. This ex-
pectation maximization objective has led to increased suc-
cesses in domains like videogames (Vinyals et al. 2019),
board games (Silver et al. 2018) or content recommenda-
tion (Li et al. 2010). However, in safety-critical domains like
healthcare, autonomous driving or financial planning, some
erroneous actions may lead to disastrous consequences. In
healthcare for instance, an RL agent may be in charge of de-
signing the shortest path to an organ for surgery. In this task,
some paths may be shorter but at the same time may be risk
endangering the patient as they are too close to an artery,

Copyright © 2022 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC
BY 4.0).

a nerve or a critical region of the brain (Baek et al. 2018).
Automation in this context and other safety-critical domains
can only come if the agent is able to successfully reach its
goal while avoiding the most risky actions (Gottesman et al.
2019). Therefore, naively maximizing the expected return is
not a satisfying approach in such scenarios.

This has motivated the community to design risk-sensitive
algorithms, where the agent is trained to account for the pos-
sibility of catastrophic events. One way to proceed is to in-
clude a risk measure (Artzner et al. 1999) in the algorithm’s
objective. A commonly used risk measure in RL is the Con-
ditional Value-at-Risk (CVaRα), defined as the expectation
over the worst α-quantile of a distribution. The lower the
value of α, the more risk-averse the agent. The search for
CVaR-optimal policies, usually referred to as CVaR RL, is
typically achieved with distributional RL (Schubert et al.
2021; Keramati et al. 2020). In this approach, the agent pre-
dicts the whole distribution of returns rather than only its
mean (Bellemare, Dabney, and Munos 2017; Dabney et al.
2018). A CVaRα transform is then applied to the predicted
distribution, resulting in more conservative choices depend-
ing on the chosen α threshold.

In this work, we rather tackle the CVaR RL problem
in a game-theoretic setting. Looking at a problem from a
game-theoretic perspective has helped advance other fields
like Generative Adversarial Networks (GANs) (Berthelot,
Schumm, and Metz 2017; Goodfellow et al. 2020), suggest-
ing that this perspective is a promising new research avenue
for risk-sensitivity in RL. Precisely, we suggest that learn-
ing the policy of the RL protagonist (agent) can be cast as a
two-player zero-sum game between this protagonist and an
antagonist. In this game, the protagonist aims at maximizing
its reward collection, while the goal of the antagonist is to
minimize the rewards obtained by the protagonist. In order
to achieve this, the antagonist has access to a fixed budget for
interfering with the next state transitions of the protagonist.
Our contributions are the following:

• we propose a two-player zero-sum game formulation
which yields (approximate) CVaR-optimal policies at its
(approximate) equilibrium;

• we provide a gradient-based algorithm to solve the pro-
posed game alongside sufficient conditions to ensure its
convergence;

• we illustrate the applicability of our method in a risky
artificial experiment.

The rest of the paper is separated as follows. Section 2
first introduces the necessary background and notation. Fol-
lowing is an overview of the related work in Section 3. Next,
we present in Section 4 an overview of our proposed game
formulation alongside its relevant properties, which include
the convergence to a CVaR RL policy at equilibrium point.
In Section 5, we develop a gradient-based algorithm based
on the Stackelberg game formulation to solve the presented
game, presenting both a theoretical analysis of its conver-
gence as well as key practical concerns. Lastly, we illustrate
the validity of the method in an artificial gridworld experi-
ment (Section 6).

2 Background and Notation
Reinforcement Learning
In RL, an agent interacts with an environment, trying to
identify actions that lead to the highest rewards. The most
common RL formulation for the environment is that of a
Markov Decision Process (MDP) framework. An MDPM
is represented by a tuple 〈S,A,P,R, γ, ρ〉, where S is the
state space, A is the action space, P : S × A → [0, 1]S is
the transition probability function which governs the evolu-
tion of the system, R : S × A → R is the reward function,
γ ∈ [0, 1) is a discount factor and ρ is the initial state dis-
tribution. We formalize an agent’s decisions as following a
policy πθ : S → [0, 1]A that generates distributions over
which actions to take for each state from parameters θ1.

A policy’s actions not only generate immediate rewards
but also influence future rewards because they rule the next
state the agent will end up in. This is why the performance of
a policy π is measured by balancing immediate and distant
rewards, using a measure called the random return:

J (π) :=

∞∑
t=0

γtrt, (1)

where γ is a discount factor, at ∼ π(st), st+1 ∼ P(st, at)
and rt ∼ R(st, at). Due to the stochasticity that may be
present in either the reward function, the policy’s action
selection or the environment transitions, the random re-
turn J (π) is accurately defined as a random variable. The
usual objective in RL is to find the policy π∗ that maxi-
mizes its expected return, which boils down to finding π∗ =
arg maxπ E[J (π)].

Conditional-Value-at-Risk
Let Z be a random variable with a bounded expectation
E[Z] < ∞ and cumulative distribution function F (z) :=
P(Z ≤ z). In this paper, we interpret Z as a return to be
maximized. The Value-at-Risk (VaR) at confidence level
α ∈ (0, 1] represents the worst 1 − α quantile of Z,
i.e., VaRα(Z) := min{z|F (z) ≥ α}. Analogously, the

1For ease of notation, we will only write π when it is clear that
we are talking about a parametrized policy πθ . This applies for any
parametrized function throughout the paper.

