
The TTC 2021 OCL2PSQL case
Hoang Phuoc-Bao Nguyen1, Antonio García Domínguez2 and Manuel Clavel1

1Vietnamese-German University, Binh Duong, Vietnam
2Aston University, Birmingham, United Kingdom

Abstract
The Object Constraint Language (OCL) is a textual, declarative language used as part of the UML standard for specifying
constraints and queries on models. As such, generating code from OCL expressions is part of an end-to-end model-driven
development process. Certainly, this is the case for database-centric application development, where integrity constraints
and queries can be naturally specified using OCL. Not surprisingly, there have already been several attempts to map OCL into
SQL. In this case study, we invite participants to implement, using their own model-transformation methods, one of these
mappings, called OCL2PSQL. We propose this case study as a showcase for different methods to prove their readiness for
coping with moderately complex model transformations, by showing the usability, conciseness, and ease of understanding
of their solutions when implementing a non-trivial subset of OCL2PSQL.

Keywords
OCL, SQL, Model-transformation, Transformation tools

1. Introduction
The Object Constraint Language (OCL) [1] is a textual lan-
guage typically used, as part of the UML standard [2], for
specifying constraints and queries on models. It is a side-
effect free specification language: expressions evaluate
to values without changing anything in the underlying
model. OCL is a strongly-typed language: expressions
either have a primitive type (such as Boolean, integer), a
class type, a tuple type, or a collection type. The language
provides standard operators on primitive data, tuples, and
collections. It also provides a dot-operator to access the
properties of the objects, and several iterators to iterate
over collections.

The Structured Query Language (SQL) [3] is a special-
purpose programming language designed for manag-
ing data in relational database management systems
(RDBMS). Its scope includes data insert, query, update
and delete, schema creation and modification, and data
access control. Although SQL is, to a great extent, a
declarative language, it also contains stored-procedures.
These are routines stored in the database that may exe-
cute loops using the so-called cursors.

In the context of model-driven engineering, there exist
several proposals for translating OCL into SQL [4, 5, 6],
which mostly differ in the way how OCL iterators are

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" ngpbhoang1406@gmail.com (H. P. Nguyen);
a.garcia-dominguez@aston.ac.uk (A. G. Domínguez);
manuel.clavel@vgu.edu.vn (M. Clavel)
� 0000-0003-4217-0983 (H. P. Nguyen); 0000-0002-4744-9150
(A. G. Domínguez); 0000-0002-4966-855X (M. Clavel)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

translated. In particular, [5] resorts to imperative features
of SQL (e.g. loops and cursors) for translating OCL itera-
tors, while [6] introduces a mapping (OCL2PSQL) which
only uses standard subselects and joins for translating
OCL iterators. 1

Example 1.1. As an example of the transformations pro-
duced by OCL2PSQL, suppose that we want to know
if, in a given scenario, there is exactly one car. We can
formalize this query in OCL as follows:

Car.allInstances()→size() = 1

where we compare the number of objects in the class Car
with an integer 1. OCL2PSQL translates this expression
into a SQL-select statement:

SELECT TEMP_left.res = TEMP_right.res AS res,
1 AS val

FROM (
SELECT COUNT(*) AS res, 1 AS val
FROM (
SELECT Car_id AS res, 1 AS val
FROM Car

) AS TEMP_src
) AS TEMP_left
JOIN (
SELECT 1 AS res, 1 AS val

) AS TEMP_right

in which the select-items include the comparison be-
tween the result of two-subqueries (e.g. TEMP_left.res
and TEMP_right.res), representing the result when eval-
uating the two sides of the comparison of the given
OCL expression (e.g. Car.allInstances()→size()
and 1), respectively. Furthermore, the subquery

1The letter “P” in OCL2PSQL stands for pure. The idea is that
OCL2PSQL only uses the declarative features of SQL for mapping
OCL expressions.

mailto:ngpbhoang1406@gmail.com
mailto:a.garcia-dominguez@aston.ac.uk
mailto:manuel.clavel@vgu.edu.vn
https://orcid.org/0000-0003-4217-0983
https://orcid.org/0000-0002-4744-9150
https://orcid.org/0000-0002-4966-855X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


TEMP_left returns the size of its subquery, aliased
TEMP_src, which is the translation of the sub-expression
Car.allInstances(). □

The full recursive definition of OCL2PSQL can be
found in [6], but we have included the subset of
OCL2PSQL definition of the expressions involved in this
competition in Appendix A. The solution authors can also
use Appendix A to understand the above transformation.

