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Abstract

Deep neural networks are playing an important role in many
real-life applications. An important prerequisite in commer-
cializing deep neural networks is the identification of their
genuine owners. Therefore, watermarking schemes that em-
bed the owner’s identity information into the models have
been proposed. However, current schemes cannot meet all
the security requirements such as unambiguity and are inflex-
ible since most of them focus on classification models. To
meet the formal definitions of the security requirements and
increase the applicability of deep neural network watermark-
ing schemes, we propose a new method, MTLSign, based
on multi-task learning. By treating the watermark embedding
as an extra task, the security requirements are explicitly for-
mulated and met with well-designed regularizers and com-
ponents from cryptography. Experiments have demonstrated
that MTLSign is flexible and robust for practical security in
machine learning applications.

1 Introduction
Deep neural network (DNN) is spearheading artificial intel-
ligence with broad application in assorted fields. Training a
DNN is expensive, a large amount of data has to be collected
and preprocessed, following the data preparation is parame-
ter tuning and DNN structure optimizing. On the contrary,
using a DNN is easy: a user simply propagates the input
forward. Such imbalance between DNN production and de-
ployment calls for protecting DNN models as intellectual
properties (IP) against piracy. Moreover, the identification
of DNN’s owner forms the basis of the accountability of AI
systems.

Watermarking is an influential method for DNN IP pro-
tection (Uchida et al. 2017). Some information is embedded
into the neural network as the watermark. After adversaries
stealing the model and pretending to have built it on them-
selves, an ownership verification (OV) process reveals the
hidden information and identifies the authentic owner.
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Figure 1: Architecture of MTLSign. The orange blocks are
the backbone DNN, cp and cWM are classifier backends for
the primary task and the watermarking task respectively.

If the pirated model is deployed as an API then the owner
has to adopt backdoor-based watermarking schemes (Zhang
et al. 2018; Adi et al. 2018), where special triggers evoke
certain outputs. Triggers can be generated from an autoen-
coder (Li et al. 2019b; Li and Wang 2021), adversarial sam-
ples (Le Merrer, Perez, and Trédan 2020), or exceptional
samples (Li et al. 2019a). Backdoor-based watermarking
schemes are fragile given backdoor clearance methods (Liu
et al. 2020; Li et al. 2021; Namba and Sakuma 2019). Model
tuning such as fine-pruning (Liu, Dolan-Gavitt, and Garg
2018) can also block some backdoors and hence the water-
mark.

If the entire suspicious model is accessible, e.g., in model
competitions and project certifications, then weight-based
watermarks can incorporate the owner’s identity information
into the weights of a DNN (Uchida et al. 2017), or the statis-
tics of the intermediate feature maps (Darvish, Chen, and
Koushanfar 2019). These white-box schemes usually carry
more information and have a larger forensics value.

Hitherto, most watermarking methods are only designed
and examined for DNNs for image classification or de-
pend on specialized layers. Such inflexibility challenges
the broader application of DNN watermarking schemes
as a commercial standard. Moreover, some basic security
requirements against adversarial attacks have been over-



looked. The robustness of watermarks against new adaptive
attacks such as the spoil attack (Li, Wang, and Liew 2021)
also requires more attention.

To overcome these difficulties, we propose a new white-
box DNN watermarking scheme based on multi-task learn-
ing (MTL) (Sener and Koltun 2018), MTLSign, as shown
in Fig. 1. By modeling the watermark embedding proce-
dure as an extra task, security requirements are satisfied with
well-designed regularizers. This extra task has an indepen-
dent backend classifier, hence it can verify the ownership of
arbitrary models. Cryptological primitives are adopted to in-
stantiate the watermarking task, making MTLSign provably
secure against the ambiguity attack. The major contributions
of our work are three-fold:

• We examine the security requirements for DNN water-
mark, especially the unambiguity, in a formal manner.

• A DNN watermarking scheme based on MTL is pro-
posed. It can be applied to DNNs for tasks other than
image classification, the major focus of previous works.

• Experiments show that MTLSign is more robust, flex-
ible, and secure compared with several state-of-the-art
schemes.

2 Security Requirements
We assume that the adversary possesses fewer data than the
owner (otherwise the piracy is unnecessary), but has full
knowledge of the watermarking scheme and can tune the
model adaptively. The pirated deep learning model fulfils
a primary task, Tprimary, with dataset Dprimary, data space X ,
label space Y and a metric d on Y . We study four crucial
security requirements confronting DNN IP protection.

