CEUR-WS.org/Vol-3087/paper_40.pdf

Combining Data-Driven and Knowledge-Based AI Paradigms
for Engineering AI-Based Safety-Critical Systems

Juliette MATTIOLI', Gabriel PEDROZA?, Souhaiel KHALFAOUI 3, Bertrand LEROY >

! Thales, France - > CEA List, U. Paris-Saclay, France - > Valeo, France - * Renault, France - > IRT SystemX, France,
juliette.mattioli @thalesgroup.com - gabriel.pedroza@cea.fr - souhaiel.khalfaoui @valeo.com - bertrand.leroy @renault.com

This work received French government aid under the Investments for the Future program (PIA) within the framework of
SystemX Technological Research Institute

Abstract

The development of Al-based systems entails a manifold of
doubled-hard challenges. They are mainly due, on one side,
to the technical debt of involved engineering disciplines (sys-
tems, safety, security), their inherent complexity, their yet-
to-solve concerns, and, on the other side, to the emergent
risks of Al autonomy, the trade-offs between Al heuristics
vs. required determinism, and, overall, the difficulty to de-
fine, characterize, assess and prove that Al-based systems are
sufficiently safe and trustworthy. Despite the vast amount of
research contributions and the undeniable progress in many
fields over the last decades, a gap still exists between exper-
imental and certifiable Als. The present paper aims at bridg-
ing this gap “by design”. Considering engineering paradigms
as a basis to specify, relate and infer knowledge, a new
paradigm is proposed to achieve Al certification. The pro-
posed paradigm recognizes existing Al approaches, namely
connectionist, symbolic, and hybrid, and proffers to lever-
age their essential traits captured as knowledge. A concep-
tual meta-body is thus obtained respectively containing cat-
egories for Data-, Knowledge- and Hybrid- driven. Since it
is observed that research strays from Knowledge-driven and
it rather strives for Data-driven approaches, our paradigm
calls for empowering Knowledge Engineering relying upon
Hybrid-driven approaches to improve their coupling and ben-
efit from their complementarity.

Introduction

Safety can be defined as “freedom from risk which is not
tolerable” (ISO). This definition implies that a safe system
is one in which scenarios with non-tolerable consequences
have a sufficiently low probability, or frequency, of occur-
ring. Thus, Safety critical systems must be dependable dur-
ing all their life-cycle, supporting evolution without incur-
ring prohibitive costs. It becomes mandatory that an Al-
based Critical System (AICS) does what it has been spec-
ified to do (correctness). In the near term, the goal of de-
ploying Al on critical systems motivates research to handle
accountability, reliability, suitability, timeliness, etc. More-
over, AICS need to be resilient, safe and (cyber)-secure.
Complex mechanisms have to be integrated to ensure both

Copyright © 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

responsibility and accountability of AICS and their out-
comes. As any critical system, an AICS needs to be verified,
validated, qualified and even certified, following, a suitable
development methodology. Explainability is also an issue
because Al systems and their decisions need to be explained
to integration and maintenance teams as well as end-users in
an understandable manner. Auditability for assessing algo-
rithms, data, knowledge, design and integration processes is
also a key property that has to be handled. The Fig. 1 high-
lights various non-functional requirements that have to be
verified and demonstrated for a sound Al-based component
deployment within an AICS. All such requirements need a
sound and trustworthy Al engineering methodology with ef-
ficient supporting tools, while addressing various levels of
granularity. On one hand they must encompass specific al-
gorithmic domains engineering, including associated data,
models and knowledge representations. On the other hand,
they must guarantee architecture design correctness up to the
complete system engineering cycle.

Data & Knowledge Algorithm .H;Jmun'jAI Safety & Software &
J— ierac '0"__\ Security System
= ==
@ s s
1% 70 |
& 4 — \-:@/ \i g
+ Feature engineering | v Specifiablilty v Usability v Provability v Repeatability
+ Data & Knowledge | v Traceability ¥ Ethics by design | v Verfiabillty (test) | v Performance
qualty v C v ity / /| v + Mai
., " v retay v e
v Corpus ing& | v C i v H v Monitorability

biases reduction v Transparency dialogue
¥ Vulnerability
mitigation
(Robustness by
design)

Figure 1: AISCS induced various non functional require-
ments

By the taxonomy of disciplines involved (Systems,
Knowledge, Algorithms, Safety, and Security Engineering),
their inherent complexity, the yet-to-solve concerns within
each of them (technical debt), and the fact that AICS lay
down in the intersection of those disciplines, then AICS de-
velopment becomes a doubled-hard challenge. Indeed, from
an engineering perspective, questions like, Which are the
Sfundamental notions and features to characterize AICS?
Which development languages and methods can sufficiently
comprehend and interrelate those notions? How can knowl-
edge be structured to suitably elicit, fulfill and verify require-

ments? and last, yet not the least, Whether the bundle of cri-
teria (ranging from data-sensitivity to explainability) can be
harmonized and how?