The correctness of the mapping is formulated as follows.
Let 𝑒 be an OCL expression (with no free variables) and let
𝒪 be a scenario of its context model. Then, the evaluation
of the expression 𝑒 in the scenario 𝒪 should return the
same result that the execution of the query OCL2PSQL(𝑒),
i.e., the SQL query generated by OCL2PSQL from 𝑒, in the
database OCL2PSQL(𝒪), i.e., the database corresponding
to 𝒪 according to OCL2PSQL. 2

The TTC 2021 OCL2PSQL case welcomes participants
to implement the subset of OCL2PSQL mapping provided
in Appendix A using their own model-transformation
methods. This case study can serve as a showcase for
different methods to prove their readiness to cope with
moderately complex model-transformations, by showing
the usability, conciseness, and understandability of their
solutions when implementing the subset of OCL2PSQL.
More information about the main task will be provided
in Section 3.

All resources for this case are available on Github [7].
Please follow the description in the footnote and create
a pull request with your own solution after you have
submitted your description to EasyChair.

The rest of the document is structured as follows: Sec-
tion 2 describes the input and output of OCL2PSQL trans-
formation. Section 3 provides the main task that should
be tackled in a solution. Finally, Section 4 proposes the
case evaluation scheme for the contest.

2. Transformation description
OCL2PSQL is a recently proposed mapping from OCL
to SQL [6]. It addresses some of the challenges and limi-
tations of previous OCL-to-SQL mappings, particularly
with respect to the execution-time efficiency of the gen-
erated SQL queries [8].

Next, we give a detailed description of the input and
output metamodels for the TTC 2021 OCL2PSQL case.
The input metamodels represent the part of OCL lan-
guage that is covered in this competition. The output
metamodel represents the part of the SQL language that
is used by OCL2PSQL to translate the aforementioned
part of OCL language.

2The OCL2PSQL mapping rests on an underlying mapping be-
tween data models and SQL database schema. The full definition of
this mapping is also provided in [6] but it is not needed in this case.

2.1. Input metamodel
OCL is a contextual language: its expressions are written
in the context provided by a data model. Consequently,
the input metamodel for OCL2PSQL can be seen as the
union of two, inter-related metamodels: namely, the
metamodel for data models and the metamodel for OCL
expressions.

2.1.1. Input metamodel for data models

For OCL2PSQL, a data model contains classes and associ-
ations. A class may have attributes and associations-ends.
The multiplicity of an association-end is either ‘one’ or
‘many’.

The data model metamodel for OCL2PSQL is shown
in Figure 1. DataModel is the root element and contains a
set of Entitys. Each Entity represents a class in the data
model: it contains a set of Attributes and a set of Assoc-
iationEnds. Each Attribute represents an attribute of
a class: it has a name and a type. Each AssociationEnd
represents an association-end: it has a name, an asso-
ciation class name association and a Multiplicity
value. Each AssociationEnd is also linked to its opposite
AssociationEnd, and with its target Entity.

Figure 1: OCL2PSQL metamodel for data models.

2.1.2. Input metamodel for OCL expressions

The definition of the OCL mapping presented in Ap-
pendix A only covers a subset of the OCL language. For
the OCL expressions involved in this competition, we
have simplified the metamodel for OCL expressions to
the minimum. For interested readers and solution au-
thors who would like to extend or implement their own
implementation, the class diagram of the OCL expression
can be found in its specification document in [1].

The OCL2PSQL metamodel for OCL expressions in
this competition is shown in Figure 2. Readers who are
not familiar with the OCL can refer to Appendix C for a
more detail description of our metamodel.



Figure 2: OCL2PSQL metamodel for OCL expression.

For the sake of illustration, we show in Figure 3 the
object diagram of OCL expression in Example 1.1. It is
an expression of class OperationCallExp with = as the
referredOperation. In this expression,

• The source is also an expression of class
OperationCallExpwith size() as the referred-
Operation, representing the sub-expression
Car.allInstances()→size(). Furthermore,
in the aforementioned sub-expression, the
source is yet another expression of class
OperationCallExp with allInstances() as
the referredOperation, representing the sub-
expression Car.allInstances(). Finally, in the
aforementioned sub-expression, the source is a
TypeExp, representing the sub-expression Car,
which refers to the Car entity of the data model.

• The argument is an expression of type Integer-
LiteralExp with 1 as the integerValue.

2.2. Output metamodel
For OCL2PSQL, a SQL query is a basic SQL-select state-
ment, which may contain subselects, WHERE clauses,
GROUP BY clauses, and JOINs.

2.2.1. Output metamodel for SQL-select
statements

Figure 4 shows the overview diagram of a SQL-select
statement. Appendix D describes the elements of this
metamodel in more detail. For the sake of illustration,

Figure 3: The object diagram of OCL expression
Car.allInstances()→size() = 1.

Figure 5 shows the object diagram of the following SQL-
select statement:

SELECT COUNT(*) > 0 AS res
FROM Car AS c
WHERE c.color IS NULL

This is a SelectStatement with a PlainSelect as
selectBody. The PlainSelect contains:

• A SelectItem element that represents the clause
(SELECT) COUNT(*) > 0 AS res. It contains a
GreaterThanExpression expression, in which
the leftExp is a CountAllFunction expression,
and the rightExp is a LongValue expression with
value 0. Furthermore, it has an Alias named res.



