
An NMF solution to the TTC 2020 roundtrip engineering
case
Georg Hinkel

1

1Am Rathaus 4b, 65207 Wiesbaden, Germany

Abstract
This paper presents a solution to the Roundtrip Engineering case at the Transformation Tool Contest (TTC) 2020. I demon-

strate how synchronization blocks can be easily used to specify the relationships in a bidirectional manner. Through a

superimposition concept, the migrations can concentrate on those parts of the metamodel that have actually changed. The

performance results on the provided model shows that the solution has a very good performance on the provided input

models, although these are very small.

Keywords
Model Migration, Roundtrip, BX, Transformation

1. Introduction
Just like every software artifact, metamodels are also sub-

ject to evolution. However, in large entities, metamodel

change do not take place immediately but rather, one

has to accept a period where both the old and the new

schema version are used throughout the organization.

During this period, changes can occur either in the new

or in the old form of a model, which leads to a problem

that models have to be maintained both in the new and

in the old schema.

In the TTC 2020 Roundtrip benchmark [1], the task

was to synchronize instances of evolving metamodels in

a range of minimal example evolution scenarios.

In this paper, I present a solution to this benchmark

using synchronization blocks and their implementation

in NMF Synchronizations [2]. NMF Synchronizations

allows us to create very declarative and fully bidirec-

tional specifications of commonalities between two ver-

sions of a metamodel. Furthermore, because NMF Syn-

chronizations is implemented as an internal DSL, it al-

lows to shorten the specification of commonalities such

that developers of roundtrip migrations can focus on

the actual differences between the two versions of a

metamodel. The solution is available on GitHub: https:

//github.com/georghinkel/ttc2020-roundtrips.

TTC’20: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
17 July 2020, Bergen, Norway (online).
" georg.hinkel@gmail.com (G. Hinkel)

© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

2. Synchronization blocks and
NMF Synchronizations

Synchronization blocks are a formal tool to run model

transformations in an incremental (and bidirectional)

way [2]. They combine a slightly modified notion of

lenses [3] with incrementalization systems. Model prop-

erties and methods are considered morphisms between

objects of a category that are set-theoretic products of a

type (a set of instances) and a global state space Ω.

A (well-behaved) in-model lens 𝑙 : 𝐴 →˓ 𝐵 between

types 𝐴 and 𝐵 consists of a side-effect free Get mor-

phism 𝑙 ↗∈ 𝑀𝑜𝑟(𝐴,𝐵) (that does not change the

global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟(𝐴 × 𝐵,𝐴)
called the Put function that satisfy the following condi-

tions for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎, 𝜔)

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, �̃�) for some �̃� ∈ Ω.

The first condition is a direct translation of the original

PutGet law. Meanwhile, the second line is a bit weaker

than the original GetPut because the global state may

have changed. In particular, we allow the Put function

to change the global state.

A (single-valued) synchronization block 𝑆 is an oc-

tuple (𝐴,𝐵,𝐶,𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷, 𝑓, 𝑔) that declares a

synchronization action given a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 :
𝐴 ∼= 𝐶 of corresponding elements in a base isomor-

phism Φ𝐴−𝐶 . For each such a tuple in states (𝜔𝐿, 𝜔𝑅),
the synchronization block specifies that the elements

(𝑓(𝑎, 𝜔𝐿), 𝑔 ↗ (𝑏, 𝜔𝑅)) ∈ 𝐵 ×𝐷 gained by the lenses

𝑓 and 𝑔 are isomorphic with regard to Φ𝐵−𝐷 .

A schematic overview of a synchronization block is

depicted in Figure 1. The usage of lenses allows these

declarations to be enforced automatically and in both

directions. The engine simply computes the value that

https://github.com/georghinkel/ttc2020-roundtrips
https://github.com/georghinkel/ttc2020-roundtrips
mailto:georg.hinkel@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks

the right selector should have and enforces it using the

Put operation. Similarly, a multi-valued synchronization

block is a synchronization block where the lenses 𝑓 and

𝑔 are typed with collections of 𝐵 and 𝐷, for example

𝑓 : 𝐴 →˓ 𝐵* and 𝑔 : 𝐶 →˓ 𝐷* where stars denote

Kleene closures.