This position paper introduces the need of a conceptual
paradigm which aims to provide a basis upon which an-
swers to previous questions can be elicited. To handle the
complexity of the subject, several choices are made. First,
since autonomy is a distinctive feature of AICS, and it is
intrinsic to safety, the latter is placed as top-priority crite-
rion. Then it is used to guide design, conduct analyses and
align the rest of criteria: all in all, we target Safety-Critical
AICS (AISCS). Secondly, the proposed paradigm assumes
that fundamental notions, as such, should appear in there, ir-
respective of the development methodology or framework.
Last yet not the least, the paradigm also assumes that chal-
lenges in AISCS development can be addressed via a body
of knowledge amenable to (1) emulate whatever human-
beings perceive as intelligence and (2) integrate related con-
cerns and in particular safety. Overall, this paper is dedicated
to provide a first specification of a conceptual paradigm as
a basis for safe Al-based systems development, in order to
design a sound and tooled Al engineering methodology that
encompasses with objective of trustworthy Al algorithm en-
gineering, data engineering, knowledge engineering and Al
system engineering.

Data-Knowledge-Based Paradigm for Safe Al

In this Section, we shortly describe the background taken as
reference for the description of our paradigm and how it is
leveraged to constitute the expected foreground.

Paradigm Background

After conducting a brief survey of approaches for Al de-
velopment (Foggia, Genna, and Vento 2001) (Sun 2015)
(Besold et al. 2017), it is observed that, research production
is mostly distributed over two big fields, namely symbolic
(Belle 2020) and connectionist (Kasabov 2012). Symbolic
approaches are based upon a syntax that is endowed with
formal semantics (meaning) useful for properties expres-
sion and verification. They have been successfully applied
to increase system’s trustworthiness in different applica-
tion domains like health care, automotive, aeronautics, rail-
way (Hofer-Schmitz and Stojanovi¢ 2020). Contrary to sym-
bolic, connectionist approaches are not built upon an explicit
representation of human expertise: the behaviour is learned
from data instances. Connectionist algorithms are based
upon a statistical or probabilistic model which is tightly cou-
pled to data sets which are first used for model training, and
once tuned, for performance evaluation. The model is often
structured as a set of nodes defined by multi-value functions
or random variables. The nodes are interconnected, and the
links can be randomly weighted by values influencing nodes
inputs/outputs (Kasabov 2012). More recently (Sun 2015),
hybrid approaches integrating symbolic-based and connec-
tionist paradigms have been proposed. Hybrid approaches
aim to profit of salient features of both symbolic and con-
nectionist leaving out any potential concurrence (Foggia,
Genna, and Vento 2001), (Garnelo and Shanahan 2019). In

certain cases, the complementarity between techniques even
leads to overcome certain limitations of each other. Indeed,
on one side, data-driven Al approaches successfully charac-
terize and capture the salient traits of the data sets. However,
being the connectionist models heuristic and agnostic of typ-
ical notion-encapsulation archetypes, they lack argumenta-
tion necessary for explainability. On the other side, sym-
bolic approaches introduce a semantic layer aligned with
the notion-encapsulation archetype, which is amenable for
expressing domain knowledge and concerns useful for vali-
dation and argumentation.

Paradigm Foreground

The proposed paradigm leverages the background described
in previous Subsection in the following manner. First, sym-
bolic, connectionist and hybrid are methods and techniques
with distinctive features which are applied to achieve the in-
tended Al functionality. In that respect, once a technique
is selected, the engineering choices are mostly oriented to
explore and decide HOW and WHEN to apply. Given the
referred challenges for AISCS development, and in order
to extend the space of engineering choices, it is proposed
to consider such techniques as instances of a more abstract
meta-structure: an Al-body of knowledge. Such body is
meant to include structured information amenable to dis-
sert about WHAT and WHY, in a first place, and in addition
HOW and WHEN. Thus, since the connectionist approaches
treat and depend upon data sets, then the Al-body of knowl-
edge includes the category of approaches driven by data, i.e.
a Data-driven Al. Similarly, the symbolic approaches rely
upon rules allowing reasoning on terms and notions to infer
further knowledge, then the Al-body contains a category of
approaches driven by knowledge, i.e. a Knowledge-driven
Al A mix of Data- and Knowledge-Driven yields the third
category named Hybrid-driven Al