Figure 4: OCL2PSQL metamodel for SQL-select statements.

Figure 5: The object diagram of SELECT COUNT(*) > 0 as
res FROM Car c WHERE c.color IS NULL.

• A Car Table with an Alias named c, represents
the clause (FROM) Car AS c.

• A IsNullExpression element that represents the
clause (WHERE) c.color IS NULL. It contains a
Column color referred from the Table Car of the
previous clause (notice that in this case, the alias
c of the Table Car is used as a name for the table
referred to the color column).

3. Main task
The main task for the participants in the TTC 2021 OCL-
2PSQL case is to implement the subset of OCL2PSQL
mapping defined in Appendix A using their own model-
transformation methods. Participants are free to extend
or modify the OCL2PSQL mapping, or even to propose
their own mapping from OCL to SQL, in which case
they should also provide convincing arguments that their
solution is correct with respect to the semantics of OCL
and SQL. 3

During the contest, the participants will be presented
with different challenges of increasing complexity. Each
challenge will be an OCL2PSQL OCL expression, i.e.,
an instance of the OCL2PSQL metamodel for OCL ex-
pressions. The context for all the challenges will be an
OCL2PSQL data model, i.e., an instance of OCL2PSQL
metamodel for data models. Then, the participants will
be asked to generate the solutions for these challenges, ap-
plying their own transformation rules. Very importantly:
(i) each solution should be a valid SQL-select statement
in the database schema corresponding to the given data
model, according to the definition of the OCL2PSQL map-
ping; moreover, (ii) each solution should be a SQL-select
statement returning a result-table with (at least) a col-
umn res. When executing the solution for a challenge

3For the participants who would like to extend their implemen-
tation beyond the subset of OCL language provided for our competi-
tion, please revise the full version of our OCL2PSQL mapping in [6]
with the “fixes” included in Appendix B.



on a given scenario, this column res will be interpreted
as holding the result of evaluating the given challenge in
the same scenario. Finally, the solutions will be checked
for correctness, using a set of selected scenarios.

For the participants’ convenience, we have grouped
the challenges into different stages. Each stage contains
challenges that apply similar OCL2PSQL mapping rules,
particularly:

• Stage0 only requires the mapping rule for literals.
The OCL expressions in this stage are context-
free.

• Stage1 is similar to Stage1, with additional map-
ping rules for OperationalCallExp (operator:
equality and conjunction). The OCL expressions
in this stage are also context-free.

• Stage2 requires the mapping rules for
OperationalCallExp (operator allInstances)
and TypeExp. From this stage on, the OCL
expressions are context-dependent, i.e., the
underlying context model will be needed.

• Stage3 is similar to Stage2, with additional map-
ping rules for OperationalCallExp (operator:
size and =).

• Stage4 is similar to Stage3, with additional map-
ping rules for VariableExp and IteratorExp
(kind: collect).

• Stage5 is similar to Stage4, with additional map-
ping rules for PropertyCallExp.

• Stage6 is similar to Stage5, with additional map-
ping rules for AssociationClassCallExp.

• Stage7 is similar to Stage5 and Stage6, with ad-
ditional mapping rules for IteratorExp (kind:
exists).

• Stage8 is a more complex version of Stage7, with
nested IteratorExp of kind exists.

For the purpose of testing, the participants can find
the following material in the case materials repository:

• In the docs folder, the file challenges.txt con-
tains a list of challenges grouped in the afore-
mentioned stages. Each stage has a unique num-
ber, and each challenge within a stage has also
a unique number. The greater the number of
a stage, the greater its complexity. The context
for all challenges in challenges.txt is the data
model CarPerson shown in Figure 6.
In the same folder, the file scenarios.txt con-
tains a list of scenarios. Each scenario de-
scribes an instance of the data model CarPerson.
Then, for each scenario, and each (relevant)
stage/challenge listed in challenges.txt, the
file scenarios.txt contains the correct result:
i.e., the expected SQL result that corresponds to
the evaluation of the given stage/challenge in
the given scenario.

• The folder models contains the challenges listed
in challenges.txt in XMI format. More specif-
ically, each file Stage𝑖Challenge𝑗.xmi contains
the representation of the challenge 𝑗 within the
stage 𝑖 in the file challenges.txt in XMI format.
In the same folder, the file CarPerson.xmi con-
tains the data model CarPerson in XMI-format.

• In the folder metamodels, the file ocl.ecore con-
tains the EMF implementation of OCL2PSQL
metamodel for OCL expressions. Also in the same
folder, the file sql.ecore contains the EMF im-
plementation of OCL2PSQL metamodel for SQL-
select statements.

