
The Epsilon Solution to the OCL2PSQL Case
Antonio Garcia-Dominguez

1

1Aston University, Birmingham, UK

Abstract
There have been several attempts to map Object Constraint Language queries to SQL: one of these is the OCL2PSQL mapping

proposed by Nguyen and Clavel. In this paper, I describe an implementation of OCL2PSQL using two languages from

the Eclipse Epsilon project: 744 lines of ETL code for the model-to-model transformation itself, and 97 lines of EGL code

for a model-to-text transformation that produces more readable SQL than the reference version. The solution passes all

correctness tests set out in the original framework: the transformation has a median time of 0.93s across all scenarios.

Keywords
OCL, SQL, model transformation, abstract syntax graphs

1. Introduction
The OMG Object Constraint Language is a well known,

standardized language for specifying constraints and

queries in models: while typically associated with UML,

it has been widely used for MOF-based modelling lan-

guages, and particularly those based on the Ecore imple-

mentation of EMOF. Given the increasingly large size of

the models used by Model-Driven Engineering practition-

ers, one common solution is to persist them in databases.

This has motivated attempts to map the OCL queries

(written in terms of the abstract syntax of the model-

ing language) to SQL queries that run directly on the

underlying relational database used to store the models.

Some of these attempts have used imperative features

such as loops and cursors to deal with iterators, possibly

reducing their compatibility across vendors (due to the

limited standardization of these features). OCL2PSQL

(“OCL to pure SQL”) is an approach that provides a map-

ping of nested iterators while staying entirely within the

broadly standardized and declarative parts of SQL [1].

The OCL2PSQL TTC case has selected a core subset of

this mapping (with some erratum added since the origi-

nal release of the mapping), and has invited tool authors

to demonstrate the usability, conciseness and ease of

understanding of their model transformation languages

through alternative implementations of this subset.

This paper presents an outline of a solution based on

the Eclipse Epsilon family of model management lan-

guages. Since the original release in 2006 [2], Eclipse Ep-

silon has grown to include languages for model-to-model

transformation (the Epsilon Transformation Language),

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" a.garcia-dominguez@aston.ac.uk (A. Garcia-Dominguez)

� 0000-0002-4744-9150 (A. Garcia-Dominguez)

© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

model-to-text transformation (the Epsilon Generation

Language), model validation, pattern matching, model

migration, unit testing and other tasks. The solution

passes all correctness checks, though some minor refine-

ments of the proposed mappings were required.

The rest of the paper is structured as follows: Section 2

explains the overall structure of the solution. Section 3

describes the key features of the implemented model-

to-model transformation from OCL to SQL. Section 4

describes the alternative model-to-text transformation

that has been developed from the SQL models to textual

SQL queries. Finally, Section 5 presents the preliminary

performance results obtained by the solution author.

2. Overall structure
The Epsilon solution to the OCL2PSQL case is a Java ap-

plication, using Apache Maven for its dependency man-

agement. Epsilon is usable as a standalone Java library,

with stable versions available through Maven Central and

snapshot versions available through the OSS Sonatype

repository. The solution should work in Epsilon 2.3.0, but

uses the latest 2.4.0 interim versions to avoid a warning

message when using the Epsilon Generation Language.

The solution (now merged into the TTC’21 OCL2PSQL

solutions repository
1

) reuses the basic scaffolding of the

reference solution, including the generated code for the

OCL and SQL metamodels, and the classes responsible

for interpreting the environment variables, communi-

cating with the MySQL database, and performing the

correctness tests. The solution adds the following Java

classes:

• SampleLauncher, which transforms all OCL

queries without using the environment variables

of the benchmark framework. This is mostly for

internal development.

1
https://github.com/TransformationToolContest/

ttc2021-ocl2psql/tree/master/solutions/Epsilon

mailto:a.garcia-dominguez@aston.ac.uk
https://orcid.org/0000-0002-4744-9150
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://github.com/TransformationToolContest/ttc2021-ocl2psql/tree/master/solutions/Epsilon
https://github.com/TransformationToolContest/ttc2021-ocl2psql/tree/master/solutions/Epsilon


• OCL2SQL, which encapsulates a model-to-model

transformation written in the Epsilon Transfor-

mation Language into an easy-to-use Java class.

More information on the ETL transformation is

available in Section 3.

• SQL2Text, which replaces the model-to-text

transformation in the reference solution with one

based on the Epsilon Generation Language. More

details on the EGL transformation are given in

Section 4.

Finally, the solution changed the code of the Solution

class in the reference solution to use the OCL2SQL and

SQL2Text classes from above.