From the literature survey, the research seems to stray
from symbolic Al methods and instead leverage learning-
based artificial neural networks. However, some underlin-
ing issues of current data-driven approaches such as ro-
bustness, fairness, explainability, maintainability, etc. are
leading some to call for a return of knowledge-based or
some reconciliation of the two main paradigms through Hy-
brid Al (Garnelo and Shanahan 2019). Following this call,
the paradigm proposed hereinafter strives for strengthening
Knowledge-driven Als, targeting a tighter coupling to Data-
driven Als and relying upon the Hybrid-driven approaches.

Al Safety stakes

The conceptual paradigm aims to address several stakes of
AISCS. Some of the most salient are listed below.

* Quantitative safety metrics and methods. Metrics based
upon failure rates have been proven effective to achieve
suitable levels of safety. However, new metrics and meth-
ods to measure errors and misbehaviours of AI modules
are yet to be defined and incorporated.

* Qualitative safety metrics and methods. Human inter-
pretability calls for qualitative metrics. Indeed, explain-
ability, risks, and even safety of Al are notions that re-

quire qualitative interpretation (meaning) in order to be
assessed.

* Data modeling and quality. Data modeling is proposed
as a mean for assessment of data features. The influence
of data traits (e.g., data diversity (Ashmore and Mda-
har 2019), existing vs. possible input values) over the Al
modules and their intended functionality need to be as-
sessed and integrated during design.

* Traceability of safety-related events. Irrespective of the
design method, safety events need to be traceable. In a
top-down perspective, high-level safety scenarios should
cascade down over the detailed architecture so as to in-
fer dependencies and identify critical subsystems. In a
bottom-up perspective, errors/failures at component level
need to be propagated upwards to determine safety ef-
fects. A structuring layer to support such analyses seems
necessary but is still missing.

e Al safety levels and certification. Al errors and misbe-
haviours shall be characterized in such manner that their
effects only lead to bearable risks. Assurance and trust
on Al can be built upon provable levels of safety incor-
porated and evaluated all along the development cycle.

The conceptual paradigm aims to be a basis of a frame-
work for representation and integration of previous as-
pects as well as for inference and assessment. The build-
ing process consists in empowering Knowledge Engineering
through a better coupling of Data- and Knowledge-driven
approaches. The rest of the paper is dedicated to describe
the salient aspects and constituents of the proposal.

Empowering Knowledge-based Al systems by
Knowledge Engineering

Introduced in 1956, Al is a computer sciences discipline
concerned with the theory and development of artificial sys-
tems able to perform cognitive activities such as reasoning,
knowledge representation, planning, learning, natural lan-
guage processing, perception and decision. Al includes a
wide range of technologies which can be divided into two
broad categories: (1) Data-driven Al which includes neu-
ral networks, statistical learning, evolutionary computing...;
and (2) Knowledge-based Al which focuses on the develop-
ment of ontology and semantics graphs, knowledge-based
systems and reasoning... However, each Al paradigm only
focuses on portions of the information and decision chain,
leading to solutions that are thus not driven by the global
“good decision” goal, making them globally inefficient.

The main Al paradigms

The premises of data-driven Al and knowledge-based Al are
fundamentally different (see figure 2). The paradigm of data-
driven Al is based on brain-style learning such as neural
networks, whereas Knowledge-based Al approaches employ
model and knowledge reasoning.

» Often used in the context of pattern recognition, classi-
fication, clustering or perception, data-driven Al such
as machine learning aims at capturing tacit knowledge -
knowledge which is difficult or impractical to explicitly

or analytically define - through statistical approaches by
inferring the inherent structure of a set of examples (input
data) that can be used for mapping new data samples.

e (Newell and Simon 2007) claimed that “Symbols lie at
the root of intelligent action” and should therefore be a
central component in the design of artificial intelligence.
In its initial form, knowledge-based AI focused on the
transfer process; transferring the expertise of a problem-
solving human into a program that could take the same
data and make the same conclusions.