Figure 6: The CarPerson data model.

4. Benchmark framework
The case resources on GitHub [7] include an automated
benchmark framework for systematic measurement of
the performance and correctness of the various solutions.
It is based on the framework of the TTC 2017 Smart Grid
case [9], without the visualisation components. Solution
authors are recommended to adapt their solutions to this
framework to allow for easier integration and comparison
of the various solutions.

The configuration of the benchmark framework for
the TTC 2021 OCL2PSQL case is stored in the file
config.json inside the folder config. This file includes
the definitions of the various stages and challenges, the
name of the tools to be run, the number of repetitions
to be applied, the timeout in milliseconds for each ex-
ecution and the connection information for the local
MySQL database. Currently, the file config.json has
already contained the stages and challenges listed in the
file challenges.txt.

In the folder docker, the Dockerfile contains the in-
struction to build a MySQL 5.7 Docker image that con-
tains all the SQL data scenarios of the CarPerson database
corresponding to the ones listed in scenarios.txt. This
image is currently used for building databases to test the
correctness of the reference solution. Solution authors
can use either the image we provide or their own local
MySQL database installation, in which they would need
to change the information in the config.



Listing 1: solution.ini file for the ReferenceXMI solu-
tion

[build]
default=mvn compile
skipTests=mvn compile

[run]
cmd=mvn -f pom.xml -quiet -Pxmi exec:exec

4.1. Solution requirements
All solutions must be forks of the main Github project,
and should be submitted as pull requests after the de-
scriptions have been uploaded to EasyChair.

All solutions should be in a subdirectory of the
solutions folder, and inside this subdirectory they
should include a solution.ini file describing how the
solution should be built and run. As an example, List-
ing 1 shows the file for the reference solution. The build
section provides the default and skipTests fields for
specifying how to build and test, and how to simply build,
respectively. In the run section, the cmd field specifies
the command to run the solution.

Solutions should print to their standard output streams
a sequence of lines with the following fields, separated
by semicolons:

• Tool: name of the tool.
• Stage: integer with the stage within the case

whose challenge is being solved.
• Challenge: integer with the challenge within

the stage which is being solved.
• RunIndex: integer with the current repetition

of the transformation.
• MetricName: may be “TransformTimeNanos”,

“TestTimeNanos”, or “ScenarioID” where ID is
the identifier of the scenario under test.

• MetricValue: the value of the metric:

– For “TransformTimeNanos”, an integer
with nanoseconds spent performing the
transformation.

– For “TestTimeNanos”, an integer with
nanoseconds spent testing the correctness
of the transformation through executing
the transformed SQL-select statement on
different database scenarios.

– For metrics following the “ScenarioID” pat-
tern, a string of either “passed” or “failed”
indicating whether the transformation in
that scenario succeeded or failed, respec-
tively.

The repetition of the transformation is handled by the
framework. Moreover, for every repetition, the frame-
work provides the following information in environment
variables: the run index, stage number and challenge
number, the OCL expression corresponding to the chal-
lenge in plaintext, as well as the file path of that expres-
sion in XMI-format, and the file path of the context of
the challenge, also in XMI-format. More specifically, the
available environment variables are:

• MySQLUsername: the username of the local
MySQL database system on which the statement
will be run.

• MySQLPassword: the password of the given
user.

• MySQLPort: the port number of the local
MySQL database system.

• StageIndex: the index of the stage whose chal-
lenge is to be run.

• ChallengeIndex: the index of the challenge
within the stage which will be run.

• OCLQuery: the OCL expression, in text-format,
corresponding to the challenge to be run.

• PathToOCLXMI: the absolute path to the file
containing the OCL expression, in XMI-format,
corresponding to the challenge to be run.

• PathToSchemaXMI: the absolute path to the
file containing the SQL schema, in XMI-format,
corresponding to the context (data model) of the
challenges to be run.

• RunIndex: the index of the repetition to be run.
• Tool: the name of the tool (the name of the
solutions subfolder).

Solution authors may wish to consult the reference
solution for guidance on how to use the various environ-
ment variables and how to test the correctness of your
transformations. Solution authors are free to reuse the
source code of this reference solution for these aspects
(e.g. the CaseLauncher and Configuration classes), as
well as the lib/sql.jar library, in the reference solution
that parses the SQL-select statement from XMI model
to plaintext. The reference solution uses Maven to re-
trieve the appropriate libraries for communicating with
our own implementation of OCL2PSQL. In addition, we
have also installed additional libraries locally in folder
lib using a shell script. The instruction for running the
reference solution can be found on the benchmark repos-
itory.

4.2. Running the benchmark
The benchmark framework needs Python 3.3 or later to
be installed, and the reference solution requires Maven 3



and Java 8 or later. Solution authors are free to use alter-
native frameworks and programming languages, as long
as these dependencies are explicitly documented. For
the final evaluation, it is planned to construct a Docker
image with all solutions, and this will require installing
those dependencies into the image.

