
EMF-Syncer solution to TTC’20 round-trip migration case
Artur Boronat1

1School of Computing and Mathematical Sciences, University of Leicester, University Rd, LE1 7RH, Leicester, United Kingdom

Abstract
In this paper, we present a solution to the TTC’20 offline case Round-trip migration of object-oriented data model instances [1].
This case involves the application of maintenance tasks to web APIs that are associated with domain models so that updates
are backward compatible. The solution presented in this article features the EMF-Syncer [2], a synchronization tool for
bridging MDE-agnostic programs and MDE-aware programs, which may have some similarities in their object-oriented data
models at run time. EMF-Syncer provides a generic synchronization strategy that exploits such similarities automatically
and is, therefore, a suitable candidate for solving the proposed problems, since each problem relies on a small change and
there is a large overlap between two versions of the same data model. In the paper, we used the case benchmark framework
to justify that our solution exhibits a good balance between specification conciseness and performance.

Keywords
Model syncing, model-driven engineering, round-trip engineering

1. Introduction
The Round-trip migration of object-oriented data model
instances case [1] for the TTC’20 exposes an evolution
problem in the context of web API development, where
different APIs work on top of a common data model. To
accommodate new or changing requirements in the sys-
tem, API designers need to ensure backward-compatible
changes in the underlying data model. Assuming an agile
software development environment where data models
may evolve rapidly, the case proposes the use of round-
trip migration services, relying on Model-Driven Engi-
neering (MDE) technology, for enabling the co-existence
of different versions of the data model at run time. In
particular, the Eclipse Modeling Framework (EMF) [3] is
used to encode data models with the EMF meta-modeling
language, namely Ecore, so that tools built atop EMF can
be used to implement data migration services.

The solution presented in this article features the EMF-
Syncer [2], a synchronization tool for bridging MDE-
agnostic programs and MDE-aware programs, which
may have some similarities in their object-oriented data
models1, at run time. EMF-Syncer provides a generic
synchronization strategy that exploits such similarities
automatically and is, therefore, a suitable candidate for
solving the proposed problems, since each problem relies
on a small change and there is a large overlap between
two versions of the same data model. The EMF-Syncer

TTC’20: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, G. Hinkel, and F.
Křikava, 17 July 2020, Bergen, Norway (online).
" artur.boronat@leicester.ac.uk (A. Boronat)
~ https://arturboronat.github.io/ (A. Boronat)
� 0000-0003-2024-1736 (A. Boronat)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1We refer to these data models as domain models in [2].

assumes that MDE-agnostic programs are implemented
in a JVM language and that MDE-aware programs repre-
sent their data model using EMF-generated code.

Given a source data model (represented in a package
of classes in the MDE-agnostic program), a target data
model (represented as an Ecore model in an EMF-based
program), and a collection of objects representing the
source program state, EMF-Syncer translates the MDE-
agnostic objects as an EMF model instance in the target
EMF-based program, synchronizing the state of both pro-
grams at run time. EMF-Syncer automatically infers
structural similarities between object-oriented data mod-
els by mapping object structural features by name, when
found, translating both attribute and reference values.
This translation can be performed using a push-based
model, where the entire source program state is migrated,
or using a pull-based model, where only those feature
values accessed in the target program are migrated. Once
synchronization is established, changes that have been
applied to target EMF model instances can be incremen-
tally back-propagated to the source MDE-agnostic coun-
terpart. Incrementality of back-migration entails that
only changes in target model instances are propagated
back and merged within the source instance.

The aforementioned generic mapping strategy that is
built in EMF-Syncer can be customized in order to allow
for more complex data transformations between the data
models involved. A domain-specific mapping strategy is
declared with a mapping specification that maps a source
feature type to a target feature type, possibly including
feature value transformations, either from source to tar-
get, or from target to source, or both. Two main custom
mapping strategies can be declared:

• Renaming of feature types: such renamings may
affect the name of the class, where the feature
is declared, and the name of the feature. This

mailto:artur.boronat@leicester.ac.uk
https://arturboronat.github.io/
https://orcid.org/0000-0003-2024-1736
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

mapping strategy allows for transformations that
modify the data model either syntactically, when
either a class or a feature is renamed in the tar-
get model, or structurally, when a feature type is
moved to an unrelated object type. In this case,
feature values are transformed using the generic
synchronization strategy.