Knowledge-based Al

In Software Engineering, the distinction between a func-
tional specification and the design/implementation of a sys-
tem is often discussed as a separation of what and how. Dur-
ing the specification phase, what the system should do is es-
tablished in interaction with the users. How the system func-
tionality is realized is defined during design and implemen-
tation (e.g., which algorithmic solution can be applied). This
separation does not work in the same way for a knowledge-
based system (KBS) which is a computer system that rep-
resents and uses knowledge to carry out a task and inference
procedures to solve problems that are difficult enough to re-
quire significant human expertise for their resolution. Thus,
such system has two distinctive features: a knowledge base
and an inference engine, where knowledge is then assumed
to be given “declaratively* by a set of Horn clauses, produc-
tion rules, constraints or frames and where inference engines
like unification, forward or backward resolution, and inheri-
tance capture the dynamic part of deriving new information.
For instance, constraint programming (CP) is a
knowledge-based Al approach (Rossi, Van Beek, and
Walsh 2008) for solving combinatorial problems where
constraints model the problem and a general purpose
constraint solver is used to solve it. The main idea is to
propose (1) a modeling language for combinatorial opti-
mization problems (through variable and constraints) and
(2) a generic search algorithm able to solve a combinatorial
problem described using the modeling language. Mainly,
a constraint solver aims at reducing dedicated algorithms
implementation costs and constitutes a framework for reuse
in combinatorial optimization. In other words, the essence
of CP is based on a clean separation between the statement
of the problem (the variables and the constraints), and the
resolution of the problem (the algorithms) (Heipcke 1999).

Knowledge engineering

Knowledge engineering (KE) is the process of understand-
ing and then representing human knowledge in data struc-
tures, semantic models (conceptual diagram of the data as
it relates to the real world) and heuristics. Expert systems,
constraint programming, ontologies, ... are examples that
form the basis of the representation and application of this
knowledge. The basic assumption is that both knowledge
and experience can be captured and archived in textual or
rule-based form, using formalization methods.In its initial
form, KE focused on transferring the expertise of a problem-
solving human into a program that could take the same data

...............

Communication: Ability fo
understand language
and communicate

[
1
ot vty
1
|

| _Machine Translation J

B

Planning: Capability of
setting and achieving
goals

1 Evolutionary '

! algorithms |

Decision: Processof 77777777700 ‘
making choices among

possible alternatives

Decision (eg multi-criteria
decision, group decision,
collaborative decision ...)

Optimization under |
| constaints o onoeeod

Reasoning: the capability 3
fo solve problems

Knowledge: Ability fo
represent and understand
the world

Perception: Ability fo

T e 1 NN |
transform raw sensorial If ’""_I""“f _____
i il I Pattern
b o
inputs (e.g., images, | | Recognifion

sounds, efc.) info usable
information.

Data-driven Al

Deep] = haae

{ 1
F meta-
! heuristics
________________ .
Management of uncertainty | Decision Trees |
{fuzzy logic, belief function] S h
Bayesian
Networks
ik Tt T Tt T 1
________ S Rl triciet it ,r Inference | ,r Reasoning '
{” Symbolic 1 % : S]{mﬁ;l:c | 1 (expert system, 'by ancslong\{, cgusa\,e\)/ent,:
- it [i uncsriain, case,
1 Leaming | | Reasoning : 1_fuzzy inference)_, |_ _yncerain, b vease) 1
it
- 1
Reinforcement ! :
Learning, L
Q-leaming | |
__________ 1
---------- I
Graph : I
Embedding | |
__________ 1
---------- 1
1 1
1 I’
i
.......... 4
1
;
Hybrid Al Knowledge-based Al

Figure 2: Data-driven Al, Knowledge-based Al and Hybrid Al paradigms illustrated with some techniques

and make the same conclusions. In the 1990s, the KE com-
munity shifted gradually to domain knowledge, in particu-
lar reusable representations in the form of ontologies. This
evolution aimed at alleviating KE limitation to accurately
reflect how humans make decisions and more specifically
its failure to take into account intuition and “gut feeling”,
known as “reasoning by analogy”. Nevertheless, designing
knowledge-based Al component induces some general fun-
damental problem:s.

1. Knowledge discovery: how do we translate knowledge
as it currently exists in textbooks, articles, databases, and
human skills into abstract representations in a computer?

2. Knowledge representation: how do we represent human
knowledge in terms of data structures that can be pro-
cessed by a computer? How to determine the best repre-
sentation for any given problem?