Synchronization blocks have been implemented in

NMF Synchronizations, an internal DSL hosted by C#

[4, 2]. For the incrementalization, it uses the extensible

incrementalization system NMF Expressions [5]. This

DSL is able to lift the specification of a model transfor-

mation/synchronization in three orthogonal dimensions:

• Direction: A client may choose between trans-

formation from left to right, right to left or in

check-only mode

• Change Propagation: A client may choose

whether changes to the input model should be

propagated to the output model, also vice versa

or not at all

• Synchronization: A client may execute the

transformation in synchronization mode between

a left and a right model. In that case, the engine

finds differences between the models and han-

dles them according to the given strategy (only

add missing elements to either side, also delete

superfluous elements on the other or full duplex

synchronization)

This flexibility makes it possible to reuse the specifi-

cation of a transformation in a broad range of different

use cases. Furthermore, the fact that NMF Synchroniza-

tions is an internal language means that a wide range

of advantages from mainstream languages, most notably

modularity and tool support, can be inherited [6].

3. Solution
Our solution consists of two parts: At first, I describe the

solutions to all four of the scenarios using vanilla NMF

Synchronizations, that is, using explicit coding. After-

wards, I explain the necessary steps to turn this into a

generic solution.

1 public class Person2Person : SynchronizationRule<V1Person,
V2Person> {

2 public override void DeclareSynchronization() {
3 Synchronize(p => p.Name, p => p.Name);
4 Synchronize(p => p.Age, p => 2020 - p.Ybirth);
5 }
6 public override bool ShouldCorrespond(V1Person left,

V2Person right, ISynchronizationContext context) {
7 return left.Name == right.Name;
8 }
9 }

Listing 1: The synchronization block to specify the

semantic overlap between the Person classes

in scenario 1

3.1. Specific solution
The idea of synchronization blocks is to specify the se-

mantic overlap between two metamodels, not their dif-

ference. For scenario 1, this overlap consists of the name,

which is still the same, and the overlap that the age can

be computed from the year of birth or vice versa. This is

depicted in Listing 1.

In particular, both aspects of the semantic overlap can

be specified with just one line of code each. Here, the

calculation of the age from the year of birth (and vice

versa which NMF is able to automatically infer) is very

simple because the inversion of a subtraction is already

built into NMF. However, NMF also allows to specify a

custom conversion operation and an appropriate lens

to put back the value, in case a metamodel evolution

requires more sophisticated adaptions.

As a very simple example, such a conversion is used

in scenario 3, because the coalescing operator is not re-

versible in NMF by default. The implementation of the

custom conversion is shown in Listing 2.

1 public class Person2Person : SynchronizationRule<V1Person,
V2Person> {

2 public override void DeclareSynchronization() {
3 Synchronize(p => p.Name, p => Coalesce(p.Name));
4 }
5 }
6 [LensPut(typeof(Scenario3Solution), nameof(CoalesceBack))]
7 public static string Coalesce(string value) {
8 return value ?? "";
9 }

10 public static string CoalesceBack(string value, string
coalesced)

11 {
12 return coalesced;
13 }

Listing 2: The synchronization blocks to specify the

semantic overlap between the Person classes

in scenario 3

In particular, one only needs to annotate a given con-

version method with a lens put annotation in order to

tell NMF how to invert this function call.

In order to run these synchronization blocks, I instruct

NMF to enforce the consistency relations specified using



1 var repository = new ModelRepository();
2 var input = LoadModel<Scenario1.V1.Model.Person>(repository)

;
3

4 var transformation = new Scenario1Solution();
5 transformation.Initialize();
6

7 Scenario1.V2.Model.Person result = null;
8 // this call is the migrate step
9 transformation.Synchronize(ref input, ref result,

SynchronizationDirection.LeftToRightForced,
ChangePropagationMode.None);

10 // this call is the migrate back step
11 transformation.Synchronize(ref input, ref result,

SynchronizationDirection.RightToLeftForced,
ChangePropagationMode.None);

12

13 repository.Save(input, Output);

Listing 3: Running the transformation: Migrate and

migrate back

synchronization blocks either from left to right or from

right to left. In the context of this solution, left means V1

(because I always noted the V1 type on the left) and right

means V2. Migrate and Migrate back therefore translate

to simply calling the transformation with direction left to
right forced and right to left forced. Here, forced means

that also null values are propagated.

The execution of the synchronization is depicted in

Listing 3. I first create a model repository in which I

load the input model (lines 1 and 2), then create and

initialize the transformation (lines 4/5). Then, I create a

new and empty variable that I use to hold the migrated

V2 model in line 7. In line 9, I force NMF to override this

variable and put the migrated Person model element.