3. Model-to-model
transformation with ETL

The Epsilon project includes several languages for per-

forming model transformations:

• The Epsilon Object Language (EOL) is an OCL-

inspired imperative language which is well suited

for small in-place (endogenous) model transfor-

mations, though it can be used for purely imper-

ative exogenous transformations as well.

• The Epsilon Transformation Language (ETL)

builds on top of EOL by adding the concept of a

rule, which transforms a certain type of source

model element (possibly with some guards lim-

iting its applicability) to a target model element.

The rule scheduling can be kept entirely declara-

tive, or can be controlled to some extent through

the use of “greedy” or “lazy” rules. ETL is well-

suited for exogenous transformations, where a

new model is produced from the source model.

• Flock can be thought of as ETL with an automated

“copy-unless-otherwise-stated” default strategy.

It is well suited for model migration tasks, where

a model has to undergo small changes from one

version of a metamodel to the next.

• The Epsilon Wizard Language (EWL) is a variant

of EOL which allows users to define “wizards”

that users can manually trigger on specific model

elements, performing small in-place transforma-

tions (perhaps with some simple user interaction).

Out of these languages, ETL was chosen since the

original formulation of OCL2PSQL as a collection of re-

cursive mappings by source type was a close match to

the rules used by ETL. For the most part, each of those

mappings was translated into an ETL rule, and calls to

map𝑒(𝑒) were translated into e.equivalent() calls in ETL.

The e.equivalent() built-in operation retrieves the SQL

Listing 1: Main ETL script

1import ’s0_literals.etl’;

2import ’s1_equals_and.etl’;

3import ’s2_allInstances.etl’;

4import ’s3_size.etl’;

5import ’s4_collect_variable.etl’;

6import ’s5_attributes.etl’;

7import ’s6_associationEnds.etl’;

8import ’s7_exists.etl’;

9import ’s8_existsWithFree.etl’;

10

11post {

12var firstRootSelect = SQL!PlainSelect.all.selectOne(

ps|ps.eContainer.isUndefined());

13

14var stmt = new SQL!SelectStatement;

15stmt.selectBody = firstRootSelect;

16}

subgraph produced from the OCL e subtree, allowing

the different SQL subtrees to be linked together. The

OCL2PSQL case did not require any manual rule schedul-

ing or the use of greedy/lazy rules: the automated rule

scheduling done by ETL based on source element types

and guards was sufficient.

ETL allows for breaking up the transformation across

several modules. This made it relatively easy to itera-

tively implement the various stages in OCL2PSQL and

test out how it behaved for the various challenges. List-

ing 1 shows the main script of the ETL transformation:

it is composed of a number of import statements that

bring in the rules needed for each stage, and a post rule

which places the one PlainSelect without a container

into a SelectStatement element as mandated by the

SQL metamodel.

Some of the OCL2PSQL mappings had to produce sig-

nificantly large SQL subtrees: to keep the code concise,

a library of EOL operations (utilities.eol) was cre-

ated and reused from the ETL rules. This library largely

contained a set of functions for simple creation of SQL

model elements, an implementation of the OCL2PSQL

functions for listing the free variables in an OCL expres-

sion 𝑒 (FVars(𝑒)) and for listing the source variables that

the value of a subexpression 𝑒′ of the OCL expression 𝑒
depends upon (SVars𝑒(𝑒

′)), and several other miscella-

neous functions. As a simple example, Listing 2 shows

the code needed to transform OCL integer literals to the

target SQL metamodel.

The ETL rules are for the most part a direct one-to-

one translation from the descriptions at the end of the

OCL2PSQL case, except for two changes.

The first change was considering one special case listed



Listing 2: Excerpt of ETL for stage 0 (integer literals)

1 import ’utilities.eol’;

2

3 /∗
4 ∗ All these boil down to:
5 ∗ mape(l) = SELECT l as res, 1 as val
6 ∗/
7

8 rule IntLiteral

9 transform e:OCL!IntegerLiteralExp

10 to ps:SQL!PlainSelect {

11 ps.selItems.add(longSelectItem(’res’, e.integerValue.asLong()));

12 ps.selItems.add(longSelectItem(’val’, 1l));

13 }

in the original OCL2PSQL paper [1] but not in the case

paper. The mapping of collect and exists in the original

OCL2PSQL paper covered the case when 𝑣 /∈ 𝐹𝑉 𝑎𝑟𝑠(𝑏),
but this mapping had been omitted from the OCL2PSQL

case description. It turned out that this special case was

needed for some of the queries, e.g. challenge 0 in stage

4 (Car.allInstances()−>collect(c|5)).