3. Knowledge reasoning: how do we use these abstract
data structures to generate useful information in the con-
text of a specific case? How to manipulate the knowledge
to provide explanations to the user?

4. KBS development lifecycle: How to verify and up-
date the knowledge base? How to evaluate and validate
knowledge-based systems?

Knowledge discovery

While some knowledge is easy to obtain and understand,
other knowledge may be difficult to obtain or interpret. In
many situations, experts do not have any formal basis for
problem solving or for explaining their reasoning process.
So they tend to use “rules of thumb” (heuristics) devel-
oped on the basis of their experience to help them make
decisions. Thus, Knowledge discovery is the process of
collecting, extracting, transferring, accumulating, structur-
ing, transforming and organizing (domain) knowledge (e.g.,
problem-solving expertise) from data and information or

from the synthesis of prior knowledge. One of the most im-
portant key points of knowledge discovery is to ensure that
correct and relevant knowledge is extracted and represented
to the stakeholders and decision makers. No matter what
kind of knowledge is collected, this process can be realized
in a manual way and in an automatic way.

Even if knowledge discovery is today dominated by ma-
chine learning (ML) approaches, the iterative execution of
the CRISP-DM! methodology (Chapman et al. 1999), which
is today considered the de-facto standard for knowledge dis-
covery projects, assumes an interaction between domain ex-
perts and the data scientists. In practice, the ML model cre-
ation process tends to involve a highly iterative exploratory
process. In this sense, an effective ML modeling process re-
quires solid knowledge and understanding of the different
types of ML algorithms and their parameter tuning (Maher
and Sakr 2019), which can be guided by domain knowledge
or heuristics (Gibert et al. 2018).

Knowledge Representation and Reasoning

Knowledge Representation and Reasoning (KRR) repre-
sents information from the real world for a computer to un-
derstand and then utilize this knowledge to solve complex
real-life problems. KRR is not just about storing data in a
database, it is the study of how what we know can at the
same time be represented as comprehensibly as possible and
reasoned with as effectively as possibly. One of the main is-
sue is to find the best trade-off between these two concerns.

For (Sowa 2000), “Knowledge Representation is the ap-
plication of logic and ontology to the task of constructing
computable models for some domain”. Therefore, the way
a knowledge representation is conceived reflects a particu-
lar insight or understanding of how people reason. The se-

!CRISP-DM stands for CRoss Industry Standard Process for
Data Mining is a model proposed by a consortium initially com-
posed with DaimlerChryrler, SPSS and NCR

lection of any of the currently available representation tech-
nologies (such as logic, knowledge bases, ontology, seman-
tic networks...) commits one to fundamental views on the
nature of intelligent reasoning and consequently very dif-
ferent goals and definitions of success. As we manipulate
concepts with words, all ontologies use human language
to “represent” the world. Thus, ontology is expressed as a
formal representation of knowledge by a set of concepts
within a domain and the relationships between these con-
cepts. Nevertheless, the “fidelity” of the representation de-
pends on what the knowledge-based system captures from
the real thing and what it omits. If such system has an im-
perfect model of its universe, knowledge exchange or shar-
ing may increase or compound errors during the reasoning
process. As such, a fundamental step is to establish effective
knowledge representation (symbolic representation) that can
be used by future hybrid systems. Symbolic methods may be
more adapted to dealing with sparse data, support enhanced
explainability and incorporate past human knowledge, while
machine learning methods excel at pattern recognition and
data clustering/classification problems.

The symbol grounding problem

Developers building knowledge-based systems (KBS), usu-
ally create knowledge bases from scratch through a tedious
and time-consuming process. First, they have to deal with
the diversity and heterogeneity of knowledge representation
formalisms and with modeling, taxonomical, and termino-
logical mismatch of different knowledge items, even if they
belong to the same application domain. Thus, while the data
engineers focus on building the data pipes and data scientists
focus on inference methods, knowledge engineers focus on
modeling structural use cases and detailing concepts of ex-
pert knowledge. Knowledge engineering methods adapt to
use cases of knowledge and can model for specific require-
ments and in many cases produce reusable formats. One of
the main limitations of knowledge-based systems lie in the
abstract nature of the considered knowledge, in acquiring
and manipulating large volumes of information or data, and
the limitations of cognitive and other scientific techniques.
Despite of the progress in KE and ontology engineering
in the last decade, obstacles remain. Modeling is still a dif-
ficult task, as with the choice of the suitable knowledge-
based Al technology. Like every model, such a model is
only an approximation of the reality. The modeling pro-
cess is often cyclic. Expert Knowledge, notably via Mod-
eling bias, whereby a human manually designing a model
(or part of a model) does not take into account some as-
pects of the environment in building the model, consciously
or unconsciously. New observations may lead to a refine-
ment, modification, or completion of the already built-up
model. On the other side, the model may guide the fur-
ther acquisition of knowledge. Therefore an evaluation of
the model with respect to reality is indispensable for the cre-
ation of an adequate model. These limitations relate to the
so-called symbol grounding problem (Harnad 1990), and
concern the extent to which representational elements are
hand-crafted rather than learned from data. By contrast, one
of the strengths of machine learning methods are their abil-