Conditional-Value-at-Risk (Artzner et al. 1999) at confi-
dence level α is defined as

CVaRα(Z) := min
w∈R

{
w +

1

α
E [max(Z − w, 0)]

}
. (2)

If Z has a continuous distribution, the CVaR measure can be
written as

CVaRα(Z) := E [z | z ≤ VaR(Z)] . (3)

Intuitively, the CVaRα(Z) measure can therefore be viewed
as the mean over the α-quantile worst values of Z. Since
Z represents returns in our case, the worst values of Z can
be seen as the ones where most risk has been incurred. This
last interpretation is particularly attractive, as it makes the
CVaRα easy to understand for non-experts who might be
involved in the design of any risk-sensitive model in safety-
critical domains.

CVaR Reinforcement Learning
To measure the level of risk associated with a policy π, the
CVaRα measure defined in (3) can be applied to the random
discounted return J (π) defined in (1). Optimizing for this
yields the CVaR RL objective

π∗ = arg max
π

CVaRα (J (π)) . (4)

This objective, which differs from the traditional expectation
maximization goal, can be viewed as finding a risk-sensitive
policy. Indeed, by having the optimal CVaRα return, the op-
timal policy π∗ is maximizing the expectation over its worst
α-percentile trajectories. Since the expectation is now taken
over a small, disadvantageous subset of all returns rather
than over all of them, the optimal policy is more sensible
towards avoiding the probability of large negative returns.
In practice, this means that optimizing for the CVaR RL ob-
jective (4) will produce policies that accept to reduce their
expected performance, so long as it means they avoid catas-
trophic trajectories in return.

Let us take a moment to note here that it is well known
that the optimal policy π∗ for the CVaR RL objective can
be history-dependent (Shapiro, Dentcheva, and Ruszczyński
2014), meaning that there are cases where the agent needs
to know what previous rewards were collected to achieve
CVaR optimal returns. We follow previous work on CVaR
RL (Keramati et al. 2020; Dabney et al. 2018) and limit our
analysis to stationary, history independent policies which
can be suboptimal but typically achieve high CVaR nonethe-
less.

3 Related Work
Adversarial Reinforcement Learning
Although typically used in the supervised learning setup, ad-
versarial learning (Kurakin, Goodfellow, and Bengio 2017)
has already been applied in RL with the aim of increasing
task difficulty. Dennis et al. (2020); Tobin et al. (2017) use
an adversary to design hard environment instances in order
to optimize the robustness of the policy learned by a RL pro-
tagonist. This is achieved by allowing the adversary to select

a different environment from a constrained set at the begin-
ning of each episode. The adversary is therefore limited to
a single move (at the beginning of each episode) and its ac-
tions are not budgeted.

More similar to the current work, Mandlekar et al. (2017)
use an adversary to perturb the action selection policy of a
RL protagonist at every time step. However, their adversary
consists in gradient-based perturbations which do not adapt
to the policy of the protagonist. In the formulation tackled
in the current work, the antagonist strategy is jointly learned
with the protagonist strategy, resulting in an antagonist strat-
egy adapted to battle the protagonist.

Risk-Sensitive RL
Broadly speaking, risk-sensitivity in RL represents the en-
semble of methods that aim at reducing the level of risk
associated with the learned policy. Different risk measures
have been proposed in the literature to address this problem.

First, numerous approaches have been proposed to explic-
itly balance the expectation and variance of the return of a
policy (Tamar and Mannor 2013; Pan et al. 2019). Contrary
to our CVaR objective which only assumes the returns to be
bounded, such approaches are valid only under the assump-
tion that returns follow a normal distribution.

One other popular alternative to incorporate risk-
sensitivity is the use of exponential utility functions (Mi-
hatsch and Neuneier 2002; Fei et al. 2020). In these ap-
proaches, the return landscape is reshaped into a convex
set, essentially achieving balance between expectation and
worst-case maximization of the return. The reshaping is
based on applying an exponential function and is regulated
by a user-specified λ trade-off parameter. However, it is dif-
ficult to interpret what different values of λ represent regard-
ing the balance between mean and minimal return (Gosavi,
Das, and Murray 2014), in contrast with the straightforward
interpretation of our proposed CVaR measure.

Conditional-Value-at-Risk RL
Many algorithms have been proposed to find optimal poli-
cies with respect to the CVaR criterion. Proposed algo-
rithms range from policy gradient (Tamar et al. 2015) andQ-
learning (Chow et al. 2015), to actor-critic methods (Tamar
and Mannor 2013). Unlike our algorithm that is compati-
ble with modern deep learning, the above approaches are all
limited to either tabular or low-dimensional action and state
space settings.

More recently, distributional RL (Bellemare, Dabney, and
Munos 2017; Dabney et al. 2018) has been used to learn
CVaR optimal policies in high-dimensional settings (Kera-
mati et al. 2020; Zhang and Weng 2021). This approach has
seen growing usage, largely due to the empirical efficiency
of distributional RL and its ability to incorporate a wide va-
riety of risk measures in its objective, not exclusively the
CVaR. Instead of relying on distributional RL, our paper
presents a game-theoretic perspective which can be used on
top of any conventional RL algorithm.

The closest work to ours would be Robust Adversarial Re-
inforcement Learning (RARL) (Pinto et al. 2017), where a
CVaR optimal policy is learned by allowing an antagonist

to apply external forces or disturbances to the environment
model. Their antagonist’s action space is however rather
different, as it can only change parameters of the model
within a given range at every time step. In contrast, our
approach lets the antagonist explicitly change the model’s
transition probabilities and we limit the antagonist’s pertur-
bation amount over a whole trajectory rather than at every
time step. Moreover, unlike their CVaR formulation which
is essentially only intuitive, we establish a clear, theoreti-
cally justified, connection between our antagonist’s budget
and the α-quantile the protagonist’s policy is optimized for.

