
An NMF solution to the TTC 2021 OCL to SQL case
Georg Hinkel

1

1Am Rathaus 4b, 65207 Wiesbaden, Germany

Abstract
Recent advancements in modern general-purpose programming languages challenge the often stated assumption that dedi-

cated model transformation languages are required to express model transformations, especially when not only few of the

typical properties of model transformations are required. In particular, the OCL to SQL case at the Transformation Tool

Contest (TTC) 2021 asks for solutions to a transformation from OCL, a typical tree model. This paper presents a solution to

this case using dynamic C# code, but without any dedicated model transformation language, only using NMF for the model

representation. The transformation tools of NMF are not used because the case does not fall under NMFs definition of a

model transformation problem and we discuss the reasons for that.

Keywords
Model Queries, OCL, SQL

1. Introduction
In a frequently cited paper [1], Sendall and Kozaczyn-

ski state that dedicated model transformation languages

should be used for most model transformation activities

because general-purpose languages are less suited for this

kind of tasks. Particularly in recent years, this assump-

tion has become very popular [2]. However, modern

general-purpose programming languages have signifi-

cantly evolved since the paper from Sendall and Koza-

czynski was published and it is fair to doubt whether that

statement is still correct, in particular since surprisingly

few empirical evidence is given to support the assump-

tion [2].

One of the arguments in favor of model transformation

languages is the simple and usually type-safe access to a

trace model. However, the trace is only important when

model elements are referenced more than once and there

is an important category of models where model elements

are typically only referenced only once, namely trees, for

instance expression trees.

A particularly important expression tree model is the

Object Constraint Language (OCL). OCL is an important

language to denote expressions based on models in order

to formulate constraints, but it is also used to specify

queries. If the models are stored in a database, it is de-

sirable to translate these queries to SQL statements such

that they can be processed directly by the database.

Using models for OCL and SQL, the OCL to SQL case at

the Transformation Tool Contest (TTC) asks tool authors

to transform models of OCL queries into models of SQL

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" georg.hinkel@gmail.com (G. Hinkel)

© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

statements. For this purpose, metamodels are provided

to understand OCL and SQL as models.

The .NET Modeling Framework [3] is a framework for

model-driven engineering on the .NET platform and pa-

per presents a solution of the OCL to SQL case using NMF.

NMF even has multiple model transformation languages,

but these do not fit to the problem at hand. Instead, this

paper presents a solution using plain C# with massive

usage of the Dynamic Language Runtime.

In the remainder of the paper, I first briefly introduce

the Dynamic Language Runtime that is heavily used for

the solution in this paper in Section 2. Section 3 presents

the solution. Finally, Section 4 discusses the solution.

2. Dynamic C#
The solution makes use of the dynamic language runtime

(DLR) that is part of the .NET Framework but perhaps

not so widely known. The idea of the DLR is to allow el-

ements of dynamic programming languages in the scope

of the .NET runtime. These features are also available in

C#, in particular the ability for late binding. That is, by

converting variables to dynamics, the compiler sees that

method calls are only resolved at runtime, based on the

usual C# overload selection principles which the compiler

attaches to make them available at runtime. However,

especially when passing dynamic objects only as param-

eters, the compiler is able to calculate the set of methods

that are candidates for a certain call already, which makes

the actual call very efficient. Further, integrated editors

such as Visual Studio even show errors, if no suitable

candidates could be found, the reference count counts all

possible methods that the call could be resolved to and

the "‘Go To Definition"’ feature lists all of them.

mailto:georg.hinkel@gmail.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


3. Solution
To discuss the solution, I first give an overview in Section

3.1 before Sections 3.2, 3.3 and 3.4 go into details for the

actual translation process, pruning and printing the SQL

statement models to strings.

3.1. Overview
NMF does have a model transformation language (NTL,

[4, 5])
1

but I decided not to use it for this case. Why? Ac-

cording to the philosophy of NTL, the biggest challenge

of a model transformation is to establish an isomorphism

between source and target models that provides a trac-

ing functionality and that is used to ensure that certain

input model elements are only transformed once and not

once for every reference. This is because maintaining

such a trace is difficult in general-purpose programming

languages because it requires a lot of bookkeeping – one

essentially requires a dedicated hashtable for each type

and as soon as inheritance is in place, things start to

become messy.

However, both the OCL and the SQL metamodels are

essentially expression models that have a tree structure

with very few cross-references, even none in the case of

SQL. Because NMF takes containments very seriously

and model elements must always have exactly one parent,

trying to add an existing model element to a containment

reference of another model element removes it from its

old container. Therefore, not only that a trace is not

needed, it is even counter-productive.

