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Abstract

This paper proposes a practical list of safety concerns and
mitigation methods for visual deep learning algorithms. The
growing success of deep learning algorithms in solving non-
linear and complex problems has recently attracted the atten-
tion of safety-critical applications. While the state-of-the-art
methods achieve high performance in synthetic and real-case
scenarios, it is impossible to verify/validate their reliability
based on currently available safety standards. Recent works
try to solve the issue by providing a list of safety concerns and
mitigation methods in generic machine learning algorithms
from the standards’ perspective. However, these solutions are
either vague, and non-practical when dealing with deep learn-
ing methods in real-case scenarios, or they are shallow and
fail to address all potential safety concerns. This paper pro-
vides an in-depth look at the underlying cause of faults in a
visual deep learning algorithm to find a practical and com-
plete safety concern list with potential state-of-the-art mitiga-
tion strategies.

1 Introduction
Deep learning is a powerful tool that solves mathemati-
cally challenging tasks with high dimensional inputs and
multi-variable optimization requirements such as human re-
identification, optical character recognition, and object de-
tection. The learning process involves using heuristic and
numerical methods, which are often hard to explain or inter-
pret as the dimension grows (black-box behavior).

While state-of-the-art deep learning algorithms achieve
high performance in various synthetic and real-life cases,
there is no guarantee for the reliability requirements that
safety-critical applications typically demand since avail-
able safety standards do not provide a suitable verifica-
tion/validation method for deep learning models.

Recent works found another way of dealing with the prob-
lem. By explaining the potential safety concerns of a deep
learning algorithm, it is possible to provide suitable mitiga-
tion methods around them. While the overall strategy sounds
effective, most works fail to provide a practical list of safety
concerns and mitigation methods. These lists are typically
vague, impractical to implement, shallow, and incomplete.
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This paper focuses on the underlying cause of faults in
a visual deep learning algorithm to provide a list of safety
concerns and potential state-of-the-art mitigation methods.
The main contributions of this paper are:

• Providing a practical, complete, and categorical list of
possible faults with their underlying cause for different
visual deep learning algorithm components.

• Providing potential state-of-the-art mitigation methods to
deal with the faults.

The rest of this paper is structured as follows. Section 2
covers related works. Next, Section 3 explains safety con-
cerns related to a visual deep learning algorithm and pro-
vides existing mitigation methods to deal with them. Finally,
Section 4 concludes the work.

2 Related Works
A visual deep learning algorithm is prone to different types
of faults. Recent papers focus on either solving specific
faults or providing an overview of all system-related safety
concerns. Here we discuss some of the most important con-
temporary works:

Zhang’s review of recent papers explains how violation of
critical assumptions in the training stage would lead to faults
and a non-robust system (Zhang, Liu, and Suen 2020). This
review also categorically covers existing mitigation methods
and discusses each technique’s effectiveness. Song focuses
on learning with noisy labels and discusses major strategies
to overcome the challenges of this topic (Song et al. 2021).
While these works and similar titles provide potential miti-
gation methods for specific faults, they do not offer a com-
plete list of all safety concerns.

Kläs suggests using uncertainty wrappers on deep learn-
ing components to ensure the outcome is dependable (Kläs
and Jöckel 2020). However, these wrappers rely on specific
metrics that require prior knowledge of data, which is con-
sidered impractical in the deep learning field.

Wozniak, Schwalbe, and Willers suggest different ap-
proaches to providing a safety concern list and mitigation
methods for developing a deep learning algorithm (Woz-
niak et al. 2020; Schwalbe et al. 2020; Willers et al. 2020).
The proposed strategies contain various goals related to the
dataset, model, and training/inference stage. However, some
goals are vague and non-practical, with no explanation on



how to achieve them or what to do if the goal is not achiev-
able. Moreover, the list is not complete in either work.

Houben provides an extensive list of practical methods to
improve the safety of a deep learning algorithm (Houben
et al. 2021). The work covers the current state-of-the-art
methods to deal with specific problems. However, the pro-
vided safety concern list is neither complete nor adequately
categorized.

Other similar works, such as (Heyn et al. 2021), also suf-
fer from the same issues. The flaws of recent works can be
listed as one or more of the following:

• Not covering the underlying causes of faults, which
might lead to poor choice of mitigation methods.