4 Game Setting
Before diving into the explanation of our proposed adversar-
ial game, let us first present the two assumptions necessary
on the target MDP for the game to be applicable.

Assumption 1. The MDP has stochastic state transitionsP .

The stochasticity is required because it is precisely upon
those state transitions that the antagonist will be acting.
This assumption is the least restrictive, as a large number
of MDPs are already stochastic in nature. Furthermore, any
deterministic transition function P could be made stochastic
by adding a noise component, either via ε-random sampling
for discrete states or adding a Gaussian noise ε ∼ N (0, σ)
for continuous states.

Assumption 2. It is possible to access the state transitions
P and arbitrarily modify their non-zero values.

This assumption is the one that allows the antagonist’s
actions to be registered. This is a much more restrictive as-
sumption and is only likely to be met in artificial environ-
ments over which the user has a lot of control. Notably, given
an MDP with added noise as described above, it should be
relatively straightforward to meet this assumption by access-
ing the analytical formulation of the added noise component.

Formulation
We aim to learn a risk-sensitive policy with respect to the
CVaR risk measure. To do so, we leverage Chow et al.
(2015)’s model perturbation framework. Namely, we design
a zero-sum adversarial game where a protagonist tries to
learn a policy πθ to maximize its return while an antagonist
tries to learn a perturbation function Λω that instead mini-
mizes the protagonist’s return.

To explain our game setting, let us first define time step
transition dynamics Pt = P(· | st, at) ∈ [0, 1]|S| from a
given trajectory τ = {(st, at, rt)}Tt=1, where T is the trajec-
tory’s duration. At time step t, the antagonist is given direct
access to Pt and allowed to perturb it with a multiplicative
probability perturbation δt ∈ (0,∞)|S|, yielding perturbed
transitions P̂t = Pt ◦ δt, for ◦ the Hadamard (pointwise)
product. A perturbation δ is admissible if it generates a valid
probability distribution P̂ . Let ∆t be the set of all perturba-
tions δt admissible for a given Pt and ∆ = ∆1× ...× ...∆T

be the set of all possible perturbations of a trajectory τ . We
can define a trajectory perturbation budget η ≥ 1 and con-
strain ∆η to contain only perturbations within an η budget

by posing the admissible perturbation envelope
∆η =

{
∆ = {δt}Tt=1 | δ1(s1) ∗ ... ∗ δT (sT) ≤ η

}
, (5)

where δt(si) represents the antagonist’s perturbation to-
wards next state si at time step t. Note here that, since per-
turbations are multiplicative in nature, η = 1 represents an
empty budget, meaning that the antagonist could not apply
any modifications to next state transitions.

This definition and limitation of the antagonist’s actions
enjoy two principal interesting properties. First, since the
antagonist is only given a limited budget for each trajec-
tory, they have to be efficient with their perturbations, trying
to maximize the damage to the protagonist’s return without
wasting their budget. Intuitively, the role of the budget can
be seen as a way to ensure that the antagonist cannot force
the worst possible scenario to occur at every time step. Sec-
ondly, the fact that the antagonist perturbations are done via
a Hadamard product constrains the perturbations to states
with non-zero transition probability by default. Essentially,
this means that the antagonist is only allowed to modify the
distribution over next states that were already reachable.

The main idea of this paper is that an antagonist Λ can be
learned to select perturbations within the admissible pertur-
bation envelope ∆η defined in (5), attempting to minimize
the protagonist π’s reward. Combining the protagonist and
antagonist naturally produces the two-player zero-sum game

max
π

min
Λ

E [J η(π,Λ)] , (6)

where E[J η(π,Λ)] represents the expected return collected
from a protagonist π with admissible perturbations sampled
from an antagonist Λ respecting a budget η. Interestingly
enough, this formulation implies that both players’ goals are
to respectively minimize and maximize the expected return,
retrieving the classical RL objective. This notably means
that any classical RL algorithm like actor-critic methods or
Deep Q-Network may be used without fundamental changes
for our game. Moreover, the embedded flexibility of the
game also allows for the underlying MDP to have contin-
uous action and/or state spaces.

We note that both the protagonist and antagonist players
are well defined under the MDP framework for a shared
environment. On one hand, the protagonist player’s MDP
remains exactly the same, with the only modification that
next states are sampled from P̂t rather than Pt. On the other
hand, the antagonist receives as input states s′t = (Pt, ηt) ∈
S ′ = [0, 1]|S| × [1,∞) and outputs perturbed transitions
P̂t = Pt ◦ δt subject to P̂t being a distribution over next
states and δt(s) ≤ ηt for all states. Next antagonist states
s′t+1 are selected by first sampling the next protagonist state
st+1 from P̂t, then sampling the next protagonist action
at+1 from π(st+1), and finally observing the next transi-
tion distribution Pt+1. Lastly, since the game is zero-sum,
the antagonist’s reward is simply−rt+1. An overview of the
interaction between the protagonist, antagonist and environ-
ment is shown in Figure 1.

Connection to CVaR RL
The solution concept to the game (6) is given by its Minimax
Equilibrium.