Since the availability of a trace is not an argument

in favor of NTL, the question is whether NTL still adds

value against a pure general-purpose code solution and I

believe the answer is plainly no. Especially using features

like the DLR, the late binding can be implemented directly

in C# with concepts known by a lot more developers and

therefore easier to understand and better supported by

tools.

Therefore, I decided to create a solution to the case

using plain C# code making use of DLR features.

3.2. Translator
The general idea of the solution is to translate the OCL

expressions in a (mutable) context to SQL expressions.

This context includes a notion of open variables and their

types as well as the body of the enclosing SQL statement

and a counter of temporary tables created for a statement

in order that they do not get confused. While simple

expressions can be mapped to simple SQL expressions,

1
In fact, NMF even has two model transformation languages

where NTL is the rather imperative approach. NMF Synchroniza-

tions [6] is more declarative and targets incremental and/or bidirec-

tional model transformations.

other OCL expressions require to modify the context in

which they are called.

Listing 1 shows how this applies to boolean expres-

sions where the literal is simply converted to an Equal-

sToExpression, either that 1 = 1 for true or 1 = 0 for

false.

1 private IExpression GetExpression(SelectContext context,
BooleanLiteralExp booleanLiteral) {

2 return new EqualsToExpression {
3 LeftExp = new LongValue { Value = 1 },
4 RightExp = new LongValue {
5 Value = booleanLiteral.BooleanValue.GetValueOrDefault()

? 1 : 0
6 }
7 };
8 }

Listing 1: Translating simple boolean expressions

Calls to GetExpression can be nested as denoted in

Listing 2 that depicts how to translate And call expres-

sions.

1 return new AndExpression {
2 LeftExp = GetExpression(context, (dynamic)callExpression.

Source),
3 RightExp = GetExpression(context, (dynamic)callExpression.

Argument[0])
4 };

Listing 2: Nesting translation calls to translate an And

call expression

More interesting is the handling of the AllInstances

method as depicted in Listing 3. Because it does not

directly have an impact on the result, we return a null

reference, but this time change the context and set it to

the table with the name of the referred type.

1 private IExpression GetAllInstances(SelectContext context,
IEntity referredType) {

2 var table = new Table { Name = referredType.Name };
3 if (context.Body.FromItem == null) {
4 context.Body.FromItem = table;
5 } else {
6 context.Body.Joins.Add(new Join { RightItem = table });
7 }
8 return null;
9 }

Listing 3: Handling the AllInstances method

To handle iterators, we need to determine how to bind

the variable. For this, the considered subset of the OCL

language knows to collections that can be iterated: A

collection returned by the AllInstances method or an as-

sociation of a different variable. In both cases, we add an

open variable to the select context while calculating the

expression for the iterator body and remove it afterwards.

With the iterators in place, we can implement the Prop-

ertyCallExp expressions as depicted in Listing 4.

The (syntactically allowed) case that a property of a

property is queried would require adding more joins,

which is ignored in the current solution, particularly

given that this was not required for the reference inputs.



1 private IExpression GetExpression(SelectContext context,
PropertyCallExp propertyCall) {

2 switch (propertyCall.Source) {
3 case VariableExp variableRef:
4 var table = context.Variables[variableRef.

ReferredVariable.Name];
5 return new Column {
6 Table = new Table {
7 Name = table,
8 Alias = new Alias {
9 Name = variableRef.ReferredVariable.Name

10 }
11 },
12 Name = propertyCall.ReferredProperty.Name
13 };
14 default:
15 throw new NotSupportedException();
16 }
17 }

Listing 4: Transformation of a PropertyCallExp

1 private IExpression GetExpression(SelectContext context,
AssociationClassCallExp association) {

2 switch (association.Source) {
3 case VariableExp variableRef:
4 var variable = variableRef.ReferredVariable.Name;
5 var associationEnd = association.