• Providing non-practical and vague mitigation methods,
which are not suitable for implementation.

• Overestimating the practical capabilities of mitigation
methods in dealing with faults and not providing backup
plans in case of failure.

3 Safety Concerns (SC) and Mitigation
Methods (MM)

The development of a visual deep learning algorithm has
three major stages: (1) training, (2) evaluation, and (3)
inference. This section presents the list of possible faults
within each stage.

3.1 Faults in the Training Stage
Visual data is one of the significant sources of information
for deep learning algorithms. Extracting useful information
from visual data is a complex task that makes it prone to
faults.

A deep learning algorithm approximates the relationship
between the input data and the objects in the real world by
reducing the empirical risk on training data. Thus, having a
proper training dataset is essential to reach the desired qual-
ity in the algorithm. A training dataset should be:

• Complete: contain samples from the defined output space
for the task.

• Adequate: contain samples with identical distribution to
real-world.

• Ample: contain a sufficient amount of samples for con-
vergence of the algorithm.

• Clean: contain well-labeled samples.

Moreover, different model structures come with specific
sets of benefits and weaknesses. Choosing the correct model,
setting up a suitable loss function and optimization algo-
rithm, and finding the perfect hyperparameters are essential
to achieve the best performance.

SC 1 – Incomplete Dataset: Due to the natural complex-
ity of the real world, there is always a much larger open
space than the defined output space for the task. Even with
defined boundaries for the output space, known unknowns
( e.g., outlier classes) and unknown unknowns (e.g., adver-
sarial attacks) pose a significant issue for the algorithm by
producing over-confident wrong predictions.

SC 2 – Inadequate Dataset: Due to the ever-changing na-
ture of real-world conditions, the collected data for training
will not have identical distribution with the real-world en-
vironment in the inference stage. Even a slight mismatch in
the distribution can cause a significant drop in performance
and result in poor generalization.

SC 3 – Insufficient/Noisy Dataset: The cost of manu-
ally labeling a dataset increases exponentially with its size.
While having a small clean validation dataset is feasible,
larger datasets tend to have noisy labels. A deep learning
algorithm can memorize this noise, leading to poor general-
ization and low performance.

SC 4 – Ill-Matched Architecture: Manually comparing
different models and hyperparameters to find the best match
for the task is time-consuming and costly. Moreover, it re-
quires an expert in the field to provide an insight into the
problem. An ill-matched architecture could result in unfore-
seen faults due to inherent weakness against specific situa-
tions that might exist.

MM 1 – Learning with Unseen Data: Modern deep
learning tools could be utilized to force the boundaries of
the training dataset even further. Out-of-distribution detec-
tors can be used in the algorithm to detect unseen samples
in the inference stage and reject the over-confident results of
the algorithm. These methods introduce uncertainty metrics
to determine whether the algorithm should be trusted or not
(Chen et al. 2020; Sastry and Oore 2020; Bakhshi Germi,
Rahtu, and Huttunen 2021).

Also, open-world recognition systems can be used to ex-
tend the output space of the algorithm as it encounters out-
lier samples in the inference stage. These methods con-
tinue to learn new classes during the inference stage to re-
duce the chance of over-confident wrong predictions (Par-
mar, Chouhan, and Rathore 2021; Bendale and Boult 2015).

Moreover, the model could be trained to defend against
adversarial attacks by including such patterns in the training
dataset (Xu et al. 2020; Yuan et al. 2019).

Discussing MM 1: Out-of-distribution detectors typically
result in lower accuracy, open-world recognition systems are
slow and demanding, and adversarial attacks keep evolving
and changing every day. The mentioned methods all have
their limitation. A suitable backup plan would involve utiliz-
ing several models with various mitigation methods to create
an ensemble to vote for the final result.

MM 2 – Learning with Unequally Distributed Data:
Modern deep learning tools could be utilized to reduce the
distribution mismatch between the training and inference
domain. Transfer learning and domain adaptation can be
used to fine-tune the algorithm online during the inference
stage. These methods help the model to adapt to new envi-
ronments quickly and achieve better generalization by using
a small batch of data in the inference stage (Farahani et al.
2020; Zhuang et al. 2020).