Protagonist

Environment

Antagonist

at

rt+1

st

rt

st+1

Ptηtδt−rt+1

Figure 1: Overview of the proposed game’s interaction loop.
Components that deviate from the standard RL training loop
are in red.

Definition 1. (Minimax Equilibrium). A Minimax Equilib-
rium (π∗,Λ∗) is defined as a point where

E [J η(π,Λ∗)] ≤ E [J η(π∗,Λ∗)] ≤ E [J η(π∗,Λ)] , (7)

for which the inequalities hold for any other protagonist π
or antagonist Λ.

At this equilibrium point, we have the following interest-
ing result.
Lemma 1. Suppose πθ and Λω are expressive enough
player parametrizations, meaning that they can represent
the optimal players π∗ and Λ∗. Then, at a Minimax Equilib-
rium point (π∗,Λ∗), the protagonist’s policy π∗ is CVaRα
optimal for α = 1

η , where η is the antagonist Λ’s perturba-
tion budget:

max
π

min
Λ

E [J η(π,Λ)] = max
π

CVaR 1
η

[J (π)] .

Proof. Proposition 1 from Chow et al. (2015) established
that

inf
Λ′

E [J η(π,Λ′)] = CVaR 1
η

[J (π)] .

If the parametrization of the antagonist Λ is expressive
enough, the inf operation will return an antagonist in the
search space, implying that one can look for the best avail-
able antagonist for a protagonist to find the CVaR of its re-
turns. The result follows by taking the max over all possible
protagonists, where we once again use the fact that π is ex-
pressive enough to guarantee the existence in the parameter
search space.

The result in Lemma 1 is satisfying in two ways. First,
it directly connects our adversarial framework to risk-
sensitivity for the learned protagonist policy, even though
the protagonist and antagonist’s objectives remain axed on
expectation maximization. Secondly, the equation estab-
lishes that the α confidence interval in the CVaRα objective
is directly linked to the budget perturbation η via α = 1

η .
Given our parametrized setting where players are learned

rather than exactly computed, we are actually more inter-
ested in the notion of approximate equilibrium, which is
more likely to be encountered in practice.

Definition 2. (ε-Minimax Equilibrium). Let V ∗ :=
E [J η(π∗,Λ∗)], the value at the Minimax Equilibrium
(π∗,Λ∗). An ε-Minimax equilibrium is a pair of players
(π′,Λ′) where

V ∗ −min
Λ

E [J η(π′,Λ)] ≤ ε

and max
π

E [J η(π,Λ′)]− V ∗ ≤ ε (8)

Interestingly, this approximate equilibrium yields an ap-
proximately CVaR-optimal policy.

Theorem 1. Suppose πθ and Λω are expressive enough
player parametrizations. Then, at an ε-Minimax Equilib-
rium point (π′,Λ′), the protagonist’s policy π′ is at most
ε-suboptimal:

max
π

CVaR 1
η

[J (π)]− CVaR 1
η

[J (π′)] ≤ ε

Proof. Taking the first inequality in (8), we have

V ∗ −minΛ E [J η(π′,Λ)] ≤ ε
⇐⇒ V ∗ − CVaR 1

η
[J (π′)] ≤ ε

⇐⇒ maxπ CVaR 1
η

[J (π)]− CVaR 1
η

[J (π′)] ≤ ε,

first leveraging Proposition 1 from Chow et al. (2015) and
then using Lemma 1.

5 Gradient-based algorithm
Having established the favorable properties of an approxi-
mate equilibrium of our proposed game, we only need to
find an algorithm that can reliably reach it. First note that,
in order for the algorithm to be able to tackle challeng-
ing problems, we wish both players to be used with high-
capacity function approximators such as neural networks.
Therefore, the algorithm we are looking for should not only
converge towards the Minimax Equilibrium, but also do so
using gradient-based updates.

However, computing the solution to the minmax game
in (6) for players represented by neural networks is not a
simple task. Indeed, the dependence of each player’s re-
ward on the other makes the optimization objective non-
stationary (Fiez, Chasnov, and Ratliff 2020), hampering
naive gradient-based algorithms’ convergence properties. To
this end, we propose to view our game as a Stackelberg
game (Von Stackelberg 2010), which allows us to derive
well-defined gradient-based algorithms.

Stackelberg Algorithm
An essential step to achieve stable learning of the game is to
take into account the game’s structure in the parameter up-
dates. Although there aren’t good gradient-based optimiza-
tion updates specifically designed for minimax games like
ours, such updates do exist for Stackelberg games. We there-
fore cast our game under the Stackelberg formulation, allow-
ing us to derive our desired gradient updates.

A two-player Stackelberg game is an asymmetric game
played with a leader l and a follower f . Both players aim
to maximize their respective payoff functions ul(θl, θf) and

uf (θl, θf), where θ represents the parameters of a given
player. The particularity in this game is that the follower’s
parameters always represent a best-response with respect to
the leader’s parameters. Accordingly, the leader can then
pick its parameters by taking for granted that the follower’s
parameters will be optimal with respect to them. This yields
the following optimization problem for the leader

θl ∈ arg max
θ

{
ul(θ, θ

′

f)

∣∣∣∣∣ θ′

f ∈ arg max
θf

uf (θl, θf)

}
,

and for the follower

θf ∈ arg max
θ

uf (θl, θ).

The key intuition to note here is that, since the follower al-
ways has optimal parameters with respect to the leader, then
the follower parameters may be seen as an implicit function
taking as input the leader’s parameters θf (θl). In turn, this
allows the leader to exploit this optimal-response form of its
follower to update its own parameters towards its own goal.