ReferredAssociationEnds;
6 var alias = variable + "_" + associationEnd.Association

;
7 context.Body.Joins.Add(new Join {
8 Left = false,
9 RightItem = new Table {

10 Name = associationEnd.Association,
11 Alias = new Alias { Name = alias }
12 },
13 OnExp = new EqualsToExpression {
14 LeftExp = new Column {
15 Table = new Table {
16 Name = context.Variables[variable],
17 Alias = new Alias { Name = variable }
18 },
19 Name = associationEnd.Name,
20 },
21 RightExp = new Column {
22 Table = new Table {
23 Name = associationEnd.Association,
24 Alias = new Alias { Name = alias }
25 },
26 Name = context.Variables[variable] + "_id",
27 }
28 }
29 });
30 context.LastJoin = Tuple.Create(variable,

associationEnd);
31 return null;
32 default:
33 throw new NotSupportedException();
34 }
35 }

Listing 5: Transformation of an AssociationCallExp

In case of an AssociationCallExp, we register the

join as last join in the context and add the join to the

current select context as depicted in Listing 5.

Perhaps the most interesting expression is the method

to return the sizes. This is because the aggregate dras-

tically changes the execution of the query and we need

to return rows for actually empty combinations. To do

this, we create a temporary sub-select model with the

current context query inside, group that query by all

context variables and return a column of the temporary

table. However, because this eliminates the open vari-

ables that might be needed elsewhere, we group the result

by all open variables and add these variables to the result.

To make them available in the sub-select, which is the

new context select statement, we add joins for each open

variable from their original table.

To see this, consider an extension of stage 8 where we

reuse the open variable c as depicted in Listing 6. We

refer to this query later on as stage 9.

1 Car.allInstances()->exists(c|c.owners->exists(p|p.name = ’
Peter’) and c.color=’black’)

Listing 6: Slight extension of the stage 8 query that reuses

the open variable c

Note, the exists method is treated as a filter condi-

tion and an additional size aggregate. We need to keep

the variable c in order to be able to check whether the

color is black.

3.3. Pruning
The resulting SQL statement may join tables that are not

actually needed, e.g. when joined tables are not actually

needed. This gets apparent in challenge 8, where the

open variable c is only used to calculate the size, but

given that we are not interested in any of its properties,

we do not actually need to join the Car table once again

after the initial context is gone.

1 if (selectBody.SelItems.Select(s => s.Exp).OfType<
CountAllFunction>().Any()) {

2 return;
3 }
4 var expressionsToCheck = selectBody.SelItems.Select(s => s.

Exp).ToList();
5 if (selectBody.WhereExp != null) {
6 expressionsToCheck.Add(selectBody.WhereExp);
7 }
8 var usedAliases = (from selectExp in expressionsToCheck
9 from column in selectExp.Descendants().OfType<

Column>()
10 select column.Table.Alias.Name).Distinct();
11 for (int i = selectBody.Joins.Count - 1; i >= 0; i--) {
12 var join = selectBody.Joins[i];
13 if (join.RightItem is Table table && !usedAliases.Contains

(table.Alias.Name)) {
14 selectBody.Joins.RemoveAt(i);
15 }
16 }
17 if (selectBody.FromItem is SubSelect subSelect) {
18 Prune(subSelect.SelectBody);
19 }

Listing 7: Pruning the joins of the resulting SQL

statement

The implementation of the pruning is depicted in List-

ing 7. Aggregate (sub-)queries are not pruned because

removing joins changes the number of result elements

and thus the result get incorrect. Otherwise, we select all



table aliases that appear either in the selection or in the

where clause and remove all joins that join tables that

are not actually needed. Lastly, we recurse in case the

source is a sub-query.

3.4. Printer
The solution to print the SQL statement models to strings

works similar by using the DLR to dispatch the different

object types and then print them to strings.

1 public static string Print(IPlainSelect selectBody) {
2 var resultBuilder = new StringBuilder();
3 resultBuilder.Append($"SELECT {string.Join(", ", 

selectBody.SelItems.Select(Print))}");
4 if (selectBody.FromItem != null) {
5 resultBuilder.Append($" FROM {PrintFrom((dynamic)

selectBody.FromItem)}");
6 }
7 foreach (var join in selectBody.Joins) {
8 resultBuilder.Append($" {(join.Left.GetValueOrDefault() ?

 "LEFT" : "INNER")} JOIN {PrintFrom((dynamic)join.
RightItem)} ON {PrintExpression((dynamic)join.
OnExp)}");

9 }
10 if (selectBody.WhereExp != null) {
11 resultBuilder.Append($" WHERE {PrintExpression((dynamic)

selectBody.WhereExp)}");
12 }
13 if (selectBody.GroupBy != null) {
14 resultBuilder.Append($" GROUP BY {string.Join(", ", 

selectBody.GroupBy.GroupByExps.Select(exp => 
PrintExpression((dynamic)exp)))}");

15 }
16 return resultBuilder.ToString();
17 }

Listing 8: Printing the resulting SQL statement using the

DLR

As an example, the method to print the actual SQL

statement is depicted in Listing 8. The query printer

makes intensive use of the string interpolation available

in C#.