ity to discover features in high-dimensional data with little
or no human intervention. Several features must be taken
into account when developing a KBS:

* Redundancy: are there identical or equivalent knowledge
model (such as rules within expert systems, concepts
within ontologies, constraints withing constrained solv-
ing) that is a special case of another (subsumed)?

» Consistency: Are there ambiguous or conflicting knowl-
edge, is there indeterminacy in its application? Is it in-
tended? Are several outcomes possible, for example, de-
pending on the strategy (the order in which the knowl-
edge models are ordered)?

* Minimality: can the knowledge set be reduced and sim-
plified? Is the reduced form logically equivalent to the
first one?

* Completeness: Are all possible entries covered by the
knowledge of the set?

Thus, a good KBS must have properties such as:

* Representational Accuracy: It should represent all kinds
of required knowledge.

* Inferential Adequacy: It should be able to manipulate
the representational structures to produce new knowl-
edge corresponding to the existing structure.

* Inferential Efficiency: The ability to direct the inferen-
tial knowledge mechanism into the most productive di-
rections by storing appropriate guides.

* Acquisitional Efficiency: The ability to acquire new
knowledge easily using automatic methods.

Another key concern in knowledge based modeling is sta-
bility. How much variability is there between instances of
the problem? How stable is the solution method to small
changes? Is the problem very dynamic? What happens if (a
small amount of) the data changes? Do solutions need to be
robust to small changes? Many such questions need to be
answered before we can be sure that a particular knowledge
based Al technique is a suitable technology.

Knowledge-driven AISCS Engineering

ML based AISCS engineering is often portrayed as the cre-
ation of a ML/DL model, and its deployment. In practice,
however, the ML/DL model is only a small part of the
overall system and significant additional functionality is re-
quired to ensure that the ML/DL model can operate in a reli-
able and predictable fashion with proper engineering of data
pipelines, monitoring and logging, etc. To capture these as-
pects of Al engineering we defined the ML algorithm engi-
neering pipeline (see fig. 3), where we distinguish between
requirements driven development, outcome-driven develop-
ment and Al-driven development. As the starting point, data
must be available for training. Based on data engineering,
there are various ways to collect and qualify data set and
divide it to training, testing, and cross-validation sets. Engi-
neering activities have to be encapsulated as a series of steps
within the pipeline such as:

* 1) Problem specification, including the Operational De-
sign Domain (ODD), that is the description of the specific

Functional and non-functional requirements

L

< e A
£ v
8 Data Engineering m
c 5
2 e Processing Data Trustworthy Attributes o a =
8 r— o [(incl. correctness, accuracy, robustness, KPI specifications Ss
= [Data Specification] £ replicability, transparency, explainability...) & %
o
% (Data Acquisition] g l a E
. T
§. Data Preparat (cleaning, g ML A|gO DESIgn =
normalization, anonymization...) ij - =
— 8 ML Model Design
M ™ [Data Segregation [Learning Architecture Selection]
g Impl i
¢ — - mplementation
© Characterizing Data @‘—, [Hyper parameter configuration] a P
3
£ SWaP Trade-offs
H (Feature Engineering) ML Model Adaptation ()
£ (Data Annotation] > Transfer, Adaptation, Few-shot] { Optimization to target]
\/ahdatlcn set (quantization, pruning)
— [Data Compliance Assessment] ML Model Development Model
? [Constraint Analysis] Versioning
& Scoping Data Feedback [PR TRY] 5
g Bz Data Quality Attributes (incl. Xplainability by design 2
s -.g distribution, bias, operational [Training & Validation] o
8 S coverage...) & KPIs definitions le o
= (_ ostoAugmentation el ¥ 1 g
o eal-worl | 37
&l (Data Balancing) set Evaluation & Verification 38
o i Q.
2 —E (Data Validation]/ [Mode\ Performance KPIs & Assessment] [
< o
Qg Model Deployment [Algo/Component Characterization] %
k7] = = v
Jg S [Integration][Versioning 59 Verified Model e — Trained Model 3
Ols =2 component [Formal Verification] component >
a) [Execution [Maintenance |8 § \] 3
o 3 i Explainability <
Monit Evoluti 33 . i
¥ (_ Monitoring][evalution 8 Model Feedback & Reporting] ;
! |