If all dependencies are installed, the benchmark can be
run with python scripts/run.py (potentially python3
if Python 2.x is installed globally in the same system).

5. Evaluation
For the submitted solutions that strictly follow the pro-
posed mapping, the benchmark framework will provide
independent measurements of the correctness, complete-
ness, and time usage of these solutions, then based on
the evaluation outcome, the 1st/2nd/3rd place award will
be rewarded.

For other solutions, that modify or extend the proposed
mapping, besides the aforementioned criteria, attendees
to the contest will also evaluate the usability, conciseness,
and understandability of the transformation rules that de-
fine the different solutions, as well as the other attributes
of interest that the solution providers may want to focus
on. In this regard, although some solutions may not be
entirely complete or may be hard to understand, or may
not share the common interest, they may still serve as
examples of active research areas within model transfor-
mations that the community may wish to showcase. To
recognize these contributions, an audience-driven “Most
Promising” award will be given.

References
[1] Object Management Group, Object Constraint Lan-

guage Specification Version 2.4, Technical Report,
2014.

[2] Object Management Group, Unified Modeling Lan-
guage, Technical Report, 2017.

[3] International Organization for Standardization,
ISO/IEC 9075-(1–10) Information technology –
Database languages – SQL, Technical Report, 2011.

[4] F. Heidenreich, C. Wende, B. Demuth, A Framework
for Generating Query Language Code from OCL In-
variants, ECEASST 9 (2008).

[5] M. Egea, C. Dania, SQL-PL4OCL: an automatic code
generator from OCL to SQL procedural language,
Software and Systems Modeling 18 (2019) 769–791.

[6] H. P. Nguyen, M. Clavel, OCL2PSQL: An OCL-to-
SQL Code-Generator for Model-Driven Engineering,
in: T. K. Dang, J. Küng, M. Takizawa, S. H. Bui (Eds.),
Future Data and Security Engineering - 6th Interna-
tional Conference, FDSE 2019, Proceedings, volume

11814 of Lecture Notes in Computer Science, Springer,
2019, pp. 185–203.

[7] H. P. Nguyen, A. G. Dominguez, M. Clavel,
The case resources and benchmark framework
associated with this case, https://github.com/
TransformationToolContest/ttc2021-ocl2psql, 2021.

[8] M. Clavel, H. P. Nguyen, Mapping OCL into SQL:
Challenges and Opportunities Ahead, in: A. D.
Brucker, G. Daniel, F. Jouault (Eds.), 19th Interna-
tional Workshop in OCL and Textual Modeling (OCL
2019) co-located with MODELS 2019, volume 2513
of CEUR Workshop Proceedings, CEUR-WS.org, 2019,
pp. 3–16.

[9] G. Hinkel, An NMF solution to the Smart Grid
Case at the TTC 2017, in: A. García-Domínguez,
G. Hinkel, F. Krikava (Eds.), Proceedings of the
10th Transformation Tool Contest (TTC 2017), co-
located with the 2017 Software Technologies: Appli-
cations and Foundations (STAF 2017), Marburg, Ger-
many, July 21, 2017, volume 2026 of CEUR Workshop
Proceedings, CEUR-WS.org, 2017, pp. 13–17. URL:
http://ceur-ws.org/Vol-2026/paper5.pdf.

A. The mapping OCL2PSQL in a
nutshell

The mapping OCL2PSQL is defined recursively over the
structure of OCL expressions. To describe the key idea
underlying its definition, and to illustrate it with the pre-
sentation of some recursive cases, we need to introduce
some notations first.

Notation. Let qry be a SQL query. Let db be a SQL
database. Then, we denote by Exec(qry , db) the result
of executing qry on db. Let 𝑒 be an OCL expression.
Then, we denote by FVars(𝑒) the set of variables that
occur free in 𝑒, i.e., that are not bound by any iterator. Let
𝑒 be an OCL expression, and let 𝑣 be a variable introduced
in 𝑒 by an iterator expression 𝑠→iter(𝑣 | 𝑏). Then, we
denote by src𝑒(𝑣) the source 𝑠 of 𝑣 in 𝑒. Let 𝑒 be an
OCL expression and let 𝑒′ be a subexpression of 𝑒. Then,
we denote by SVars𝑒(𝑒

′) the set of variables which (the
value of) 𝑒′ depends on, and is defined as follows:

SVars𝑒(𝑒
′) =

⋃︁
𝑣∈FVars(𝑒′)

{𝑣} ∪ SVars𝑒(src𝑒(𝑣)).

Let 𝑒 be an OCL expression, such that FVars(𝑒) = ∅.
Let 𝒪 be a scenario. Then, we denote by Eval(𝑒,𝒪) the
result of evaluating 𝑒 in 𝒪.