• Transformation of feature values, with or without
renaming of feature types: feature value trans-
formations are expressed using Xtend lambda ex-
pressions defined for a contextual object type,
from the source data model, and result in a sin-
gle target feature value. This mapping strategy
allows for semantic transformations, where the
feature value can be computed using navigation
expressions from the contextual type. A feature
value transformation is applied in a single direc-
tion, either from source to target or from target
to source. A programmer can opt to provide fea-
ture value transformations in both directions (as
in Task_2 in §2.2), only in one (as in Task_3 in
§2.3), or none at all. The last case corresponds to
a simple renaming of feature types as explained
above.

For the TTC 2020 case, we are relying on the obser-
vation that an EMF-based program can be regarded as a
plain Java program. Hence, the given Java program will
refer to the source data model and the EMF-based pro-
gram will refer to the target data model. In the following
sections, we discuss the solution to the case in §2, and
the evaluation of the solution in §3 using the evaluation
criteria proposed in the case, wrapping up with some
conclusions in §4.

2. Solution
The solutions to the different tasks of the
case are explained below and are available at
https://github.com/emf-syncer/ttc20-roundtrip. The
solution has been implemented using the language
Xtend [4].

2.1. Task 1: create/delete field
In this task, a new feature age is added to the class
Person in the modified data model 𝑀2 and when a
Person instance is migrated, its feature value is set to
-1. When the instance is migrated back, this information
is lost.

The solution Task1_M1_M2_M1, shown in the listing
below, illustrates the pattern used in all of the solutions.
The EMF-Syncer is used by instantiating the class
EMFSyncer between a source Java package name list
#[’scenario1_v1’] and a target Ecore model in the

constructor. All of the solutions use the push-based
model in syncForward, which is specified by indicating
syncer.syncingStrategy = SyncingStrategy.EAGER,
forcing the migration of the entire source instance.

In the method migrate, the statement
syncer.syncForward(person_v1) migrates
the source Person instance obtaining the target
instance with the age feature, which is not initial-
ized until the statement person_v2.age = -1 is
evaluated. In the method migrateBack, the state-
ment syncer.syncBack(person_v2) migrates the
instance back to the source Java program.

The method modify is used to implement changes to
target model instances that need to be propagated back.
This logic is hardcoded in test cases in the benchmark
framework. EMF-Syncer needs to track which changes
are performed in the target model instance in order to
enable incremental back migration. Therefore, this logic
has been moved from test cases to task classes.
1 class Task_1_M1_M2_M1 extends AbstractTask {
2 val Syncer syncer
3

4 new (EPackage model1, EPackage model2) {
5 super(model1, model2);
6 syncer = new Syncer(#[’scenario1_v1’], model2)
7 syncer.syncingStrategy = SyncingStrategy.EAGER
8 }
9

10 override migrate(EObject instance) {
11 val person_v1 = instance as scenario1_v1.Person
12 val person_v2 = syncer.syncForward(person_v1) as scenario1_v2

.Person
13 person_v2.age = -1
14 return person_v2;
15 }
16

17 override migrateBack(EObject instance) {
18 val person_v2 = instance as scenario1_v2.Person
19 return syncer.syncBack(person_v2) as scenario1_v1.Person
20 }
21

22 override modify(EObject instance) { }
23 }

It is important to note that the bidirectional transfor-
mation between both data models is completely inferred
by the EMF-Syncer automatically in this task. In the
back migration, as the age feature does not exist in the
source program, it is not propagated.

The solution to the symmetric problem
Task1_M2_M1_M2 is achieved by inverting the di-
rection in which the EMF-Syncer is applied to the data
models, as seen in the listing below. In this case, the data
model M2 is regarded as the Java program and the data
model M1 as the EMF program. In this case, the value
of the age feature of a Person class is preserved on
the back migration because this feature does not exist
in M1 and, therefore, no changes can be applied to the
feature age. In the following subsections, solutions to
symmetric problems are achieved by flipping, as for this
task, the direction in which the EMF-Syncer is applied
and are not included in the paper.

https://github.com/emf-syncer/ttc20-roundtrip

1 class Task_1_M2_M1_M2 extends AbstractTask {
2 val EMFSyncer syncer
3

4 new (EPackage model1, EPackage model2) {
5 super(model1, model2);
6 syncer = new Syncer(#[’scenario1_v2’], model1)
7 syncer.syncingStrategy = SyncingStrategy.EAGER
8 }
9

10 override migrate(EObject instance) {
11 val person_v2 = instance as scenario1_v2.Person
12 return syncer.syncForward(person_v2) as scenario1_v1.Person
13 }
14

15 override migrateBack(EObject instance) {
16 val person_v1 = instance as scenario1_v1.Person
17 return syncer.syncBack(person_v1) as scenario1_v2.Person
18 }
19

20 override modify(EObject instance) { }
21 }

2.2. Task 2: rename field
In this task, the feature age of the class Person is re-
named to ybirth, and its semantics is changed by repre-
senting the age and the year of birth, respectively. This
renaming involves domain-specific semantics that is not
present in the Ecore model, requiring a mapping spec-
ification so that the EMF-Syncer can perform the data
transformation correctly.