2.1 Unambiguity
A DNN watermarking scheme WM composed of a key gen-
eration module Gen and embedding module Embed, it first
generates a key for the owner with security parameter N :

key← Gen(1N ),

then embed key into a clean model Mclean:

(MWM,verify)← Embed(Mclean,key).

where MWM is the watermarked DNN model and verify
is the (possibly publicly available) ownership verifier (Li,
Wang, and Liew 2021). To accurately verify the ownership,
it is necessary and sufficient that:

Pr {verify(MWM,key) = 1} ≥ 1− ε(N), (1)

Pr {verify(MWM,key
′) = 0} ≥ 1− ε(N), (2)

where ε declines exponentially in N and key′ 6= key is a
random key. Claiming ownership with verify and key′ is
the ambiguity attack, hence Eq. (2) is defined as the unam-
biguity property, which is demonstrated in Fig. 2(a). Unam-
biguity has been examined for certain models as GAN (Ong
et al. 2021) but its formal connection with the security pa-
rameter has not been established.

2.2 Functionality-preserving and covertness
The watermarked DNN should perform slightly worse than,
if not as well as, the clean model. The formal definition is:

Pr(x,y)∼Tprimary {d(Mclean(x),MWM(x)) ≤ δ} ≈ 1,

which can be examined a posteriori. However, it is hard to
explicitly incorporate this definition into the watermarking
scheme. Instead, we resort to the following definition:

∀x ∈ X , d(Mclean(x),MWM(x)) ≤ δ. (3)

To meet Eq. (3), we only have to ensure that the parame-
ters of MWM do not deviate from those of Mclean too much.
Meanwhile, such small deviation is also the requirement of
covertness, i.e., the secrecy of the watermark (Ganju et al.
2018). The owner should be able to control the level of this
difference. Let θ be a parameter within WM that regulates
such difference. It is desirable that in the extreme case where
θ approaches zero, the watermarked model converges to the
clean model:

MWM →Mclean, when θ → 0. (4)

So the owner can select the optimal level of functionality/-
covertness by modifying θ.

2.3 Robustness against tuning
An adversary can tune M by running backpropagation
on a local dataset, pruning unnecessary neurons (NP), or
pruning and fine-tuning M (FP). It is suggested that FP
can efficiently eliminate backdoors from image classifica-
tion models and watermarks within (Liu, Dolan-Gavitt, and
Garg 2018). After being tuned on the adversary’s dataset
Dadversary, the model’s parameters shift and the verification

of the watermark might fail. Let M ′
Dadversary←−−−−− MWM denotes

a model M ′ obtained by tuning MWM with Dadversary. As
shown in Fig. 2(b), a watermarking scheme is robust against
tuning if:

Pr {verify(M ′,key) = 1} ≥ 1− ε(N). (5)

To meet (5), the owner has to make verify(·,key) insen-
sitive to tuning in the neighbour of MWM.

2.4 Flexibility
Many white-box DNN watermarking schemes rely on extra
modules as passport layers or specialized network architec-
tures (Fan et al. 2021). Therefore, they cannot be readily ap-
plied to arbitrary DNN models. To ensure generalization, it
is desirable that the watermarking scheme does not depend
on specific modules incorporated within the DNN or explic-
itly modify the product’s structure.

A comprehensive summary of established watermarking
schemes judged according to the enumerated security re-
quirements is given in Table 1.

Remark Apart from these major requirements, there are
secondary security demands such as the security against
overwriting and declaration attack as shown in Fig. 2(c), re-
moval, privacy concerns, etc. We save the examinations and
discussions on these demands to the empirical studies.



Owner

Adversary

verify

X
×

key

key′

MWM

(a) Security against the ambiguity attack.

Owner

Adversary

tune

verify

X

key

MWM M ′

(b) Robustnenss against tuning.

Adversary

M ′ is my product!

overwrite

verify′

X

key′

MWM M ′

WM

(c) Redeclaration attack.

Figure 2: Some security requirements and threats in DNN IP protection.

Table 1: Security requirements and established watermarking schemes.