The second change was due to an unexpected inter-

action between the recursive approach used to define

OCL2PSQL, the definition of SubSelect.selectBody as a

containment reference in the SQL metamodel, and how

the ETL e.equivalent() operation works. ETL will only

apply a certain rule once to each matching source model

element, and from them on e.equivalent() will always

return the same counterpart in the target model (e.g. the

exact same object). This resulted in some SQL queries

“losing” the body of their SubSelect objects to other sub-

trees of the SQL model, as they also needed the mapping

for that part of the OCL expression.

For instance, consider the final challenge:

Car.allInstances()−>exists(c|

c.owners−>exists(p|

p.name = ’Peter’))

In this query, the SQL mapping of c.owners−>exists(...)

and the SQL mapping of p.name both require using the

mapping of c.owners as a subquery. ETL successfully

maps c.owners to SQL, but EMF will not allow a single

model element to be contained from more than one place.

Since the mapping of c.owners−>exists(...) will complete

last, it will effectively “steal” the subquery representing

c.owners from the mapping of p.name.

The fix for this issue turned out to be simple, as shown

in Listing 3. All uses of the e.equivalent() operation were

wrapped into a new EOL operation: the operation tested

if this “stealing” was about to take place (i.e. if the Plain-

Select was already contained in another SubSelect),

Listing 3: Fix for “subtree stealing” in ETL

1operation copyIfContained(value) {

2var emfTool = new Native(

3"org.eclipse.epsilon.emc.emf.tools.EmfTool");

4if (value.eContainer.isDefined()) {

5return emfTool.ecoreUtil.copy(value);

6}

7return value;

8}

and if so it performed a deep cloning of the SQL subtree.

A better fix (which unfortunately would have required

a rewriting of the input files for this case) would be to

change the SQL metamodel so that SubSelect.selectBody is

no longer a containment reference, and the same Plain-

Select can be reused from multiple SubSelect model

elements.

Even further, this suggests that the OCL2PSQL map-

ping really produces a SQL expression graph (where some

subexpressions are reused) rather than a SQL abstract

syntax tree. Instead of running the same subquery from

several places, it may be advisable to redefine OCL2PSQL

so it produces a sequence of SQL queries rather than a

single large SQL query: it would run these reused sub-

queries first, and then provide their results to the higher-

level queries. Otherwise, there may be a risk that the

SQL query could grow exponentially if sufficiently large

subqueries have to be duplicated across several locations.

Overall, the transformation required writing 14 rules

across 531 lines of ETL code, with a support library of

EOL operations that was 213 lines long. These line counts

included whitespace and comments: if these are excluded,

the line counts are reduced to 305 lines of ETL code and



Listing 4: Excerpt of EGL to generate SQL query text

1 [%= SelectStatement.all.first.generate() %][%

2

3 @template
4 operation SelectStatement generate() { %]

5 [%=self.selectBody.generate()%];

6 [% }

7

8 @template
9 operation PlainSelect generate() { %]

10 SELECT

11 [% for (si in self.selItems) { %]

12 [%=si.generate() + (hasMore ? "," : "")%]

13 [% }

14 if (self.fromItem.isDefined()) { %]

15 FROM [%=self.fromItem.generate() %]

16 [% }

17 for (join in self.joins) {%]

18 [%=join.generate()%]

19 [% }

20 if (self.whereExp.isDefined()) { %]

21 WHERE [%=self.whereExp.generate() %]

22 [% }

23 if (self.groupBy.isDefined()) { %]

24 [%= self.groupBy.generate() %]

25 [%

26 }

154 lines of EOL code
2

.

4. Model-to-text transformation
to SQL with EGL

The reference solution included a model-to-text transfor-

mation that produced the SQL query to be run in MySQL

from the SQL model. During the development of this so-

lution, it was found that the generated SQL was difficult

to read in the presence of multiple levels of subqueries,

as it was entirely on one line.

In order to improve the readability of the SQL queries

and help with the debugging, an alternative implementa-

tion was written in 96 lines of EGL. The EGL template tra-

verses the SQL model recursively from the root Select-

Statement, breaking up SELECT statements, CASE ex-

pressions, joins, and subqueries across multiple lines.

Listing 4 shows an excerpt of the EGL script: the first

line is the entry point of the entire script, kicking off

the recursive descent of the SQL model from the Select-

Statement. The EGL script makes heavy use of template

2
These counts were obtained using the

count-etl-lines.sh script included in the solution folder.