Figure 3: Proposed ML algorithm engineering pipeline

operating condition(s) in which a safety-critical function
or system is designed to properly operate, including but
not limited to environmental conditions and other do-
main constraints. These requirements describe the spe-
cific function that the ML items should implement as
well as the safety, performance, and other requirements
that the ML items should achieve.

2) Data engineering, including data collection, prepa-
ration and data segregation propose some guidelines. A
machine learning model requires large amounts of data,
which help the model learning about system objectives
and purpose. Before it can be used, data needs to be
collected and usually also prepared. Data collection is
the process of aggregating data from multiple sources.
The collected data needs to be sizable, accessible, under-
standable, reliable, and usable. Data preparation, or data
pre-processing, is the process of transforming raw data
into usable information.

3) ML Algorithm Design, after feeding training set to
the ML algorithm, it can learn appropriate parameters
and features. Once training is complete, the model will
be refined by using the validation data-set. This may in-
volve modifying or discarding variables and including
a process of tweaking model-specific settings (hyperpa-
rameters) until an acceptable accuracy level is reached.

4) Implementation, to develop ML components, we
have to decide on the targeted hardware platform, the
IDE (Integrated Development Environment) and the lan-
guage for development. There are several choices avail-
able. Most of these would meet our requirements easily
as all of them provide the implementation of Al algo-
rithms discussed so far, but sometimes we have to take
into account embedded constraints.

* 5) Evaluation and verification, after an acceptable set of
hyperparameters is found and the model accuracy is op-
timized, we can finally test our model. Testing uses our
test dataset and is meant to verify/demonstrate that our
models are correct and guarantee some required proper-
ties such as robustness and/or explainability. Based on
the feedback, we may return to training the model to im-
prove correctness, accuracy and robustness, then adjust
output settings, or deploy the model as needed.

* 6) Model Deployment in the overall system with respect
to safety and cyber-security system requirements. Learn-
ing assurance case methods can be used.

Then, an ML algorithm has to be designed or selected on
existing ML library (such as Scikit Learn (Pedregosa et al.
2011)), to provide a ML model together with its hyperpa-
rameters. Next, the model is trained with the training data.
During the training phase, the system is iteratively tuned so
that the output has a good match with the “right answers”
in the training material. This trained model can also be val-
idated with different data. If this validation is successful —
with any criteria we decide to use — the model is ready for
deployment, similarly to any other component.

Conclusion

“Data-driven Al is the Al of the senses, and knowledge-
based Al is the Al of meaning”?. This is why, in order
to cover all cognitive capacities, the future lies in the hy-
bridization of these two paradigms, which are often placed
in opposition to Al Indeed, the shortcomings of deep learn-
ing align with the strengths of knowledge-based Al, which

’David Sadek, VP Research Technologies and Innovation at
Thales

raises the possible benefits of hybridization. First, thanks to
their declarative nature, symbolic representations can eas-
ily be reused in multiple tasks, which promotes data effi-
ciency. Second, symbolic representations tend to be high-
level and abstract, which facilitates generalization. Lastly,
because of their propositional nature, symbolic representa-
tions are amenable to human understanding. Al algorithms
need relevant observations to be able to predict the outcome
of future scenarios accurately, and thus, data-driven models
alone may not be sufficient to ensure safety as usually we
do not have exhaustive and fully relevant data. Nevertheless,
as any critical system, an AISCS needs to have well defined
development methods from its design to its deployment and
qualification. This requires a complete tool chain ensuring
trust at all stages, as:

1. Specification, knowledge and data management,
Algorithm and system architecture design,

Al functions characterization, verification and validation,
Deployment, particularly on embedded architecture,
Qualification, certification from a system point of view.