Then, I immediately migrate the model back, using the

same pattern. As the last parameter suggests, NMF is

also able to obtain an incremental change propagation

in case the models are to be used in-memory, but offline

synchronization is also supported (by just disabling the

change propagation).

A new information as in scenario 2 simply can be im-

plemented by not synchronizing this attribute. Multiple

edit operations as in scenario 4 simply means to combine

the necessary synchronization blocks.

3.2. Generic solution
The biggest problem that I see with the specific solution

is that the identical parts of the metamodel have to be

specified over and over again. While of course not a

problem for very small metamodels such as the ones in

the benchmark, this can become a problem once the idea

is applied to big metamodels with hundreds of classes as

one has to create a separate synchronization rule for each

metaclass and a synchronization block for every feature.

The code for generating such synchronization blocks

for single-valued attributes and references is depicted in

1 foreach (var att in oldModelClass.Attributes) {
2 var newAtt = newModelClass.Attributes.FirstOrDefault(a =>

a.Name == att.Name);
3 if (newAtt != null && att.Type == newAtt.Type && newAtt.

LowerBound == att.LowerBound) {
4 // Create Synchronize call
5 var lambda = CreateLambdaFor<TOld>(att);
6 singleAttribute
7 .MakeGenericMethod(lambda.ReturnType)
8 .Invoke(this, new object[] { lambda,

CreateLambdaFor<TNew>(newAtt) });
9 }

10 }
11 foreach (var oldReference in oldModelClass.References) {
12 var newReference = newModelClass.References.

FirstOrDefault(r => r.Name == oldReference.Name);
13 if (newReference != null && newReference.LowerBound ==

oldReference.LowerBound) {
14 // Create Synchronize call
15 var oldLambda = CreateLambdaFor<TOld>(oldReference);
16 var newLambda = CreateLambdaFor<TNew>(newReference);
17 var rule = Synchronization.

GetSynchronizationRuleForSignature(oldLambda.
ReturnType, newLambda.ReturnType);

18 singleReference
19 .MakeGenericMethod(oldLambda.ReturnType, newLambda.

ReturnType)
20 .Invoke(this, new object[] { rule, oldLambda,

newLambda, null });
21 }
22 }

Listing 4: Generating a synchronization block for each

unchanged attribute and reference

Listing 4. For brevity, we do not handle inheritance, multi-

valued attributes or references and only check whether

an attribute or reference with the same name exists and

whether the lower bound is the same (in order to account

for the difference between null values and empty strings

in scenario 3).

1 foreach (var oldClass in oldModel.Descendants().OfType<
IClass>()) {

2 var newClass = newModel.Descendants().OfType<IClass>().
FirstOrDefault(c => c.Name == oldClass.Name);

3 if (newClass != null) {
4 var oldMapping = oldClass.GetExtension<MappedType>();
5 var newMapping = newClass.GetExtension<MappedType>();
6

7 if (oldMapping?.SystemType != null && newMapping?.
SystemType != null) {

8 var rule = (SynchronizationRuleBase)Activator.
CreateInstance(typeof(MigrationRule<,>).
MakeGenericType(oldMapping.SystemType,
newMapping.SystemType));

9 yield return rule;
10 }
11 }
12 }

Listing 5: Generating synchronization rules

What we need to do is to generate synchronization

rules to house the generated synchronization blocks. For

this, we simply iterate over the classes of the metamodel

and check whether there is a corresponding class in the

new metamodel.



1 public class Scenario4Solution : Migration<V1.Container, V2.
Container> {

2 [OverrideRule]
3 public class Person2Person : MigrationRule<V1.IPerson, V2

.IPerson> {
4 public override void DeclareSynchronization() {
5 base.DeclareSynchronization();
6 Synchronize(p => p.Age, p => 2020 - p.Ybirth);
7 }
8 }
9 }

Listing 6: Superimposition of the migration for person

elements

With these two artifacts, we get a model synchroniza-

tion that automatically synchronizes all classes and fea-

tures that have not changed (meaning that a feature with

the same name exists), but we still need to specify the

semantic overlap that is contained in different attributes

such as the corespondence between age and year of birth.

To do that, we use the superimposition concept that

is available in NMF Synchronizations, depicted in List-

ing 6. That is, we inherit from our new migration class

that spawns the synchronization rules to synchronize

the unchanged bits and then superimpose this rule by

a more detailed rule that inherits the synchronization

of unchanged attributes and references (line 5) and add

the synchronization of the age with the year of birth by

subtracting from 2020.