Finally, let 𝒟 be a data model. Then, we denote by
map(𝒟) the SQL database schemata corresponding to 𝒟,
according to OCL2PSQL. Let 𝒟 be a data model, and let𝒪
be a scenario of 𝒟. Then, we denote by map(𝒪) the in-
stance of 𝒟 corresponding to 𝒪, according to OCL2PSQL.

https://github.com/TransformationToolContest/ttc2021-ocl2psql
https://github.com/TransformationToolContest/ttc2021-ocl2psql
http://ceur-ws.org/Vol-2026/paper5.pdf


Let 𝑒 be an OCL expression, let 𝑒′ be a subexpression of
𝑒. Then, we denote the SQL query corresponding to 𝑒′

by map𝑒(𝑒
′), according to OCL2PSQL.

Definition: key idea and some cases. The differ-
ent recursive cases follow the same design principle:
namely, let 𝑒 be an OCL2PSQL-expression, let 𝑒′ be
a subexpression of 𝑒, and let 𝒪 be a scenario. Then,
Exec(map𝑒(𝑒

′),map(𝒪)) returns a table, with a col-
umn res, a column val, and, for each 𝑣 ∈ SVars𝑒(𝑒

′), a
column ref_𝑣. Informally, for each row in this table: (i)
the columns ref_𝑣 contain a valid “instantiation” for the
iterator variables of which the evaluation of 𝑒′ depends
on (if any); (ii) the column val contains 0 when evaluat-
ing the expression 𝑒′, with the “instantiation” represented
by the columns ref_𝑣, evaluates to the empty set; other-
wise, the column val contains 1; (iii) when the column
val contains 1, the column res contains the result of
evaluating the expression 𝑒′ with the “instantiation” rep-
resented by the columns ref_𝑣; when the column val

contains 0, the value contained in the column res is not
meaningful.

We define the recursive definition of OCL2PSQL map-
pings that will be used in our competition. The definition
here was taken from the original paper and has already
included the corrigenda in Appendix B.

String (integer, and Boolean) literals
Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = 𝑙, where 𝑙 is a string literal. Then,

map𝑒(𝑙) =
SELECT 𝑙 as res, 1 as val

Variables
Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = 𝑣, where 𝑣 is a variable. Then,

map𝑒(𝑣) =
SELECT

TEMP_dmn.res as res,

TEMP_dmn.res as ref_𝑣,
TEMP_dmn.val as val,

TEMP_dmn.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars𝑒(src(𝑣))

FROM (map𝑒(src(𝑣))) as TEMP_dmn

Attribute expressions
Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = 𝑣.att , where 𝑣 is a variable of class-type 𝑐
and att is an attribute of the class 𝑐. Then,

map𝑒(𝑣.att) =
SELECT

𝑐.att as res,
TEMP_obj.val as val,

TEMP_obj.ref_𝑣′ as ref_𝑣′, for each 𝑣′ ∈ SVars𝑒(𝑣)
FROM (map𝑒(𝑣)) as TEMP_obj
LEFT JOIN 𝑐
ON TEMP_obj.ref_𝑣 = 𝑐.𝑐_id AND TEMP_obj.val = 1

Association-ends expressions
Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = 𝑣.ase , where 𝑣 is a variable of class-type 𝑐,
and ase is an association-end of the class 𝑐.

Let Assoc(ase) be the association to which ase be-
longs, and let Oppos(ase) be the association-end at the
opposite end of ase in Assoc(ase). Then,

map𝑒(𝑣.ase) =
SELECT

Assoc(𝑎𝑠𝑒).ase as res,
CASE Assoc(ase).Oppos(ase) IS NULL
WHEN 1 THEN 0

ELSE 1 END as val,

TEMP_src.ref_𝑣′ as ref_𝑣′, for each 𝑣′ ∈ SVars𝑒(𝑣)
FROM (map𝑒(𝑣)) as TEMP_src
LEFT JOIN Assoc(ase)
ON TEMP_src.ref_𝑣 = Assoc(ase).Oppos(ase)

AllInstances-expressions

Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression
of 𝑒. Let 𝑒′ = 𝑐.allInstances(), where 𝑐 is a class type.
Then,

map𝑒(𝑐.allInstances())=
SELECT 𝑐_id as res, 1 as val FROM 𝑐

size-expressions

Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of 𝑒.
Let 𝑒′ = 𝑠→size(). We need to consider the following
cases:

• FVars(𝑒′) = ∅. Then,

map𝑒(𝑠→size()) =
SELECT

COUNT(*) as res,

1 as val

FROM (map𝑒(𝑠)) AS TEMP_src.