A mapping specification consists of a collection of
mappings between feature types by name, ’Person’,
’age’, /* <–> */ ’Person’, ’ybirth’, and by
adding optional feature value transformations as lambda
expressions. For example, in the solution, the lambda
expression
1 val person_v1 = it as scenario2_v1.Person
2 Integer.valueOf(Calendar.getInstance().get(Calendar.YEAR) -

person_v1.age) as Object

gets a Person instance from the source data model and
returns the ybirth value. When the EMF-Syncer ap-
plies the transformation syncForward, the feature value
for Person::ybirth will be obtained by applying this
expression. The rest of the solution follows the same
structure as the solution explained in §2.1.
1 class Task_2_M1_M2_M1 extends AbstractTask {
2 val EMFSyncer syncer
3

4 // custom mapping strategy: M1 <--> M2
5 val public static mapping = new EMFSyncerMapping(
6 ’Person’, ’age’, /* <--> */ ’Person’, ’ybirth’,
7 // source to target feature value transformation
8 [
9 val person_v1 = it as scenario2_v1.Person

10 Integer.valueOf(Calendar.getInstance().get(Calendar.YEAR) -
person_v1.age) as Object

11],
12

13

14 // target to source feature value transformation
15 [
16 val person_v2 = it as scenario2_v2.Person

17 Integer.valueOf(Calendar.getInstance().get(Calendar.YEAR) -
person_v2.ybirth) as Object

18]
19)
20

21 new (EPackage model1, EPackage model2) {
22 super(model1, model2);
23 syncer = new EMFSyncer(#[’scenario2_v1’], model2,

newArrayList(mapping))
24 syncer.syncingStrategy = SyncingStrategy.EAGER
25 }
26

27 override migrate(EObject instance) {
28 val person_v1 = instance as Person
29 return syncer.syncForward(person_v1) as scenario2_v2.Person
30 }
31

32 override migrateBack(EObject instance) {
33 val person_v2 = instance as scenario2_v2.Person
34 return syncer.syncBack(person_v2) as Person
35 }
36

37 override modify(EObject instance) { }
38 }

2.3. Task 3: declare field
optional/mandatory

In this task, the multiplicity of a feature type is modified
so that the feature is mandatory in one data model and
optional in the modified version. This task exposes a
difference between a MDE-agnostic program, where it
is not possible to know whether a feature is optional in
plain Java, and a MDE-aware one, where this informa-
tion is encoded in the Ecore model. As the EMF-Syncer
treats the source program as a plain Java program, it disre-
gards the information contained in the Ecore model, and
the logic to transform null values in to empty Strings
needs to be provided in a custom mapping. The ex-
pression person_v2.name ?: "" returns an empty
String when the name of the Person instance is null,
which is checked using the Elvis operator ?:. The rest
of the data transformation is fully inferred by the EMF-
Syncer .
1 class Task_3_M1_M2_M1 extends AbstractTask {
2 val EMFSyncer syncer
3

4 // custom mapping strategy: M1 <--> M2
5 val public static mapping = new EMFSyncerMapping(
6 ’Person’, ’name’, /* <--> */ ’Person’, ’name’,
7 null,
8 // target to source feature value transformation
9 [

10 val person_v2 = it as scenario3_v2.Person
11 person_v2.name ?: ""
12]
13)
14

15 new (EPackage model1, EPackage model2) {
16 super(model1, model2);
17 syncer = new EMFSyncer(#[’scenario3_v1’], model2,
18 newArrayList(mapping))
19 syncer.syncingStrategy = SyncingStrategy.EAGER
20 }
21

22 override migrate(EObject instance) {
23 val person_v1 = instance as scenario3_v1.Person
24 return syncer.syncForward(person_v1) as Person

25 }
26

27 override migrateBack(EObject instance) {
28 val person_v2 = instance as Person
29 syncer.syncBack(person_v2) as scenario3_v1.Person
30 }
31

32 override modify(EObject instance) {
33 val person_v2 = instance as Person
34 syncer.track[person_v2.name = null]
35 return person_v2
36 }
37 }

This solution also contains an example of how to track
changes performed in the target instance, in the modify
method, that need to be migrated back. This change is
encoded in the corresponding test case in the original
test framework.