Listing 5: SQL-specific LanguageFormatter used to in-

dent the SQL query text

1private static class SQLFormatter

2extends LanguageFormatter

3{

4private static final String increasePattern = "\\(\\s∗$";

5private static final String decreasePattern = "^\\)";

6

7public SQLFormatter() {

8super(Pattern.compile(increasePattern,

9Pattern.MULTILINE),

10Pattern.compile(decreasePattern,

11Pattern.MULTILINE));

12}

13}

Listing 6: SQL query for challenge 0 in stage 1, as gener-

ated by EGL

1SELECT
2TEMP_left.res = TEMP_right.res AS res,

31 AS val

4FROM (

5SELECT
62 AS res,

71 AS val

8) AS TEMP_left

9JOIN (

10SELECT
113 AS res,

121 AS val

13) AS TEMP_right;

operations, which allow EGL templates in their body and

return strings which can be used within expressions (e.g.

for concatenating separators, as in line 12).

The script also uses some of the built-in Epsilon vari-

ables: hasMore is a built-in Epsilon variable available in

loops which is true if and only if there are more values

after the current one.

One useful feature in EGL is its ability to integrate for-
matters that postprocess the generated text. In particular,

the EGL LanguageFormatter was customised for SQL

(as shown in Listing 5) to automatically indent the lines

of the SQL script to improve readability, while keeping

the EGL script as simple as possible. This class only re-

quires the regular expressions that should increase and

decrease the indentation level after a match. Using this

script, queries are generated in the more readable form

shown in Listing 6.



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

S0C
0

S0C
1

S0C
2

S1C
0

S1C
1

S1C
2

S2C
0

S3C
0

S3C
1

S4C
0

S4C
1

S4C
2

S5C
0

S5C
1

S6C
0

S6C
1

S7C
0

S7C
1

S7C
2

S7C
3

S8C
0

S
ec

on
ds

1. Transform (JVM warmup) 2. Transform (avg over 10 runs) 3. Query test

Figure 1: Execution times in seconds per stage and challenge, for the first warmup execution of the transformation, the
average of 10 additional runs of the transformation, and the test of the generated SQL statement.

5. Results
After implementing the ETL model-to-model transfor-

mation and the EGL model-to-text transformation, Java

code to encapsulate these transformations and integrate

them with the TTC benchmark framework was added.

The transformations passed all correctness cases for all

scenarios across all stages and challenges.

In terms of execution time, the transformations were

run on a Lenovo X1 laptop with an i7-6600U CPU run-

ning at 2.60GHz with 16GiB of physical RAM, running

Ubuntu Linux 20.04.2 LTS with Linux 5.4.0-74-generic

and the Oracle JDK 11.0.8. The default Java memory

allocation settings were used (no -Xmx or other JVM op-

tions were given). The Docker image provided by the

OCL2PSQL case authors was used to run MySQL, using

Docker Engine 20.10.7.

The transformation and test times are shown in Fig-

ure 1: the transformation times include both the ETL

model-to-model transformation and the EGL model-to-

text transformation, in order to mimic the two trans-

formations done by the reference implementation (the

proper OCL2PSQL transformation, and a model-to-model

transformation between a 3rd-party JSqlParser meta-

model and the EMF-based metamodel). It was noted

during the open peer review stage of the contest that the

first execution of the transformation was considerably

slower than later executions, due to Java class-loading

and just-in-time recompiler warmup times. In order to

obtain more representative results from a typical user

(who would have a long-running Java process running

the transformation repeatedly for different OCL queries),

the transformation was then run 10 more times within the

same JVM, and the average execution time was recorded.

This was followed by a single execution of the generated

SQL query, to test if the expected results were produced.

Whereas the execution times for the “warmup” runs

are between 0.9s and 1.2s, the average execution times are

much smaller and comparable to other solutions of the

contest, ranging between 0.1s and 0.25s. Test execution

times ranged between 0.3s and 0.4s.

References
[1] H. Nguyen Phuoc Bao, M. Clavel, OCL2PSQL: An

OCL-to-SQL code-generator for model-driven engi-

neering, in: T. K. Dang, J. Küng, M. Takizawa, S. H.

Bui (Eds.), Future Data and Security Engineering,

Springer International Publishing, Cham, 2019, pp.

185–203. doi:10.1007/978-3-030-35653-8_13.

[2] D. S. Kolovos, R. F. Paige, F. Polack, The Epsilon

Object Language (EOL), in: Model Driven Architec-

ture - Foundations and Applications, Second Euro-

pean Conference, ECMDA-FA 2006, Bilbao, Spain,

July 10-13, 2006, Proceedings, 2006, pp. 128–142.

doi:10.1007/11787044_11.

http://dx.doi.org/10.1007/978-3-030-35653-8_13
http://dx.doi.org/10.1007/11787044_11

	1 Introduction
	2 Overall structure
	3 Model-to-model transformation with ETL
	4 Model-to-text transformation to SQL with EGL
	5 Results