Scheme Type Unambiguity Functionality-
preserving

Robustness
against tuning Flexibility

(Uchida et al. 2017) White-box × X × X
(Darvish, Chen, and Koushanfar 2019) White-box X X X ×

(Li et al. 2019a) Black-box X X X ×
(Zhu et al. 2020) Black-box X X X ×

(Guan et al. 2020) White-box X X × ×
(Le Merrer, Perez, and Trédan 2020) Black-box × X X X

(Ong et al. 2021) Black-box × X X ×
(Fan et al. 2021) Black-box X X X ×

(Liu, Weng, and Zhu 2021) White-box × X X ×
Ours. White-box X X X X

3 The Proposed Method
3.1 Motivation
We leverage multi-task learning to design a white-box water-
marking framework for DNN IP protection. The watermark
embedding is modeled as an additional task TWM. A classi-
fier for TWM is built independent to the backend for Tprimary,
so common tunings such as fine-tune last layer (FTLL) or
re-train last layers (RTLL) (Adi et al. 2018) have no impact
on our watermark. After training and watermark embedding,
only the network structure for Tprimary is published.

Under this formulation, the functionality-preserving prop-
erty and the security against tuning can be formally ad-
dressed. A decently designed TWM ensures the security
against ambiguity attacks as well, making MTLSign a se-
cure and flexible option for DNN IP protection. To better
handle the forensic difficulties involving watermark redec-
laration, we adopt a decentralized consensus protocol to au-
thorize the time-stamp correlated with the watermarks.

3.2 The watermarking scheme MTLSign
The structure of the watermarking scheme MTLSign is il-
lustrated in Fig. 1. The entire network consists of the back-
bone network and two independent backends: cp and cWM.
The published watermarked model MWM is the backbone
followed by cp and fWM is the watermarking branch in
which cWM takes the output of different layers from the
backbone as its input. cWM monitors the outputs of differ-

ent layers of the backbone network, so it is harder to in-
validate the watermark completely compared with passport-
layer based schemes.

To produce a watermarked model, the owner should:

1. GenerateN samplesDkey
WM = {xi, yi}Ni=1 using a pseudo-

random algorithm with key as the seed.
2. Optimize the DNN to jointly minimize the loss on Dkey

WM
and Dprimary. During the optimization, a series of regu-
larizers are designed to meet the security requirements
enumerated in Section 2.

3. Publishes MWM.

To prove its ownership over a model M to a third-party
customer, the owner and the customer conduct the follow-
ings:

1. The owner submits M , cWM and key.
2. The customer checks whether cWM is consistent with
M ’s architecture.

3. The customer generates Dkey
WM from key and combines

cWM with M ’s backbone to reproduce fWM.
4. If fWM statistically fits Dkey

WM then the customer confirms
the owner’s ownership over M .

The implementation of TWM The watermark task TWM
is instantiated as a binary classification. To generate Dkey

WM,
key is used as the seed of a pseudo-random generator (e.g.,
a stream cipher) to generate πkey, a sequence of N different



integers from [0, · · · , 2m − 1], and a binary string lkey of
length N , where m = 3dlog2(N)e.

For each type of data space X , a deterministic and injec-
tive function is adopted to map each integer in πkey into an
element in X . For example, when X is the image domain,
the mapping could be the QRcode encoder. When X is the
sequence of words in English, the mapping could map an in-
teger n into the n-th word of the dictionary. Without loss of
generality, let πkey[i] denote the mapped data from the i-th
integer in πkey. Both the pseudo-random generator and the
functions that map integers into specialized data space are
accessible for all parties. Now we set:

Dkey
WM =

{
(πkeym [i],lkey[i])

}N
i=1

,

where lkey[i] is the i-th bit of lkey. The security require-
ments raised in Section 2 are merged into MTLSign as the
analysis below.

Unambiguity To justify the ownership of a model M to a
owner with key given cWM, verify operates as Algo. 1.

Algorithm 1: verify(·, ·|cWM, γ)

Require: M , key.
Ensure: The verification of M ’s ownership.

1: Build the watermarking branch f from M and cWM;
2: Generate Dkey

WM from key;
3: If f correctly classifies at least γ ·N terms within Dkey

WM
4: Then return 1.
5: Else return 0.