4. Evaluation and discussion
The solution has been integrated into the benchmark

framework. In order to get an insight on the generated

SQL queries, the resulting queries are depicted in Listing

9.

Notably, to reduce the influence of just-in-time com-

pilation, I actually run the solution 100 times on a Intel

Core i7-8550U CPU clocked at 1.99 Ghz in a system with

8GB RAM running Windows 10 and divide the result by

100
2

. The resulting transformation times then are in the

range of up to 1.4ms for the stage 8 query and in the

sub-millisecond area for most of the other queries and

thus is negligible. The time for the test lies around 20ms

but that certainly gets more interesting once the solution

2
Actually, I do not because the smallest time unit in .NET hap-

pens to be 100ns, so we merge the division by 100 with the multipli-

cation by 100.

is tested with larger databases. First, the transformation

scheme used inside this paper differs from the original

OCL2PSQL transformation scheme [7] and a correctness

proof for the transformation scheme presented used in

this paper is correct is out of scope for this paper. The

reason that I did not use the OCL2PSQL mapping is that

I am generally not satisfied with the verbosity of the SQL

statements generated by it, whereas the SQL statements

generated by the transformation scheme presented here

are much easier to comprehend in my opinion. The val-

idation of the mapping scheme presented here will be

subject of future work. However, this different mapping

scheme also makes a comparison with alternative im-

plementations that stick more closely to the OCL2PSQL

mapping more difficult.

In my opinion, the solution shows well how to use the

Dynamic Language Runtime available in C# to perform

dispatch on parameters, a frequent selling argument of

model transformation languages apart from access to

trace, incrementality and bidirectionality. The latter two

properties require a very declarative way of specifying

model transformations such as exemplified e.g. by NMF

Synchronizations [6], but the transformation at hand is

written in a very imperative style. Anyways, incremental

change propagation is not relevant for the case at hand,

since changes the main purpose of the transformation is

to execute the resulting SQL statement and analyze the

result data. Bidirectionality would be very interesting to

reverse-engineer SQL statements in order to make them

more understandable, but it is unclear to what extend this

is possible at all. Given that the trace is not important in

this case, there is just no reason not to use the Dynamic

Language Runtime, especially taking into account the

very good performance results.

A further advantage of a solution in plain C# is that

it can be easily integrated into model transformations

written in internal DSLs using C# as a host language, in

particular NTL, since usually, not the entire model forms

a tree structure and hence, access to the trace is required.

This integration, however, would be much more dif-

ficult when incrementality was important despite incre-

mentalization systems like NMF Expressions [8] that op-

erate on C# code (or models thereof). It will be subject of

future work how transformations like the mapping from

OCL to SQL can be supported when incremental change

propagation is required.

References
[1] S. Sendall, W. Kozaczynski, Model transformation

the heart and soul of model-driven software devel-

opment, Technical Report, 2003.

[2] S. Götz, M. Tichy, R. Groner, Claimed advantages and

disadvantages of (dedicated) model transformation



1 ***** Stage#0 ***
2 +++ challenge#0: SQL: SELECT 2 res
3 +++ challenge#1: SQL: SELECT ’Peter’ res
4 +++ challenge#2: SQL: SELECT 1 = 1 res
5 ***** Stage#1 ***
6 +++ challenge#0: SQL: SELECT 2 = 3 res
7 +++ challenge#1: SQL: SELECT ’Peter’ = ’Peter’ res
8 +++ challenge#2: SQL: SELECT 1 = 1 and 1 = 1 res
9 ***** Stage#2 ***

10 +++ challenge#0: SQL: SELECT Car_id res FROM Car
11 ***** Stage#3 ***
12 +++ challenge#0: SQL: SELECT tmp1.res res FROM (SELECT COUNT(*) res FROM Car) AS tmp1
13 +++ challenge#1: SQL: SELECT tmp1.res = 1 res FROM (SELECT COUNT(*) res FROM Car) AS tmp1
14 ***** Stage#4 ***
15 +++ challenge#0: SQL: SELECT 5 res FROM Car AS c
16 +++ challenge#1: SQL: SELECT c.Car_id res FROM Car AS c
17 +++ challenge#2: SQL: SELECT 1 = 0 res FROM Car AS c
18 ***** Stage#5 ***
19 +++ challenge#0: SQL: SELECT c.color res FROM Car AS c
20 +++ challenge#1: SQL: SELECT c.color = ’black’ res FROM Car AS c
21 ***** Stage#6 ***
22 +++ challenge#0: SQL: SELECT tmp1.res res FROM (SELECT c.Car_id, COUNT(c_Ownership.ownedCars) res FROM Car AS c LEFT JOIN