• FVars(𝑒′) ̸= ∅, Then,

map𝑒(𝑠→size()) =
SELECT

CASE TEMP_src.val = 0

WHEN 1 THEN 0

ELSE COUNT(*) END as res,



TEMP_src.ref_𝑣 as ref_𝑣,
for each 𝑣 ∈ SVars𝑒(𝑠)

1 as val

FROM (map𝑒(𝑠)) AS TEMP_src
GROUP BY

TEMP_src.ref_𝑣,
for each 𝑣 ∈ SVars𝑒(𝑠),

TEMP_src.val

=-expressions (correspondingly, and-expressions)

Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = (𝑙=𝑟). For our competition, we only need to
consider the following cases:

• FVars(𝑙) = FVars(𝑟) = ∅. Then,

map𝑒(𝑙=𝑟) =
SELECT

TEMP_left.res = TEMP_right.res as res,

1 as val

FROM

(map𝑒(𝑙)) AS TEMP_left,
(map𝑒(𝑟)) AS TEMP_right

• FVars(𝑙) ̸= ∅, SVars(𝑟) ⊆ SVars(𝑙). Then,

map𝑒(𝑙=𝑟) =
SELECT

TEMP_left.res = TEMP_right.res as res,

CASE

TEMP_left.val = 0 OR TEMP_right.val = 0

WHEN 1 THEN 0

ELSE 1 END as val,

TEMP_left.ref_𝑣 as ref_𝑣,
for each 𝑣 ∈ SVars𝑒(𝑙)

FROM (map𝑒(𝑙)) AS TEMP_left
[LEFT] JOIN (map𝑒(𝑟)) AS TEMP_right
[ON TEMP_left.ref_𝑣 = TEMP_right.ref_𝑣,

for each 𝑣 ∈ SVars𝑒(𝑙) ∩ SVars𝑒(𝑟)]

collect-expressions

Let 𝑒 be an OCL expression. Let 𝑒′ be a subexpression of
𝑒. Let 𝑒′ = 𝑠→collect(𝑣 | 𝑏). For our competition, we
only need to consider the following case:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒′) = ∅.

SELECT TEMP_body.res as res,

TEMP_body.val as val,

FROM (map𝑒(𝑏)) as TEMP_body

• 𝑣 ̸∈ FVars(𝑏). Similarly, but the source and the
body would need to be joined using a JOIN-clause.

exists-expressions

Let 𝑒 be an OCL2PSQL-expression. Let 𝑒′ be a subexpres-
sion of 𝑒. Let 𝑒′ = 𝑠→exists(𝑣 | 𝑏). For our competi-
tion, we only need to consider the following cases:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒′) = ∅. Then

SELECT

COUNT(*) > 0 as res,

1 as val

FROM (map𝑒(𝑏)) as TEMP_body
WHERE TEMP_body.res = 1

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒′) ̸= ∅. Then

SELECT

CASE TEMP_body.ref_𝑣 IS NULL
WHEN 1 THEN 0

ELSE TEMP_body.res END as res,

1 as val,

TEMP_src.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑠),

TEMP_body.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑏) ∖ SVars(𝑠) ∖ {𝑣}

FROM (map𝑒(𝑠)) as TEMP_src
LEFT JOIN (

SELECT COUNT(*) > 0 as res,

TEMP_body.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑏)

FROM (map𝑒(𝑏)) as TEMP_body
WHERE TEMP_body.res = 1

GROUP BY TEMP_body.ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑏) ∖ {𝑣}

) as TEMP_body

ON TEMP_src.ref_𝑣′ = TEMP_body.ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑠)

• 𝑣 ̸∈ FVars(𝑏). Similarly, but the source and the
body would need to be joined using a JOIN-clause
without the group-clause (and possibly, changing
left join to simple join, if there are no common
variables between source and body).

B. Corrigendum
In [6, Section 4.3], in the second case considered in the
definition of the mapping for Exists-expressions instead
of:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒′) ̸= ∅. Then

SELECT

CASE TEMP_src.ref_𝑣 IS NULL

WHEN 1 THEN 0

ELSE TEMP.res END as res,

. . .



LEFT JOIN (

SELECT COUNT(*) > 0 as res,

TEMP_body.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑏) ∖ {𝑣}

it should read:

• 𝑣 ∈ FVars(𝑏) and FVars(𝑒′) ̸= ∅. Then

SELECT

CASE TEMP_body.ref_𝑣 IS NULL

WHEN 1 THEN 0

ELSE TEMP_body.res END as res,

. . .
LEFT JOIN (

SELECT COUNT(*) > 0 as res,

TEMP_body.ref_𝑣′ as ref_𝑣′,
for each 𝑣′ ∈ SVars(𝑏)

And similar errors should be corrected in [6, Sec-
tion 4.3], in the second case considered in the definition
of the mapping for forAll-expressions.

C. The OCL expression
metamodel

In a nutshell, OclExpression is the root element. It is
an abstract class. An OclExpression can be either a lit-
eral expression, a CallExp, a VariableExp, or a TypeExp.
Next, we describe each of these classes.