If M = MWM then M has been trained to minimize the
binary classification loss on TWM, hence the test is likely to
succeed, this justifies the correctness requirement in (1). For
an arbitrary key′ 6= key, the induced watermark training
data Dkey′

WM and Dkey
WM can hardly overlap. It can be proven

that if m ≥ log2(N
3) and γ is selected to be significantly

higher than 1
2 then the probability of a successful ambiguity

attack declines exponentially with N , details are given in
Appendix A. This justifies the unambiguity condition (2).

The functionality-preserving regularizer Denote the
trainable parameters of the DNN model by W. The opti-
mization target for Tprimary takes the form:

L0(W|Dprimary) =
∑

(x,y)∈Dprimary

l
(
MW

WM(x), y
)
+ λ0 · u(W),

(6)
where l(·, ·) is the loss defined by Tprimary and u(·) is a regu-
larizer reflecting the prior knowledge on W.

Since DWM is much smaller than Dprimary, TWM might
not converge properly when being learned simultaneously
with Tprimary. Hence we first optimize W w.r.t. the loss on
the primary task (6) to obtain Mclean with parameter W0 =
argminW {L0(W,Dprimary)}.

Then the model is tuned for TWM by minimizing:

L1(W|Dprimary,Dkey
WM) =

∑
(x,y)∈Dkey

WM

lWM(fW
WM(x), y)

+ λ1 ·Rfunc(W),

(7)

where lWM(·, ·) is the cross entropy loss, and

Rfunc(W) = ‖W−W0‖22. (8)

The regularizer Rfunc in (8) confines W in the neighbour of
W0. Then the continuity ofMWM as a function of W ensures
the functionality-preserving property defined in (3).

Remark on covertness Note that λ1 = θ−1 regarding
Eq. (4) regulates the parameter deviation of MWM from
Mclean. If the owner adopts a large λ1 then it obtains a high
level of covertness. Meanwhile, a smaller λ1 trades covert-
ness for faster convergence of the watermarking task.

The tuning regularizer To be robust against adversarial
tuning, it is sufficient to make cWM robust against tuning ac-
cording to the definition in (5). We assume that Dadversary
shares a similar distribution asDprimary. Otherwise, the stolen
model would not have state-of-the-art performance on the
adversary’s task. A subset of Dprimary is firstly sampled as an
estimation of Dadversary. Let W be the current configuration
of the model’s parameter. Tuning is tantamount to minimiz-
ing the empirical loss on D′primary by starting from W, which

results in the updated parameter: Wt D
′
primary←−−−−W. In practice,

Wt is obtained by replacing Dprimary in (6) by D′primary and
training for a few epochs.

To achieve the security in (5), for any Dadversary and
(x, y) ∈ Dkey

WM, the parameter W should meet:

fWt

WM(x) = y, Wt D
′
primary←−−−−W.

This condition, together with Algo. 1 implies (5).
To exert the constraint in (9) to the training process, we

design a new regularizer:

RDA(W) =
∑

Wt
D′primary←−−−−−W,(x,y)∈Dkey

WM

lWM

(
fWt

WM(x), y
)
. (9)

Then the loss to be minimized is updated from (7) to:

L2(W|Dprimary,Dkey
WM) =L1(W,Dprimary,Dkey

WM)

+ λ2 ·RDA(W).
(10)

RDA defined by (9) can be understood as one kind of data
augmentation for TWM. Data augmentation aims to improve
the model’s robustness against some specific perturbation in
the input domain (Shorten and Khoshgoftaar 2019). This is
usually done by adding an extra regularizer:∑

(x,y)∈D,x′
perturb←−−−x

l
(
fW(x′), y

)
. (11)

Unlike in the data domain of Tprimary, it is hard to explicitly
define augmentation for TWM against tuning. A regularizer
with the form of (11) can be derived from (9) by interchang-
ing the order of summation. Concretely, the perturbation in
the watermarking task with the form:

x′ ∈
[
fW

WM

]−1 (
fWt

WM (x)
)

perturb←−−− x
can increase the watermarked model’s robustness against
tuning.



3.3 The ownership verification protocol
To regulate the OV process against watermark overwriting
and piracy, one option is to use a trusted authorization cen-
ter, which is vulnerable and expensive. Therefore, we resort
to decentralized consensus protocols as Raft (Ongaro and
Ousterhout 2014) or PBFT (Castro, Liskov et al. 1999), un-
der which messages are responded to and recorded by clients
within the community. By storing the necessary information
into the servers of a distributed community, the watermark
becomes unforgeable (Li, Wang, and Liew 2021).