Intuitively, updating both player’s parameters may be
viewed as a bi-level optimization procedure. In order to
solve a Stackelberg game, we can therefore simply alternate
between solving each player player’s respective optimiza-
tion problem, producing a simple yet effective algorithm.

As Stackelberg games are a generalization of minimax
games such as ours, this Stackelberg algorithm only requires
us to establish a leader and a follower to be able to find our
game’s equilibrium. We arbitrarily select the protagonist as
the leader and the antagonist as their follower, but show in
the following convergence analysis that this choice can be
reversed without problem.

Convergence Analysis
Given some assumptions on the environment MDP, the
Stackelberg algorithm described previously converges to the
equilibrium of our game.

Assumption 3. The reward function R and all transition
functions P are both smooth and convex.

Assumption 3 is quite restrictive in practice. Indeed, while
the smoothness portion of it is likely to hold in practice, e.g.
many real-world environments like robotics can be consid-
ered smooth (Pirotta, Restelli, and Bascetta 2015) and the
same can be said about neural networks with ReLU acti-
vations (Petersen and Voigtländer 2018), the convexity as-
sumption is much less likely to hold. We however wish to
emphasize that previous work (Pinto et al. 2017; Perolat
et al. 2015; Patek 1997) also uses this assumption in the con-
text of minimax objectives and still obtain good empirical
results, even when the convexity assumption is not met.

When Assumption 3 is met, we have the following lemma.

Lemma 2. The expected return E[J η(π,Λ)] is convex with
respect to π and concave with respect to Λ.

Proof. This follows from the convexity ofR and all P .

Building upon Lemma 2, we have the following theorem.

Theorem 2. The proposed Stackelberg algorithm will con-
verge towards the Minimax Equilibrium of the game.

Proof. This is a well-known result for Stackelberg games
in the two-player zero-sum setting with a convex-concave
playoff function (see Fiez, Chasnov, and Ratliff (2020)), a
condition guaranteed by Lemma 2.

Remember that the (approximate) Minimax Equilibrium
of the game contains a CVaR (approximately) optimal pol-
icy. It follows that Theorem 2 constitutes the proof that our
overall framework (the game and the proposed algorithm),
is indeed a theoretically justified way to attain a CVaR opti-
mal policy. A last theoretical result follows from the game’s
convex-concave objective.
Corollary 1. For the proposed game, we have

min
Λ

max
π

E [J η(π,Λ)] = max
π

min
Λ

E [J η(π,Λ)] .

Proof. This follows from the convexity of the payoff func-
tion E [J η(π,Λ)] (Lemma 2), which allows us to apply the
minimax theorem (Sion 1958), inversing the min and max
terms.

This last corollary is of separate interest, as it notably im-
plies that the Stackelberg algorithm can take any of the play-
ers as its leader.

Practical Considerations
In practice, we adopt a few relaxations of the exact Stack-
elberg algorithm described above. The adopted relaxations
have proven effective in domains like GANs (Heusel et al.
2017; Metz et al. 2017) or model-based RL (Rajeswaran,
Mordatch, and Kumar 2020), to name a few. Precisely, we
(i) implement the almost optimal updates of the follower by
doing Kant > 1 gradient steps of the antagonist (follower)
before updating the protagonist (leader). Also, we (ii) use
the first-order approximation of the joint gradient to update
the leader rather than the computationally expensive true Ja-
cobian term.

Another important consideration is the fact that the pro-
tagonist needs to output perturbations within the admissible
perturbation envelope for every collected trajectory. To do
so, we propose to simply keep track of the remaining antag-
onist budget after every time step t, updating it according
to the realized perturbation (consumed budget) δt(st+1). A
convex transformation and a rescaling function are applied
to the budget predictions in order to constrain the predic-
tions to give a probability distribution when multiplied with
the state probability. A pseudocode of the overall algorithm
incorporating all the above relaxations can be seen in Algo-
rithm 1.

6 Experiments
We conduct experiments on a variation of the Gym Min-
igrid Lava environment (Chevalier-Boisvert, Willems, and
Pal 2018) displayed in Figure 2. In our environment, a pro-
tagonist player walks around in a 7 × 10 grid with the aim
to reach a goal location (top right corner of the grid) as fast
as possible given their initial location (top left corner of the

Algorithm 1: CVaR Adversarial Stackelberg Algorithm

Require: πθ (protagonist), Λω (antagonist), η (perturbation
budget), Kant (number of intermediate antagonist steps)

1: Nupdates = 0
2: while training not done do
3: Get initial state st
4: ητ = η . Remaining antagonist budget
5: while st not terminal do
6: at ∼ πθ(st),Pt = P(st, at)
7: δt = Λω(Pt, ητ)

8: P̂t = Pt ◦ δ
9: st+1 ∼ P̂t, rt+1 ∼ R(st+1)

10: ητ = ητ
δt(st+1) . Update remaining budget

11: end while
12: Update θ or ω according to Nupdates and Kant.
13: Nupdates = Nupdates + 1
14: end while

Figure 2: Overview of our Lava gridworld environment.

grid). A lava zone lies between the starting point and the goal
(wavy orange squares). A state in this game corresponds to
the (x, y) coordinates of the protagonist and the state space
S corresponds to the set of all possible coordinates in the
grid. The action space A for the protagonist corresponds to
moving into one of the four cardinal directions (up, down,
right, left). The environment is stochastic with probability
(p = 0.05) for the protagonist to perform a random action
instead of the chosen action at. At each time step t of a game
episode, the protagonist incurs a reward penalty of −0.035,
motivating the protagonist to reach the goal using the short-
est path. The episode ends when the protagonist either (i)
reaches the goal, resulting into a reward of +1, (ii) falls into
the lava, resulting into a reward of−1, or (iii) when the max-
imum number of 40 steps is reached within the episode.