A

Data driven Al "’ Hybrid Al)
Knowledge Y
Distributed &

L based Al | —
Embedded Al

Figure 4: Revisiting all engineering disciplines for a sound
deployment of AISCS

All that demands a sound and tooled Al engineering
methodology that encompasses, with objective of trustwor-
thy Al algorithm engineering, data engineering, knowledge
engineering and Al system engineering by addressing the is-
sues described above. Academic research already proposes
solutions towards Al certification?, industry should take over
now (see Fig. 4). At French national level major industrial
players in the fields of Automotive, Aeronautics, Defense,
Manufacturing and Energy (Air Liquide, Airbus, Atos, EDF,
Naval-Group, Renault, Safran, SopraSteria, Thales, Total
and Valeo) with the support of academic partners (CEA, IN-
RIA, IRT Saint Exupéry and IRT SystemX) are collaborat-
ing together to address such issues through the French Na-
tional Program “Confiance.ai” (https://www.confiance.ai/).
Based on the specifications described above, this program
aims to bridge the gap between Al Proof of Concepts and Al
deployment within critical systems toward certification by
providing an interoperable engineering workbench to sup-
port Al processes and practices through methods and tools
during the overall lifecycle of the Al-based system.

References

Ashmore, R.; and Mdahar, B. 2019. Rethinking Diversity in
the Context of Autonomous Systems. Safety-Critical Sys-
tems Symposium 2019, 175-192.

3https://www.deel.ai/

Belle, V. 2020. Symbolic Logic meets Machine Learning: A
Brief Survey in Infinite Domains. CoRR, abs/2006.08480.

Besold, T. R.; d’Avila Garcez, A.; Bader, S.; Bowman, H.;
Domingos, P.; Hitzler, P.; Kuehnberger, K.-U.; Lamb, L. C.;
Lowd, D.; Lima, P. M. V,; de Penning, L.; Pinkas, G.; Poon,
H.; and Zaverucha, G. 2017. Neural-Symbolic Learning and
Reasoning: A Survey and Interpretation. arXiv:1711.03902.

Chapman, P.; Clinton, J.; Kerber, R.; Khabaza, T.; Reinartz,
T.; Shearer, C.; and Wirth, R. 1999. The CRISP-DM user
guide. In 4¢th CRISP-DM SIG Workshop.

Foggia, P; Genna, R.; and Vento, M. 2001. Symbolic
vs. connectionist learning: an experimental comparison in
a structured domain. IEEE Transactions on Knowledge and
Data Engineering, 13(2): 176-195.

Garnelo, M.; and Shanahan, M. 2019. Reconciling deep
learning with symbolic artificial intelligence: representing
objects and relations. Current Opinion in Behavioral Sci-
ences, 29: 17-23.

Gibert, K.; Izquierdo, J.; Sanchez-Marre, M.; Hamilton,
S. H.; Rodriguez-Roda, 1.; and Holmes, G. 2018. Which
method to use? An assessment of data mining methods in

Environmental Data Science. Environmental modelling &
software, 110: 3-27.

Harnad, S. 1990. The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1-3): 335-346.

Heipcke, S. 1999. Comparing constraint programming and
mathematical programming approaches to discrete optimi-
sation—the change problem. Journal of the Operational Re-
search Society, 50(6): 581-595.

Hofer-Schmitz, K.; and Stojanovié¢, B. 2020. Towards for-
mal verification of IoT protocols: A Review. Computer Net-
works, 174: 107233.

Kasabov, N. 2012. Evolving spiking neural networks for
spatio-and spectro-temporal pattern recognition. In 2012 6th
IEEE International Conference Intelligent Systems, 27-32.

Mabher, M.; and Sakr, S. 2019. Smartml: A meta learning-
based framework for automated selection and hyperparam-
eter tuning for machine learning algorithms. In The 22nd
EDBT.

Newell, A.; and Simon, H. A. 2007. Computer science as
empirical inquiry: Symbols and search. In ACM Turing
award lectures, 1975.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. 2011.
Scikit-learn: Machine learning in Python. the Journal of ma-
chine Learning research, 12: 2825-2830.

Rossi, F.; Van Beek, P.; and Walsh, T. 2008. Constraint pro-
gramming. Foundations of Artificial Intelligence, 3: 181—
211.

Sowa, J. F. 2000. Guided tour of ontology. Retrieved from.
Sun, R. 2015. Artificial Intelligence: Connectionist and
Symbolic Approaches. In Wright, J. D., ed., International
Encyclopedia of the Social & Behavioral Sciences (2nd Edi-
tion), 35-40. Oxford: Elsevier, second edition edition.