To conduct an OV, the owner submits the evidence to the
entire community, so each member can independently con-
duct the verification. The final result is obtained through
voting, the process is illustrated in Fig. 3. The key gener-
ation process can be tangled with the owner’s digital signa-
ture (e.g., by a CPA-encryption) so revealing key would not
violate the privacy or lead to further threats.

Owner

M

key

verify

!

!

%

!

!

!

Verification result: !

Public verification community

Figure 3: OV process for a DNN.

To publish a model An owner B signs and broadcasts the
following message to the entire community:

〈Publish:‖time‖hash(key)‖hash(cWM)‖hash(info)〉,
where ‖ denotes string concatenation, time is the time
stamp, info explains how cWM connects to the backbone
model, and hash is a preimage resistant hash function map-
ping an object into a string and is accessible for all parties.
Once B is confirmed that the majority of clients has recorded
its broadcast (e.g. when B receives a confirmation from the
current leader under the Raft protocol), it publishes MWM.

To prove the ownership over a model For model M , B
signs and broadcasts the following message:

〈OV:‖lM‖hash(M)‖lcWM‖key〉,
where lM and lcWM are pointers toM and cWM. Upon receiv-
ing this request, any client within the consensus community
can independently conduct the ownership proof. It firstly
downloads the model from lM and examines its hash. Then
it downloads cWM and retrieves the corresponding message
from B by hash(cWM). The last steps follow Section 3.2.
After finishing the verification, this client broadcasts its re-
sult as the proof for B’s ownership over the model in lM .

Security of the OV protocol To pirate a model under this
protocol, an adversary must obtain a legal key, the hash of
a cWM, and the correct info at earlier than the owner. This
is hard since the adversary has to correctly guess the pirated
DNN’s architecture and embed its key into it without mod-
ifying its cWM. Otherwise, such piracy can be falsified by
examining the time-stamp.

4 Experiments and Discussions
4.1 Experiment Setup
To illustrate the flexibility of MTLSign, we considered three
primary tasks: image classification (IC), sentimental anal-
ysis (SA) of discourse, and image semantic segmentation
(SS). We adopted five datasets for IC, two datasets for SS,
and two datasets for SA. The descriptions of these datasets
and the corresponding DNN structures are listed in Table 2.

ResNet (He et al. 2016) is a classical model for image
processing. For the VirusShare dataset, we compiled a col-
lection of 26,000 malware into images and adopted ResNet
as the classifier. Glove (Pennington, Socher, and Manning
2014) is a pre-trained word embedding, while bidirectional
long short-term memory (Bi-LSTM) (Huang, Xu, and Yu
2015) is commonly used in NLP. Cascade mask RCNN
(CMRCNN) (Cai and Vasconcelos 2018) is a DNN special-
ized for semantic segmentation.

Table 2: Datasets and their DNN structures.

Dataset Description DNN structure

MNIST IC, 10 classes ResNet-18

Fashion-
MNIST IC, 10 classes ResNet-18

CIFAR-10 IC, 10 classes ResNet-18

CIFAR-100 IC, 100 classes ResNet-18

VirusShare IC, 10 classes ResNet-18

IMDb SA, 2 classes Glove+Bi-LSTM

SST SA, 5 classes Glove+Bi-LSTM

Penn-Fudan
-Pedestrian SS, 2 classes ResNet-50+

CMRCNN

VOC SS, 20 classes ResNet-50+
CMRCNN

For the image datasets, cWM was a two-layer perceptron
that took the outputs of the first three layers from the ResNet
as input. QRcode was adopted to generate Dkey

WM. For the
NLP datasets, the network took the structure in Fig. 4.

Throughout the experiments, we set N = 600. To set
the verification threshold γ in Algo. 1, we tested the clas-
sification accuracy of a randomly initialized cWM across
nine datasets over 5,000 watermarking datasets. It was ob-
served that all accuracy fell in [0.425, 0.575]. We selected
γ = 0.7 so the probability of a successful piracy is less than
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Figure 4: The network architecture for sentimental analysis.