As the protagonist aims to reach the goal location, the
antagonist rather aims to push the protagonist into the lava
zone. Since the antagonist acts upon a limited budget, the
protagonist is able to reduce the chances of falling into the
lava by just moving farther away from the lava. As the
protagonist also incurs penalties for every step taken, they
nonetheless want to avoid making unnecessary steps, even-
tually needing to be close to the lava zone. This dilemma be-
tween minimizing the chances of falling into the lava while
also making sure that no unnecessary steps are taken serves
as a good minimal illustration of a safety-critical environ-
ment. Indeed, the more weight the protagonist will put on

avoiding large negative rewards, the more it will be willing
to take the time to get to the lower cases of the grid before
crossing from left to right.

Implementation details
Both players are trained using Actor-Critic PPO algo-
rithms (Schulman et al. 2017). To keep our antagonist’s state
and action spaces reasonable, we represent next state transi-
tions Pt as the concatenation of the protagonist current co-
ordinates (xt, yt), the probability vector pt of each action
a being executed and the value of their remaining perturba-
tion budget ηt. The players are trained jointly over 5M time
steps, following Algorithm 1 and the antagonist’s budget
constraint is enforced using a convex rescaling method. The
number Kant of antagonist updates between the policy up-
dates has been set to 2, after evaluating over Kant = 2, 4, 8.
An update of the parameters occurs every 10k time steps.

Both algorithms use an Adam optimizer with their own
decaying learning rate that decreases linearly from 0.005 to
0.0001 each time their parameters are updated. Further de-
tails on the hyper-parameters and implementation are dis-
cussed in our publicly available implementation. Our code-
base is made publicly available2 for full reproduction of the
experiments and figures.

Evaluation
We consider three instances of the described game: the case
where there is no antagonist, which corresponds to having
an antagonist with a perturbation budget η = 1 (as a refer-
ence for comparison), as well as having an antagonist with
two different budgets, η ∈ {25, 100}. Without an antagonist,
the game corresponds to the classical problem of maximiz-
ing the excepted returns. When the antagonist has a positive
perturbation budget, this corresponds to optimizing a CVaR-
optimal policy, i.e. CVaR0.04 for η = 25 and CVaR0.01 for
η = 100. In order to evaluate the robustness of the proposed
approach, we replicate each instance of the game 10 times,
each time with a different random seed for the environment
(governing its randomness), for the protagonist (governing
the initialization of its policy and the action selection pro-
cess), and for the antagonist (governing the initialization of
its policy and the perturbation prediction process).

In order to visualize the protagonist strategy in any game
instance, we execute the policy learned by the protagonist
agent in a deterministic environment (p = 0) without the
antagonist. This allows to observe the decisions made by the
protagonist agent without perturbations. To visualize the an-
tagonist strategy in a given game instance, we execute the
policy learned by a protagonist under this instance, i.e. the
stochastic environment (p = 0.05) in presence of the an-
tagonist. For each state in the grid, we estimate the proba-
bility that the protagonist performs a different action than
their preferred action in that state. A probability estimate
equal to 0.05 indicates that the antagonist does not hamper
the protagonist on this location since this corresponds to the
environment randomness (p). A probability greater or lesser

2https://github.com/TortillasAlfred/CvarAdversarialRL

than 0.05 indicates that the antagonist is disturbing the tran-
sition probabilities at this location since the probability dif-
fers from the natural environment randomness.

Results

Figure 3 displays the learned protagonist policy averaged
over the 10 seeds for each of the considered game instances.
As expected, Figure 3a shows that the protagonist learns
the shortest path to the goal in the absence of an antago-
nist (η = 1). However, when there is an antagonist (η > 1),
Figures 3b and 3c show that the protagonist learns a care-
ful path that deviates from the lava. More specifically, the
stronger the antagonist (the larger the perturbation budget
η), the more careful the protagonist has to be in order to
avoid getting pushed into lava. This confirms that the pres-
ence of an antagonist agent when learning the protagonist
policy results in a safer policy.

Note: The noticeable noise in the averaged protagonist
policy displayed in Figure 3b is due to convergence instabil-
ities, which caused the protagonist to fail reaching the goal
in 2 out of the 10 tested seeds. This may be due to the pro-
tagonist being particularly unlucky in these realizations of
the environment and/or in the initialization of their policy.
In other applications of game theory with gradient-based
algorithms (e.g. Generative Adversarial Networks (Good-
fellow et al. 2020)), it is known that systems learning in
an adversarial manner are subject to instabilities (Berthelot,
Schumm, and Metz 2017). Despite these challenges inherent
to the training procedure, the protagonist consistently dis-
played convergence to the same policy in 8/10 seeds, still
demonstrating the robustness of the method to diverse train-
ing scenarios.