On the other hand, the algorithm can achieve higher
performance by utilizing multiple sources of information
for a single task (e.g., person identification with face, iris,



Figure 1: Samples of the same category in MNIST (Top) (Lecun et al. 1998) and CIFAR-10 (Bottom) (Krizhevsky 2009)
datasets (Taken from (Chen et al. 2021)). From left to right, the difficulty of classifying is increasing for both manual and
automatic label assignment, thus resulting in the increased chance of noisy labels.

voice, and fingerprint). Multimodal learning methods incor-
porate supplementary and complementary data from mul-
tiple modalities to the performance of a single task (Bal-
trušaitis, Ahuja, and Morency 2018; Guo, Wang, and Wang
2019).

Discussing MM 2: Transfer learning and domain adapta-
tion methods typically rely on having a decent starting point
(trained network) and quality samples from the inference
stage to fine-tune the model successfully. While the require-
ments are hard to achieve, it is not impossible. Moreover,
multimodal methods have already been used with sensor fu-
sion in autonomous vehicles (LIDAR, GPS, IMU, and so
on), making them a strong candidate for use in deep learn-
ing systems. A suitable backup plan would involve storing
the input data during the inference stage to re-evaluate and
re-calibrate the algorithm by replacing parts of the older and
non-useful training dataset in an iterative cycle.

MM 3 – Learning with Noisy Labels and Small Dataset:
Modern deep learning tools could be utilized to reduce
the effect of label noise or eliminate the need for a large
labeled dataset. Robust loss, sample selection, relabeling,
and weighted training are all potential solutions to deal
with noisy labels in the training dataset (Song et al. 2021;
Cordeiro and Carneiro 2020; Adhikari et al. 2021). A com-
bination of multiple methods usually leads to better results.

On the other hand, data augmentation methods can be
used to create additional samples for the training dataset.
These methods typically involve rotating, scaling, shifting,
and flipping data (Wang, Wang, and Lian 2020; Shorten
and Khoshgoftaar 2019). More advanced synthesizing tech-
niques can lead to the creation of entire datasets (Raghu-
nathan 2021; Nikolenko 2019). Additionally, existing public
datasets can be utilized to extend the samples at a lower cost.

Moreover, the cost and time for manually labeling
datasets can be drastically reduced by using iterative label-
ing methods (Adhikari and Huttunen 2021).

Finally, semi-supervised and unsupervised training tech-
niques can be used to decrease the dependency on a clean
training dataset (Van Engelen and Hoos 2020; Schmarje
et al. 2021).

Discussing MM 3: Recent works prove that the label
noise is instance-dependent, as shown in Figure 1. This dis-
covery means most state-of-the-art methods in dealing with
label noise need revision on how to mitigate the effects of
label noise. Recent works happen to focus on this topic and
provide effective solutions. While these solutions do not
have mathematical proof, they perform decently on public
benchmarks.

Meanwhile, the research around synthesized data indi-
cates that it may not represent the real world in every sit-
uation due to the limitations of simulation environments and
lack of involved experts in the process. Moreover, the exist-
ing public datasets might not suit the specific task or have
other inconsistencies, such as low-quality images and noisy
labels.

A suitable backup plan would involve developing a more
realistic simulation environment while including the physi-
cal knowledge about the task in the training process.

MM 4 – Automated Architecture Selection: Modern
deep learning tools could be utilized to select the optimum
model and hyperparameter for a given task. Automated hy-
perparameter optimization (Yu and Zhu 2020; Luo 2016;
Hutter, Lücke, and Schmidt-Thieme 2015) and neural ar-
chitecture search (Wistuba, Rawat, and Pedapati 2019; Ren
et al. 2021) methods can reduce manual labor while elimi-
nating the need for an expert. These methods rely on differ-
ent search algorithms to find the best model and hyperpa-
rameters within the working domain.

Discussing MM 4: Relying on search algorithms requires
high computational power and proper comparison tools.
While it will cost money and time to do it, the solution is
not impossible or impractical in most safety-critical applica-
tions.

3.2 Faults in the Evaluation Stage
Evaluation of a trained deep learning algorithm requires
prior knowledge about the task. A testing dataset should in-
clude samples from all scenarios, no matter how rare, to en-
sure the safety of the algorithm. Also, proper performance
metrics should be selected during the tests to obtain compa-
rable outputs.
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Figure 2: Effects of camera faults on the input image (Taken from (TND6233-D)): (A) Faulty clocking system, (B) Faulty
pipeline, and (C) Faulty row addressing logic.