A literal expression represents a literal value. In
our case, it can be either an IntegerLiteralExp, a
StringLiteralExp, or a BooleanLiteralExp. Each of
these classes contains an attribute to represent an integer,
a string, or a Boolean literal value, respectively.

A TypeExp represents a type expression. It contains a
reference referredType of type Entity, which belongs
to the OCL2PSQL metamodel for data models.

A VariableExp represents a variable expression.
A CallExp represents an expression that consists of

calling a feature over a source, which is represented by
an OclExpression. CallExp is an abstract class: it can
be either an OperationCallExp, a PropertyCallExp, an
AssociationClassCallExp, or an IteratorExp.

An OperationCallExp represents an expression that
calls an operation over its source, possibly with argu-
ments. For our competition, we only consider the equality
comparison, i.e., =; conjunctive operation, i.e., AND; and
two operations on collections, i.e., allInstances() and
size().

A PropertyCallExp represents an expression that calls
an attribute of a source object. The former is repre-
sented by an Attribute and the latter is represented by
an Entity; both belong to the OCL2PSQL metamodel for
data models. OCL2PSQL only supports PropertyCallExp

expressions whose source is a VariableExp expression.
For example, given 𝑐 is a Variable of type Car, 𝑐.color
is a PropertyCallExp expression to get the color of the
Car.

An AssociationClassCallExp represents an expres-
sion that calls an association-end of a source object.
The former is represented by an AssociationEnd and
the latter is represented by an Entity; both belong to
the OCL2PSQL metamodel for data models. OCL2PSQL
only supports AssociationClassCallExp expressions
whose source is a VariableExp expression. For ex-
ample, given 𝑐 is a Variable of type Car and own-
ers is the association-end of Car, then 𝑐.owners is a
AssociationClassCallExp expression to get the owners
of the Car.

An IteratorExp represents an expression that calls
an iterator over a source collection. The body of the
iterator is represented by an OclExpression expression.
The iterator-variable is represented by a Variable. In this
competition, we support the following kinds of iterators:
exists, and collect.

D. The SQL-select statement
metamodel

The SelectStatement is the root element: it contains
a PlainSelect, which represents the body of the SQL-
select statement.

A PlainSelect may contain the following objects: a
list of selItems elements, each of type SelectItem; a
fromItem element of type FromItem; a whereExp element
of type Expression; a list of joins elements of type Join;
and a groupBy element of type GroupByElement. Next,
we describe each of these classes:

A SelectItem represents a column that the select-state-
ment retrieves. It contains an Expression element and
an Alias element.

A FromItem element represents the table or subselect
from which the SQL-select statement retrieves informa-
tion. It is an interface. A FromItem element can be either
a Table or a SubSelect. The former represents a table.
The latter represents a subselect. This element will be cre-
ated on the fly, i.e., when the FROM-clause is encountered.

A whereExp reference of type Expression represents
a where-clause.

A Join element represents a join with a rightItem of
type FromItem, possibly according to its element onExp
of type Expression.

A GroupByElement element represents a groupby-
clause. It contains groupByExps, a list of objects of type
Expression that defines how the rows are to be grouped.
Expression is an interface element which plays many

roles in a SQL-select statement. For the sake of simplicity,
the realizations of Expression are hidden from Figure 4.



Next, we describe these realizations which our cases will
need.

A LongValue and a StringValue represent an integer
literal and a string literal in SQL, respectively.

A Column represents a column of a table in SQL.
A BinaryExpression represents a binary expression

in SQL. It contains a leftExp element and a rightExp
element, both of type Expression. BinaryExpression
is an abstract class. It can be either a logical expres-
sion, (OrExpression or AndExpression) , or a compar-
ison expression (EqualsToExpression or GreaterThan-
Expression).

An IsNullExpression represents an IS NULL ex-
pression in SQL. It contains an Exp element of type
Expression.

A CountAllFunction represents a COUNT(*) expres-
sion in SQL.

A CaseExpression represents a CASE-expression in
SQL. It contains whenClauses, a list of objects of type
WhenClause, representing WHEN clauses in SQL.

A SubSelect represents a subselect-expression in SQL.
It contains a selectBody of type PlainSelect .


	1 Introduction
	2 Transformation description
	2.1 Input metamodel
	2.1.1 Input metamodel for data models
	2.1.2 Input metamodel for OCL expressions

	2.2 Output metamodel
	2.2.1 Output metamodel for SQL-select statements


	3 Main task
	4 Benchmark framework
	4.1 Solution requirements
	4.2 Running the benchmark

	5 Evaluation
	A The mapping OCL2PSQL in a nutshell
	B Corrigendum
	C The OCL expression metamodel
	D The SQL-select statement metamodel