Figure 4 shows 300k trajectories obtained by executing a
protagonist (single seed) in a stochastic environment (p =
0.05) in presence of the antagonist used during their train-
ing. The number on a given square indicates the probability
that the protagonist will perform a different action than at
when st corresponds to that location. This includes both the
natural environment randomness as well as the influence of
the antagonist. Figures 4b and 4c show that the antagonist
is mostly active at the beginning of a game episode, regard-
less of the amount of perturbation budget. The beginning of
the game is indeed the riskiest situation for the protagonist
since the starting point is very close to the lava (top-left cor-
ner). More sophisticated adversarial strategies emerge when
the antagonist benefits from a higher budget (see Figure 4c).
For instance, when the protagonist gets far from the lava,
we see that the antagonist exploits the borders of the grid
to force the protagonist into accumulating moving reward
penalties. Also, when the protagonist is at the extreme bot-
tom of the grid (far from both the lava and the goal), the
perturbation probability drops below 0.05 (the natural envi-
ronment randomness), meaning that the antagonist tends to
give more leverage to the protagonist in this region. The an-
tagonist does this in order to recover its budget to get more
powerful when the protagonist gets closer to the goal.

(a) No antagonist (η = 1) (b) Perturbation budget η = 25 (c) Perturbation budget η = 100

Figure 3: Protagonist policy (averaged over 10 random seeds) learned on a stochastic environment with different antagonist
perturbation budget. S and G respectively denote the starting location of the protagonist and the goal to reach.

(a) No antagonist (η = 1) (b) Perturbation budget η = 25 (c) Perturbation budget η = 100

Figure 4: Antagonist policy averaged over 300k trajectories of a protagonist learned on a stochastic environment with different
antagonist perturbation budget. Numbers indicate the probabilities that the protagonist may perform an action different from
the selected action at when their state st corresponds to the given location. In order to display accurate estimators, only the
probabilities for the locations that the agent visited at least 500 times are displayed. G denotes the goal.

7 Conclusion
In this work, we presented an adversarial game designed to
compute risk-sensitive policies with respect to the Condi-
tional Value-at-Risk (CVaR) risk measure. Our adversarial
game is particular in the sense that it limits an antagonist’s
perturbations to be within a specified budget and to only
change next state transitions for a protagonist. We then pre-
sented a gradient-based algorithm based on the Stackelberg
formulation of the game to solve it, both proving its conver-
gence under sufficient conditions and presenting key consid-
erations for a practical implementation. We put our method
to the test on an artificial risky environment, illustrating that
increasing the antagonist’s budget indeed leads a more cau-
tious protagonist policy. Given the fact that this is the first
game-theoretic perspective on CVaR RL, we expect this pa-
per to be a building block towards connecting risk-sensitivity
in RL with the field of Game Theory.

One possibly interesting application of our method is with
regards to the Sim2Real domain, where one wishes to opti-
mize to train an RL agent on a high-quality simulation en-
vironment before real-life deployment. Since this domain is
naturally concerned with risk-sensitivity and supposes ac-
cess to a simulator to access and perturbate the true next
state transitions, it appears highly likely that our proposed
approach can be of use in this context.

In future work, we would like to apply our game to a con-
crete Sim2Real application to try and leverage the empirical

potential of the method. Also, in light of the instability ob-
served in our own empirical results, we would like to address
the issue of sensibility to hyperparameters in our practical
gradient-based algorithm.

References
Artzner, P.; Delbaen, F.; Eber, J.-M.; and Heath, D. 1999. Coherent
measures of risk. Mathematical finance, 9(3): 203–228.
Baek, D.; Hwang, M.; Kim, H.; and Kwon, D.-S. 2018. Path
Planning for Automation of Surgery Robot based on Probabilistic
Roadmap and Reinforcement Learning. In 2018 15th International
Conference on Ubiquitous Robots (UR), 342–347.
Bellemare, M. G.; Dabney, W.; and Munos, R. 2017. A distri-
butional perspective on reinforcement learning. In International
Conference on Machine Learning, 449–458. PMLR.
Berthelot, D.; Schumm, T.; and Metz, L. 2017. BEGAN:
Boundary Equilibrium Generative Adversarial Networks. CoRR,
abs/1703.10717.
Chevalier-Boisvert, M.; Willems, L.; and Pal, S. 2018. Minimalis-
tic Gridworld Environment for OpenAI Gym. https://github.com/
maximecb/gym-minigrid.
Chow, Y.; Tamar, A.; Mannor, S.; and Pavone, M. 2015. Risk-
Sensitive and Robust Decision-Making: a CVaR Optimization Ap-
proach. In NIPS, 1522–1530.
Dabney, W.; Ostrovski, G.; Silver, D.; and Munos, R. 2018. Im-
plicit quantile networks for distributional reinforcement learn-
ing. In International conference on machine learning, 1096–1105.
PMLR.

Dennis, M.; Jaques, N.; Vinitsky, E.; Bayen, A. M.; Russell,
S.; Critch, A.; and Levine, S. 2020. Emergent Complexity and
Zero-shot Transfer via Unsupervised Environment Design. In
Larochelle, H.; Ranzato, M.; Hadsell, R.; Balcan, M.; and Lin, H.,
eds., Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Fei, Y.; Yang, Z.; Chen, Y.; Wang, Z.; and Xie, Q. 2020. Risk-
Sensitive Reinforcement Learning: Near-Optimal Risk-Sample
Tradeoff in Regret. In Larochelle, H.; Ranzato, M.; Hadsell, R.;
Balcan, M.; and Lin, H., eds., Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.

Fiez, T.; Chasnov, B.; and Ratliff, L. 2020. Implicit Learning Dy-
namics in Stackelberg Games: Equilibria Characterization, Con-
vergence Analysis, and Empirical Study. In III, H. D.; and Singh,
A., eds., Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine Learning
Research, 3133–3144. PMLR.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-
Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2020. Gener-
ative adversarial networks. Communications of the ACM, 63(11):
139–144.