Moreover, formal verification/validation methods depend
on having an interpretable algorithm, which contrasts deep
learning.

SC 5 – Incompatible Metrics and Benchmarks: The
most common performance metric in deep learning algo-
rithms is accuracy. However, other metrics might hold more
value in safety-critical applications as the importance of
false-positive and false-negative grow exponentially in this
field. Moreover, gathering a proper dataset to use as a bench-
mark has similar challenges to the training dataset.

MM 5 – Using Safety-Aware Metrics and Hazard-Aware
Benchmarks: By including a weighted cost for each type
of fault in the performance metric, the algorithm can be eval-
uated according to safety requirements (Zhou et al. 2021;
Gharib and Bondavalli 2019; Salman et al. 2020). These new
evaluation metrics would make the trade-off between perfor-
mance and safety more visible.

On the other hand, a list of all hazardous scenarios can be
prepared for every task for inclusion in the testing dataset
by performing a risk analysis on the task (Zendel et al.
2018; Lambert et al. 2020). Such datasets could be treated
as benchmarks for comparing different algorithms or vali-
dating their performance.

Discussing MM 5: While formulating a new cost function
requires expert knowledge, it is within the scope of expec-
tations in a safety-critical application. Various combination
of weighted metrics can be utilized and compared to find
the most suitable one for the task. However, a bad decision
could result in a non-converging algorithm, thus there is a
necessity for mathematical proof about the convergence of
the algorithm.

Moreover, the competitive nature of industry typically
prevents them from sharing any suitable benchmarks or
cost functions publicly, which means each company has to
spend time and resources on developing their own system. A
suitable backup plan would involve third-party associations
funded by multiple companies to handle the problem for the
benefit of all members.

SC 6 – Black-Box Behavior: The large volume of param-
eters and non-linear functions in deep learning algorithms
result in an uninterpretable system. With no clear relation
between the input and output of this black-box system and
the impossible task of testing the entire input domain, it is
hard to verify/validate deep learning algorithms based on
safety standards.

MM 6 – Opening the Black-Box: Representation learn-
ing enables the deep learning algorithm to discover the re-
lation between input data and output in a presentable way
by showing the process of feature selection (Zhang et al.
2018; Li, Yang, and Zhang 2018). Understanding this pro-
cess helps to gain an insight into how the network interprets
input data, and which parts of data play a more significant
role in deciding the outcome.

Another way to gain such insight is to present a map of
pixel relevance for the algorithm. These heat maps illustrate
the importance of each pixel when calculating the output
(König et al. 2021; Bach et al. 2015). Such information can
be about isolated pixels or the interconnection of different
pixels. Studying these maps could show the effects of slight
changes in input on the output and help find potential haz-
ardous cases.

Discussing MM 6: This specific problem could be one of
the most important ones with the least proper solutions as of
yet. While it is possible to gain some insight into the opera-
tion of deep learning algorithms, the information cannot be
used in any form to verify/validate the algorithm based on
traditional standards. A suitable backup plan would involve
using safety case arguments and other similar approaches to
bypass the need for verification/validation for now.

3.3 Faults in the Inference Stage
In a typical case, a similar sensor used for collecting offline
data provides the online data for the implemented algorithm.
On top of it, other hardware components are required for
the algorithm to work correctly. These components can be
summarized as:



Figure 3: Effects of environmental factors on the input image (Taken from (Bakhshi Germi, Rahtu, and Huttunen 2021)): (A)
Original image, (B) Movement of camera/object (Motion blur), (C) Raindrop on the lens (Frosted-glass blur), (D) Out-of-
focus object (Gaussian blur), (E) Low illumination (Gaussian noise), (F,G) Improper balance of light and darkness (Low/High
brightness), and (H) Obscured object (Occlusion).

• A camera to capture the input image.
• A communication channel to transfer the captured image.
• A processing unit to host the deep learning algorithm.
• A power supply to keep the system running.