2.69×10−8 with λ = 0.34 in the Chernoff bound according
to Appendix A. Dprimary′ took 10% samples randomly from
the training dataset. For the tuning attacks, we considered FP
and NP. As for adaptive attacks, we adopted the overwriting
attack and the spoil attack (Li, Wang, and Liew 2021).

4.2 Ablation Study
To examine the efficacy of Rfunc and RDA, we compared the
performance of the watermarked DNN MWM under differ-
ent configurations. Three metrics are of interest: (i) The per-
formance of MWM on Tprimary. (ii) The decline of the per-
formance of MWM on Tprimary when NP made fWM’s accu-
racy on TWM lower than γ. (iii) The performance of fWM
on TWM after FP. The models were trained by minimizing
the MTL loss defined by (10), where we adopted fine-tuning
and NP and chose the optimal λ1 and λ2 by grid search in
[0.02, 0.04, · · · , 0.2]. The results are collected in Fig, 5. We
observe that Rfunc preserves the model’s performance on the
primary task. On the other hand, RDA makes the watermark-
ing branch robust against FP, whose accuracy on TWM is sig-
nificantly higher than the models without RDA. Meanwhile,
the performance on the primary task has to decrease much
larger during NP to invalidate the watermarked model with
RDA, so the adversary has to sacrifice more in order to inval-
idate the original ownership. Therefore, we suggest that both
regularizers be incorporated in watermarking the model.

4.3 Comparative Studies and Discussion
For comparison, several SOTA watermarking schemes (Zhu
et al. 2020; Li et al. 2019a; Darvish, Chen, and Koushanfar
2019; Fan et al. 2021) that are secure against the ambiguity
attack and tuning were considered. Yet they cannot be read-
ily generalized to semantic segmentation and NLP tasks. We
generated 600 backdoor/passport/feature map triggers and
assigned them with proper labels for each candidate scheme.

To compare the levels of covertness, we measured the av-
erage deviation of parameters after watermarking. For the
functionality-preserving property and the robustness against
tuning, we recorded the performance of the watermarked
models on the primary task, the verification accuracy of wa-
termarks after FP, and the relative decline of the performance
on the primary task when NP invalidated the watermarks.

Finally, we conducted the spoil attack, an improved wa-
termark removal attack (Li, Wang, and Liew 2021), to the

watermarked model. The spoil attack can always eliminate
the watermark, so as in NP, the statistics of interest is the rel-
ative decrease of the performance on Tprimary, which reflects
the adversary’s expense. We measured these values for all
compared schemes in five classification datasets, the results
are summarized in Fig. 6, detailed implementations of the
spoil attacks are provided in Appendix B.

Our method resulted in only a slight difference in parame-
ters compared with other candidates, in particular the white-
box competitors. It is harder for an adversary to distinguish
a model watermarked by MTLSign from a clean one. Re-
garding robustness and functionality-preserving, our method
uniformly outperformed other competitors, this is due to: (1)
MTLSign does not incorporate backdoors into the model,
so adversarial modifications such as FP, which are designed
to eliminate backdoor, can hardly reduce our watermark. (2)
MTLSign relies on an extra module, cWM, as a verifier. As
an adversary cannot tamper with this module, universal tun-
ings such as NP have less impact. MTLSign can also adapt
to new tuning operators by incorporating them into RDA.
Moreover, MTLSign asserts weak conditions on both the
task (e.g. NLP) and the DNN architecture and is more flex-
ible. At last, we consider the overwriting attack, where the

Table 3: Decrease of the accuracy of the watermarking
branch against watermark overwriting (in %).

Dataset Number of overwriting epochs
50 150 250 350

MNIST 1.0 1.5 1.5 2.0

F-MNIST 2.0 2.5 2.5 2.5

CIFAR-10 4.5 4.5 4.5 4.5

CIFAR-100 0.0 0.5 0.9 0.9

VirusShare 0.0 0.5 0.5 0.5

IMDb 3.0 3.0 3.0 3.0

SST 2.5 3.0 3.0 2.5

PF-Pedestrian 0.5 1.0 1.0 1.0

VOC 1.3 2.0 2.1 2.1

adversary embeds its watermark into the pirated DNN. Al-
though the adversary’s ownership declaration can be falsi-
fied by the OV protocol, it is necessary that such overwrit-
ing does not invalidate the owner’s watermark. The decrease
of the accuracy of the watermarking branch with the over-
writing epochs was recorded in Table 3. Since the decrease
is uniformly bounded by 5%, overwriting does not form a
threat to MTLSign.