Gosavi, A. A.; Das, S. K.; and Murray, S. L. 2014. Beyond ex-
ponential utility functions: A variance-adjusted approach for risk-
averse reinforcement learning. In 2014 IEEE Symposium on Adap-
tive Dynamic Programming and Reinforcement Learning (AD-
PRL), 1–8. IEEE.

Gottesman, O.; Johansson, F.; Komorowski, M.; Faisal, A.; Sontag,
D.; Doshi-Velez, F.; and Celi, L. A. 2019. Guidelines for reinforce-
ment learning in healthcare. Nature medicine, 25(1): 16–18.

Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Advances in neural informa-
tion processing systems, 30.

Keramati, R.; Dann, C.; Tamkin, A.; and Brunskill, E. 2020. Be-
ing optimistic to be conservative: Quickly learning a cvar policy.
In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, 4436–4443.

Kurakin, A.; Goodfellow, I. J.; and Bengio, S. 2017. Adversarial
Machine Learning at Scale. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-
26, 2017, Conference Track Proceedings. OpenReview.net.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A
Contextual-Bandit Approach to Personalized News Article Recom-
mendation. In Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, 661–670. New York, NY, USA: As-
sociation for Computing Machinery. ISBN 9781605587998.

Mandlekar, A.; Zhu, Y.; Garg, A.; Fei-Fei, L.; and Savarese, S.
2017. Adversarially robust policy learning: Active construction
of physically-plausible perturbations. In 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 3932–
3939. IEEE.

Metz, L.; Poole, B.; Pfau, D.; and Sohl-Dickstein, J. 2017. Unrolled
Generative Adversarial Networks. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. OpenReview.net.

Mihatsch, O.; and Neuneier, R. 2002. Risk-sensitive reinforcement
learning. Machine learning, 49(2): 267–290.

Pan, X.; Seita, D.; Gao, Y.; and Canny, J. 2019. Risk averse robust
adversarial reinforcement learning. In 2019 International Confer-
ence on Robotics and Automation (ICRA), 8522–8528. IEEE.
Patek, S. D. 1997. Stochastic and shortest path games: theory and
algorithms. Ph.D. thesis, Massachusetts Institute of Technology.
Perolat, J.; Scherrer, B.; Piot, B.; and Pietquin, O. 2015. Ap-
proximate dynamic programming for two-player zero-sum markov
games. In International Conference on Machine Learning, 1321–
1329. PMLR.
Petersen, P.; and Voigtländer, F. 2018. Optimal approximation
of piecewise smooth functions using deep ReLU neural networks.
Neural Networks, 108: 296–330.
Pinto, L.; Davidson, J.; Sukthankar, R.; and Gupta, A. 2017. Robust
adversarial reinforcement learning. In International Conference on
Machine Learning, 2817–2826. PMLR.
Pirotta, M.; Restelli, M.; and Bascetta, L. 2015. Policy gradient in
lipschitz markov decision processes. Machine Learning, 100(2):
255–283.
Rajeswaran, A.; Mordatch, I.; and Kumar, V. 2020. A Game Theo-
retic Framework for Model Based Reinforcement Learning. In III,
H. D.; and Singh, A., eds., Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of
Machine Learning Research, 7953–7963. PMLR.
Schubert, F.; Eimer, T.; Rosenhahn, B.; and Lindauer, M. 2021. Au-
tomatic Risk Adaptation in Distributional Reinforcement Learning.
CoRR, abs/2106.06317.
Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and Klimov,
O. 2017. Proximal Policy Optimization Algorithms. CoRR,
abs/1707.06347.
Shapiro, A.; Dentcheva, D.; and Ruszczyński, A. 2014. Lectures
on stochastic programming: modeling and theory. SIAM.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
2018. A general reinforcement learning algorithm that masters
chess, shogi, and Go through self-play. Science, 362(6419): 1140–
1144.
Sion, M. 1958. On general minimax theorems. Pacific Journal of
mathematics, 8(1): 171–176.
Sutton, R. S.; Barto, A. G.; et al. 1998. Introduction to reinforce-
ment learning, volume 135. MIT press Cambridge.
Tamar, A.; Chow, Y.; Ghavamzadeh, M.; and Mannor, S. 2015. Pol-
icy Gradient for Coherent Risk Measures. In Cortes, C.; Lawrence,
N. D.; Lee, D. D.; Sugiyama, M.; and Garnett, R., eds., Advances
in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12,
2015, Montreal, Quebec, Canada, 1468–1476.
Tamar, A.; and Mannor, S. 2013. Variance Adjusted Actor Critic
Algorithms. CoRR, abs/1310.3697.
Tobin, J.; Fong, R.; Ray, A.; Schneider, J.; Zaremba, W.; and
Abbeel, P. 2017. Domain randomization for transferring deep neu-
ral networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS),
23–30. IEEE.
Vinyals, O.; Babuschkin, I.; Czarnecki, W. M.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D. H.; Powell, R.; Ewalds, T.;
Georgiev, P.; et al. 2019. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 575(7782): 350–354.
Von Stackelberg, H. 2010. Market structure and equilibrium.
Springer Science & Business Media.
Zhang, J.; and Weng, P. 2021. Safe Distributional Reinforcement
Learning. CoRR, abs/2102.13446.