2.4. Task 4: multiple edits
This task combines Task_1 and Task_2 with the aim
of analysing reuse mechanisms that can be employed.
The solution below reuses the transformation logic of
Task_1, as it is handled by the EMF-Syncer automati-
cally, and it reuses the mapping specification of Task_2,
which is defined as a static field. The rest of the solution is
as in §2.1, after renaming the corresponding namespaces.
1 class Task_4_M1_M2_M1 extends AbstractTask {
2 val EMFSyncer syncer
3

4 new (EPackage model1, EPackage model2) {
5 super(model1, model2);
6 syncer = new EMFSyncer(#[’scenario4_v1’], model2,
7 newArrayList(Task_2_M1_M2_M1.mapping))
8 syncer.syncingStrategy = SyncingStrategy.EAGER
9 }

10

11 override migrate(EObject instance) {
12 val container_v1 = instance as scenario4_v1.Container
13 return syncer.syncForward(container_v1) as scenario4_v2.

Container
14 }
15

16 override migrateBack(EObject instance) {
17 val container_v2 = instance as scenario4_v2.Container
18 syncer.syncBack(container_v2) as scenario4_v1.Container
19 }
20

21 override modify(EObject instance) { }
22 }

3. Evaluation
In this section, we provide an evaluation of the solution
according to the evaluation criteria proposed in [1].

3.1. Expressiveness
Two test cases are provided for checking the correct-
ness of each task. A test case provides the input for a
round-trip migration and the expected output. The test

framework has been adapted in order to work with code
generated from Ecore models via EMF, which is required
by EMF-Syncer . The main properties (namely, name,
nsPrefix and nsUri) of the EPackage in each Ecore
model were updated in order to generate disjoint names-
paces. In test cases, loading resources for each Ecore
model was modified in order to use the corresponding
generated factory for each model instance. Model in-
stances, used as input/output data, were modified to re-
fer to the corresponding nsUri. In some cases, the test
case also performs a change in the target instance, as in
Task_3, that needs to be propagated back to the source
instance. Such modifications have been encoded in the
task itself, in the method modify, as the EMF-Syncer
needs to track those changes. Such changes refer to im-
plementation details and do not alter the correctness
properties checked2 by the test suite.

Solutions for all of the tasks have been implemented
and all of them pass the correctness check.

3.2. Comprehensibility
Task solutions have been implemented using Xtend.
However, the EMF-Syncer can be used from Java pro-
grams as well. Given that the transformation in most
of the solutions is inferred automatically and that so-
lutions use generated code, instead of using the EMF
reflection API for accessing/mutating values, we argue
that solutions are likely to be more comprehensible than
the reference ones.

When custom mappings are required, e.g. in Task_2
and in Task_4, these are defined by instantiating the
class EMFSyncerMapping, where feature value transfor-
mations are defined as Xtend lambda expressions. Such
mapping expressions could have been defined similarly
in Java as well.

3.3. Bidirectionality
In the solution for most of the tasks, the EMF-Syncer
infers both transformations to be applied, syncForward
and syncBack, automatically. In such cases, the pro-
grammer does not need to provide a transformation spec-
ification and a bidirectional data transformation is being
used internally so that Java instances can be migrated
to an EMF program, and back again, at run time. A cus-
tom mapping specification containing only feature type
renamings is fully bidirectional. Feature value transfor-
mation expressions are unidirectional though.

Therefore, the EMF-Syncer provides support for bidi-
rectional transformations by default for all of the solu-
tions and accommodates special cases with unidirectional

2The test case task_3_M1_M2_M1_b had to be updated in or-
der to check that the name was migrated back correctly.

Expressiveness Comprehensibility Bidirectionality Re-usability
Task 1: "Create/Delete Field"
Task_1_M1_M2_M1 2 (2) 2 (2) 1 (1) n.a.
Task_1_M2_M1_M2 2 (2) 2 (2) 1 (1) n.a.

Task 2: "Create/Delete Field"
Task_2_M1_M2_M1 2 (2) 2 (2) 1 (1) n.a.
Task_2_M2_M1_M2 2 (2) 2 (2) 1 (1) n.a.

Task 3: "Create/Delete Field"
Task_3_M1_M2_M1 2 (2) 2 (2) 1 (1) n.a.
Task_3_M2_M1_M2 2 (2) 2 (2) 1 (1) n.a.