5 Conclusion
This paper presents MTLSign, an MTL-based DNN wa-
termarking scheme. We examine the basic security require-
ments for the DNN watermark, especially the unambiguity,
and propose to embed the watermark as an additional task.



Figure 5: Ablation study on the efficacy ofRfunc andRDA regarding the three metrics. For the watermarked model’s performance
on SS, the benchmark is mAP, otherwise is the classification accuracy.

The proposed scheme explicitly meets security requirements
by corresponding regularizers. With a decentralized consen-
sus protocol, MTLSign is secure against adaptive attacks.
It is true that like any other white-box DNN watermark-
ing scheme, MTLSign remains vulnerable to functionality
equivalence attacks such as the neuron permutation. This is
one of the aspects that require further effort to increase the
applicability of DNN watermarks.
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A A: Derivation for the umambiguity
condition

To formulate this intuition, consider the event where Dkey′

WM
shares q · N terms with Dkey

WM, q ∈ (0, 1). With a pseudo-
random generator, it is computationally impossible to dis-
tinguish πkey from a sequence of N randomly selected inte-
gers. The same argument holds for lkey and a random binary
string of length N . Therefore the probability of this event
can be upper bounded by:(
N

qN

)
·rqN ·(1− r)(1−q)N ≤

[
(1 + (1− q)N)

(
r

1− r

)]qN
,

where r = N
2m+1 . For an arbitrary q, let r < 1

2+(1−q)N then

the probability that Dkey′

WM overlaps with Dkey
WM with a portion

of q declines exponentially.
For numbers not appeared in πkey, the watermarking

branch is expected to output a random guess. Therefore if
q is smaller than a threshold τ then Dkey′

WM can hardly pass
the statistical test in Algo. 1 with N big enough. So let

m ≥ log2 [2N (2 + (1− τ)N)]

and N be large enough would make an effective collision
in the watermark dataset almost impossible. For simplicity,
setting m = 3 · dlog2(N)e ≥ log2(N

3) is sufficient.
To select the threshold γ, assume that the random guess

strategy achieves an average accuracy of at most p = 0.5 +
α(N), where α is a negligible function. The verification pro-
cess returns 1 iff the watermark classifier achieves binary
classification of accuracy no less than γ. The demand for se-
curity is that by randomly guessing, the probability that an
adversary passes the test declines exponentially with n. Let
X denote the number of correct guesses with average accu-
racy p, an adversary succeeds only if X ≥ γ · N . By the
Chernoff theorem:

Pr {X ≥ γ ·N} ≤
(
1− p+ p · eλ

eγ·λ

)N
,

where λ is an arbitrary nonnegative number. If γ is larger
than p by a constant independent of N then

(
1−p+p·eλ

eγ·λ

)
is

less than unity with proper λ, reducing the probability of a
successful attack into negligibility.

B B: Implementation of the spoil attacks
During the spoil attack, the adversary has full knowledge
of key, verify, and has obtained MWM. The adversary’s

objective is to tune MWM into Mspoiled in order to escape IP
regulation, which means the following condition holds with
a large probability:

verify(Mspoiled,key) = 0.

For the backdoor-based watermarking schemes, key is
uniquely corelated with a collection of labelled triggers
{tn, yn}Nn=1. The spoil attack is tantamount to fitting the
watermarked model on the same triggers with adversarially
shuffled labels.

For the weight-based watermarking schemes, key reveals
the places where information is hidden. So the adversary
only has to replace these parameters (which is usually a
small part of the entire model) with random values.

For hybrid white-box watermarking schemes with a com-
plex verify module such as MTLSign, the adversary has
to tune the watermarking branch to fit shuffled labels with
the backend fixed. The loss function to be minimized can be
written as:

L(Wbackbone) =
∑

(x,y)∈Dkey
WM

lWM(y′, cWM(M(x|Wbackbone))),

in which y′ is a randomly assigned label independent from
y. This attack usually results in a large-scale shift of the pa-
rameters within the backbone DNN. If the adversary cannot
properly fine-tune the model afterward (which is always the
case in practice since otherwise the adversary would have
already acquired enough data and can train its DNN from
scratch) then the DNN’s SOTA performance is at risk as
demonstrated in the empirical studies.