Ownership AS c_Ownership ON c.Car_id = c_Ownership.ownedCars GROUP BY c.Car_id) AS tmp1
23 +++ challenge#1: SQL: SELECT tmp1.res = 0 res FROM (SELECT c.Car_id, COUNT(c_Ownership.ownedCars) res FROM Car AS c LEFT JOIN

Ownership AS c_Ownership ON c.Car_id = c_Ownership.ownedCars GROUP BY c.Car_id) AS tmp1
24 ***** Stage#7 ***
25 +++ challenge#0: SQL: SELECT tmp1.res > 0 res FROM (SELECT COUNT(*) res FROM Car AS c WHERE 1 = 1) AS tmp1
26 +++ challenge#1: SELECT tmp1.res > 0 res FROM (SELECT COUNT(*) res FROM Car AS c WHERE 1 = 0) AS tmp1
27 +++ challenge#2: SQL: SELECT tmp1.res > 0 res FROM (SELECT COUNT(*) res FROM Car AS c WHERE c.color = ’black’) AS tmp1
28 +++ challenge#3: SQL: SELECT tmp2.res > 0 res FROM (SELECT COUNT(*) res FROM (SELECT c.Car_id, COUNT(c_Ownership.ownedCars)

res FROM Car AS c LEFT JOIN Ownership AS c_Ownership ON c.Car_id = c_Ownership.ownedCars GROUP BY c.Car_id) AS tmp1
WHERE tmp1.res = 1) AS tmp2

29 ***** Stage#8 ***
30 +++ challenge#0: SQL: SELECT tmp2.res > 0 res FROM (SELECT COUNT(*) res FROM (SELECT c.Car_id, COUNT(p.Person_id) res FROM

Car AS c LEFT JOIN Ownership AS c_Ownership ON c.Car_id = c_Ownership.ownedCars LEFT JOIN Person AS p ON c_Ownership.
ownedCars = p.Person_id WHERE p.name = ’Peter’ GROUP BY c.Car_id) AS tmp1 WHERE tmp1.res > 0) AS tmp2

Listing 9: Resulting SQL Statements

languages: a systematic literature review, Software

and Systems Modeling 20 (2021) 469–503.

[3] G. Hinkel, NMF: A multi-platform Modeling Frame-

work, in: A. Rensink, J. S. Cuadrado (Eds.), Theory

and Practice of Model Transformations: 11th Interna-

tional Conference, ICMT 2018, Held as Part of STAF

2018, Toulouse, France, June 25-29, 2018. Proceed-

ings, Springer International Publishing, Cham, 2018,

pp. 184–194.

[4] G. Hinkel, An approach to maintainable model trans-

formations using an internal DSL, Master’s thesis,

Karlsruhe Institute of Technology, 2013.

[5] G. Hinkel, T. Goldschmidt, E. Burger, R. Reuss-

ner, Using Internal Domain-Specific Languages

to Inherit Tool Support and Modularity for Model

Transformations, Software & Systems Model-

ing (2017) 1–27. URL: http://rdcu.be/oTED. doi:10.
1007/s10270-017-0578-9.

[6] G. Hinkel, E. Burger, Change Propagation and Bidi-

rectionality in Internal Transformation DSLs, Soft-

ware & Systems Modeling (2017). URL: http://rdcu.

be/u9PT. doi:10.1007/s10270-017-0617-6.

[7] H. N. P. Bao, M. Clavel, Ocl2psql: An ocl-to-sql

code-generator for model-driven engineering, in: In-

ternational Conference on Future Data and Security

Engineering, Springer, 2019, pp. 185–203.

[8] G. Hinkel, R. Heinrich, R. Reussner, An extensible

approach to implicit incremental model analyses,

Software & Systems Modeling 18 (2019) 3151–3187.

http://rdcu.be/oTED
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1007/s10270-017-0578-9
http://rdcu.be/u9PT
http://rdcu.be/u9PT
http://dx.doi.org/10.1007/s10270-017-0617-6

	1 Introduction
	2 Dynamic C#
	3 Solution
	3.1 Overview
	3.2 Translator
	3.3 Pruning
	3.4 Printer

	4 Evaluation and discussion