Task 4: "Create/Delete Field"
Task_4_M1_M2_M1 2 (2) 2 (2) 1 (1) 4 (4)
Task_4_M2_M1_M2 2 (2) 2 (2) 1 (1) 4 (4)∑︀

: 16 (16)
∑︀

: 16 (16)
∑︀

: 8 (8)
∑︀

: 8 (8)

Table 1
Summary of evaluation results.

feature value transformations, which correspond to a
fraction of the data migration to be performed.

3.4. Re-usability
Re-usability is internalized in the EMF-Syncer by infer-
ring transformations automatically. That is, when a user
does not need to provide a mapping specification, the
transformation logic in the EMF-Syncer is reused for
any data model change. For example, reuse of the logic
transformation in Task_1 falls under this category.

On the other hand, as EMF-Syncer is a JVM library, a
programmer can rely on reuse mechanisms provided by
the JVM language of choice. For example, reuse of the
transformation logic in Task_2 falls under this category.
The mapping specification defined for Task_2 is reused
by calling a static field and by using a common interface
for the class Person, which has been implemented using
inheritance in Task_4.

3.5. Performance
We have run the performance tests both for the refer-
ence solution and for the EMF-Syncer solution on a
MacBookPro11,5 Core i7 2.5 GHz, with four cores and
16 GB of RAM. The runtime results (in ms.) obtained
are displayed in Fig. 1. The EMF-Syncer solution ex-
hibits a linear growth with respect to the number of
iterations, as instructed in the case benchmark. However,
the EMF-Syncer solution is more efficient than the refer-
ence one thanks to its support for incremental migration
of changes. While the reference solution takes about 31 s.
for 2 million iterations, the EMF-Syncer solution takes
about 9 s, with an improvement factor of 70%. The in-
cremental propagation relies on a traceability model that
caches relevant data at run time. An analysis of memory
consumption is left for future work as it was not part of
the case benchmark.

0

5000

10000

15000

20000

25000

30000

35000

10
00

0
90

00
0

17
00

00
25

00
00

33
00

00
41

00
00

49
00

00
57

00
00

65
00

00
73

00
00

81
00

00
89

00
00

97
00

00
10

50
00

0
11

30
00

0
12

10
00

0
12

90
00

0
13

70
00

0
14

50
00

0
15

30
00

0
16

10
00

0
16

90
00

0
17

70
00

0
18

50
00

0
19

30
00

0

reference (ms) EMFSyncer (ms)

Figure 1: Performance results (ms.) along iterations

4. Conclusions
Following from the justification of the evaluation criteria
in the section above, the results are summarized in Ta-
ble 1, where the score 𝑋 out of 𝑌 is expressed as 𝑋(𝑌).
Overall, this solution shows that the EMF-Syncer helps
in achieving a competitive trade-off between data migra-
tion specification and performance. On the one hand, the
automatic inference of data transformations between dif-
ferent object-oriented data models reduces the need for
specifying data transformations. When these have to be
specified, a programmer can rely on their programming
skills, using a JVM programming language, for reusing
transformation logic. On the other hand, EMF-Syncer
can be used as an efficient data migration service at run
time. For example, the EMF-Syncer solution is faster
than the reference solution developed in raw Java. EMF-
Syncer can be used for building more scalable solutions,
involving very large models, by using the pull-based
model for propagating changes in syncForward only
when they are required in the target program.

References
[1] L. Beurer-Kellner, J. von Pilgrim, T. Kehrer, Round-

Trip Migration of Object-Oriented Data Model In-
stances, in: Proceedings of the 13th Transformation
Tool Contest, a part of the Software Technologies:
Applications and Foundations (STAF 2018) federa-
tion of conferences, CEUR Workshop Proceedings,
CEUR-WS.org, 2020.

[2] A. Boronat, Code-first model-driven engineering:
On the agile adoption of mde tooling, in: Proceedings
of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2019), San
Diego, CA, November 11-15, ACM, 2019.

[3] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks,
EMF: Eclipse Modeling Framework 2.0, 2nd ed.,
Addison-Wesley Professional, 2009.

[4] T. E. Foundation, Xtend (official web page), 2018.
http://www.eclipse.org/xtend/.

http://www.eclipse.org/xtend/

	1 Introduction
	2 Solution
	2.1 Task 1: create/delete field
	2.2 Task 2: rename field
	2.3 Task 3: declare field optional/mandatory
	2.4 Task 4: multiple edits

	3 Evaluation
	3.1 Expressiveness
	3.2 Comprehensibility
	3.3 Bidirectionality
	3.4 Re-usability
	3.5 Performance

	4 Conclusions