SC 7 – Defective Hardware: The first concern in deep
learning algorithms is providing the necessary hardware
mentioned above. Hardware faults can have a wide range
of effects on the algorithm based on the faulty component,
an example being the results of a faulty camera on the cap-
tured image, as shown in Figure 2. An implementation of
the algorithm might run into problems based on the defec-
tive hardware component:

• Camera faults that might result in various disturbances in
the input image, such as pixel corruption or image distor-
tion.

• Communication channel faults that might result in data
corruption or data loss.

• Processing unit faults that might result in wrong calcula-
tions, lagging, or freezing of the algorithm.

• Power supply faults might result in breaking other hard-
ware components or total system shutdown.

MM 7.1 – Following Functional Safety Standards: The
mentioned hardware components are not unique to deep
learning algorithms and have been used for decades in
safety-critical applications. As a result, the current func-
tional safety standards such as ISO 26262 (ISO 26262)

and ISO/PAS 21448 (ISO/PAS 21448) provide practical
guidelines for verifying and validating hardware compo-
nents. Also, technical reports based on functional safety
standards can help develop or choose safe hardware com-
ponents such as a camera (TND6233-D), communication
channel (Alanen, Hietikko, and Malm 2004), and operating
system (Slačka and Halás 2015).

Moreover, other precautions such as using redundant
hardware, proper noise shielding, and data fusion techniques
have already proved helpful in safety-critical applications
(Sklaroff 1976; Ciftcioglu and Turkcan 1996).

Discussing MM 7.1: Assuming the hardware is chosen
based on the proper functional safety standards, it should op-
erate without significant safety concerns. However, this mit-
igation method does not guarantee the complete removal of
any disturbance or corruption of data. Environmental factors
such as lousy illumination, movement, and obscured objects
can affect input image quality without causing a hardware
failure, as seen in Figure 3. While some of these problems
might not be recognizable by a human annotator, the deep
learning algorithm could run into faults based on the type
and severity of corruption. Moreover, less severe levels of
hardware failure might cause noise variations on the input
data. A suitable backup plan would involve utilizing another
mitigation approach described as follows.

MM 7.2 – Using Image Processing Techniques: Since
the exact relation between the input image and the output
of the deep learning algorithm is not known, it is recom-



mended to have clean input data to reduce the change of
unwanted outcomes. The current state-of-the-art image pro-
cessing techniques such as denoising (Fan et al. 2019; Goyal
et al. 2020; Jebur, Der, and Hammood 2020), deblurring
(Sada and Goyani 2018; Nah et al. 2021; Abuolaim, Tim-
ofte, and Brown 2021), and enhancement (Putra, Purboyo,
and Prasasti 2017) methods can improve the quality of the
input images and remove most of the disturbances not cov-
ered by the previous mitigation method. Most image pro-
cessing techniques have solid mathematical foundations and
passed extensive testing cycles to prove their effectiveness,
making them easy to validate and verify for safety-critical
applications.

Discussing MM 7.2: Image processing techniques are
only valid when it’s known that the image is corrupted. Oth-
erwise, such functions can negatively affect a clean image
during the operation (e.g., removing/fading edges, bright-
ening the image without necessity, etc.). Applying a filter
without knowing the type of corruption is almost as dan-
gerous as not utilizing any technique. So, it is safe to as-
sume that some form of corruption is inevitable. A suitable
backup plan would involve using the rejection option as de-
scribed before to reduce the amount of overconfident wrong
outputs.

4 Conclusion
The research around using deep learning algorithms in
safety-critical applications is growing rapidly, with the cur-
rent state-of-the-art answers partially fulfilling the require-
ments of old standards. However, the nature of the problem
demands to move away from the traditional broad-spectrum
method of standardization as it is not suitable for deep learn-
ing algorithms. There is a high demand for task-specific
standards to be developed. Until such standards are devel-
oped, the research community focuses on alternative ap-
proaches and empirical analysis to provide practical solu-
tions on specific cases.

This paper provides a practical list of safety concerns for
a visual deep learning algorithm by explaining the under-
lying cause of faults and providing current state-of-the-art
solutions to mitigate them. By presenting the limitations of
existing mitigation methods, the need for further study is ex-
pressed. We hope this paper offers an insight to those who
want to utilize deep learning algorithms in their applications
or those who want to develop proper standard or safety case
arguments for such systems.
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