4. Evaluation
I ran performance measurements of the solution on a Intel

Core i7-8550U CPU on a system with 8GB RAM running

Windows 10. The results are depicted in Figure 2. The

figure shows the required time to synchronize the model

changes forward and backward. The suffix indicates the

direction that is executed first, i.e. Scenario1Backward
means that the V2 version of scenario 1 is migrated back

to V1 and then migrated to V2 again, Scenario1Forward
means that the V1 version of scenario 1 is migrated to

V2 and back to V1 again.

As the figure shows, the solution is generally very

fast. If the synchronization is only called once, the ef-

fects of just-in-time compilation and assembly loading

cause an average of little more than 10ms but if the syn-

chronization is repeated often, the runtime anneals to

roughly 10ns per iteration. However, the input model

size is also trivially small and therefore, the results are

hardly meaningful. A thourough performance evaluation

would require larger models that the benchmark did not

provide.

1 10 100 1000 10000 100000 1000000
Repetitions

10

100

1000

10000

Ti
m

e 
[m

s]

Scenario
Scenario1Backward
Scenario1Forward
Scenario2Backward
Scenario2Forward
Scenario3Backward
Scenario3Forward
Scenario4Backward
Scenario4Forward

Figure 2: Performance results for running the Transforma-
tion step of the solution multiple times.

5. Conclusion
I think that the NMF solution highlights the advantages

model transformations based on synchronization blocks

can offer in terms of flexibility. A single specification of

consistency relationships between the evolution steps

of a metamodel suffices to transform instances forwards

and backwards. Boilerplate rules can be calculated au-

tomatically while the essential differences between two

evolution steps (the actual migration) is specified manu-

ally with the full flexibility.

One may think that the generic solution and the reflec-

tion it performs must lead to a slow solution. However,

this is not true because NMF uses the .NET expression

compiler under the hood to compile the expressions that

are built through reflection. Therefore, the reflection

only affects the initialization of such a transformation,

the runtime is completely identical.

References
[1] L. Beurer-Kellner, J. von Pilgrim, T. Kehrer, Round-

Trip Migration of Object-Oriented Data Model In-

stances, http://www.transformation-tool-contest.eu/

2020_roundtrip.pdf, 2020.

[2] G. Hinkel, E. Burger, Change Propagation and Bidi-

rectionality in Internal Transformation DSLs, Soft-

ware & Systems Modeling (2017). URL: http://rdcu.

be/u9PT. doi:10.1007/s10270-017-0617-6.

[3] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

A. Schmitt, Combinators for bidirectional tree trans-

formations: A linguistic approach to the view-update

problem, ACM Transactions on Programming

Languages and Systems (TOPLAS) 29 (2007). URL:

http://doi.acm.org/10.1145/1232420.1232424. doi:10.
1145/1232420.1232424.

http://www.transformation-tool-contest.eu/2020_roundtrip.pdf
http://www.transformation-tool-contest.eu/2020_roundtrip.pdf
http://rdcu.be/u9PT
http://rdcu.be/u9PT
http://dx.doi.org/10.1007/s10270-017-0617-6
http://doi.acm.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424


[4] G. Hinkel, Change Propagation in an Internal Model

Transformation Language, in: D. Kolovos, M. Wim-

mer (Eds.), Theory and Practice of Model Trans-

formations: 8th International Conference, ICMT

2015, Held as Part of STAF 2015, L’Aquila, Italy,

July 20-21, 2015. Proceedings, Springer Interna-

tional Publishing, Cham, 2015, pp. 3–17. URL: http:

//dx.doi.org/10.1007/978-3-319-21155-8_1. doi:10.
1007/978-3-319-21155-8_1.

[5] G. Hinkel, R. Heinrich, R. Reussner, An extensible

approach to implicit incremental model analyses,

Software & Systems Modeling (2019). URL: https://

doi.org/10.1007/s10270-019-00719-y. doi:10.1007/
s10270-019-00719-y.

[6] G. Hinkel, T. Goldschmidt, E. Burger, R. Reuss-

ner, Using Internal Domain-Specific Languages

to Inherit Tool Support and Modularity for Model

Transformations, Software & Systems Model-

ing (2017) 1–27. URL: http://rdcu.be/oTED. doi:10.
1007/s10270-017-0578-9.

http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/s10270-019-00719-y
https://doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://rdcu.be/oTED
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1007/s10270-017-0578-9

	1 Introduction
	2 Synchronization blocks and NMF Synchronizations
	3 Solution
	3.1 Specific solution
	3.2 Generic solution

	4 Evaluation
	5 Conclusion

