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Abstract
When executing high-level process models, exceptions sometimes need to be handled by changing the planned process on

the fly, leaving the jobs that have already been executed intact. Therefore, transformations that transform such a high-level

process model to low-level jobs need to be incremental and respect low-level job elements that represent actions that have

already happened. As an example, we consider the automation of laboratory workflows where failures of low-level jobs may

need to get compensated by taking out samples from the automated process. Based on this scenario, we present a benchmark

for transformation tools to deal with such kind of problems.

Keywords
Incremental, Model transformation, Laboratory, Workflows

1. Introduction
When the pandemic situation due to Covid-19 started in

spring 2020, the availability of test capacities was a huge

problem and is still a critical problem when the paper

was written. As one of the reasons, this is due to the

fact that workflows executed in laboratories are usually

automated in an inflexible manner or not automated at

all. In the latter case, this was often not due to the fact

that laboratories were lacking instruments capable of

automating a workflow such as Covid-19 tests, but rather

to the fact that it was hard to repurpose these instruments

for Covid-19 tests, besides to verification and validation

efforts also due to the lack of flexibility of the control

software for such instruments.

These instruments are often robotic liquid handlers

(RLHs) equipped with some additional devices such as

thermocyclers, shakers or readers. These RLHs come

either tied and optimized for a set of specific applica-

tions (especially clinical applications) or as flexible in-

struments that can solve various tasks [1]. An example

of the latter is the Fluent instrument from Tecan
1

shown

in Figure 1. These instruments currently offer the end-

user a domain-specific language to create and manage

programs that can be executed by the robot, in the case

of Fluent called scripts. This domain-specific language is

modular, such that it can be extended by certain elements,

e.g. to support the integration of third-party devices that

can perform subtasks such as shaking or heating a plate.

The general problem with scripting is that the level
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Figure 1: A Tecan Fluent instrument

of abstraction provided to the user, which usually is a

chemist or biologist but not typically not a computer sci-

entist, is often rather low. This makes it hardly accessible,

unless users get a substantial amount of training [2]. Fur-

thermore, it is very hard for these low-level descriptions

to cope with multiple scales, such as multiple supported

amounts of samples processed by the robot at a time.

To overcome this problem, there are several approaches

to raise the level of abstraction in which the laboratory

workflow is formulated and how it is transformed to

low-level jobs executable by the robot.

When following such an approach, one quickly runs

into problems that when exceptions occur, e.g. consum-

ables or reagents run empty during the process. Excep-

tions usually occur at the lower levels of abstraction such

as e.g., the hardware, and it is up to the automation

system to translate this exception into the high-level

workflow description by tracing back into the high-level
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description of the process.

RLHs are expected to recover from errors whenever

possible, e.g. by asking the user to refill the consumables

and continue. Depending on the process, there may be

implications on the process, for example because time

constraints can no longer be met. In these situations,

multiple options exist, depending on both the error and

its context. If viable, a solution can be to just retry or to

flag the sample that time constraints could not be met.

Depending on the length of the pause and the process,

this can already mean that the results for these samples

are not usable, e.g. because reagents evaporated while

the users was refilling consumables. In such cases, one

would want to simply skip the processing for the affected

samples in order to save consumables and reagents or

one wants to abort processing for the samples not yet

processed in order to save the sample. Another exam-

ple are redundant devices that run into failures and one

would like to use a different device instead.

Therefore, the automation system needs to do two

things, one is to identify the required changes to the

high-level process and the second one is to propagate

these changes to low-level elements. However, since the

error occurred while the workflow was executing, some

elements of the low-level model cannot be changed any-

more since represent actions performed in the past. It is

impossible to undo what the instrument has already done,

but it is possible to change what the instrument shall be

doing next. Because time constraints are in operation

while these changes are propagated, it is also important

that the replanning happens fast.

Given the recent advances in incremental model trans-

formation and analysis [3, 4, 5, 6, 7, 8], we believe a viable

solution approach would to design the transformation

from the high-level process model to low-level execu-

tion jobs as an incremental transformation. Ideally, the

incrementalization is done implicitly, i.e. without the

transformation developer having to adapt the transfor-

mation, to support a wide range of changes in the process

model. When the transformation would create jobs, it

would create them with an initial execution state and

then restrict the change propagation to those elements

that are still in initial state.

Another way to look at the problem is to understand it

as a consistency problem: For each sample and for each

part of the input process, there must be a corresponding

low-level action element. When such a low-level element

fails, the corresponding sample would fail (if there is no

alternative recovery). Setting the sample to a failed state

would let the consistency mechanism remove all the low-

level elements that have not been executed yet, ideally

reporting those that have been executed as inconsisten-

cies (because they would not have been necessary given

that the processing of the corresponding sample failed).

However, in this domain the maintenance of a trace

is important to keep a reference between the high-level

process that is executed and the low-level jobs, but this

correspondence is not a strict 1:1 relationship. A high-

level protocol step can be traced to multiple low-level

jobs, but a single low-level job represents the processing

of only a selection of samples. Previous benchmarks for

incremental change propagation (cf. Section 6) have con-

centrated either on cases where there is no trace between

input models and output or the correspondence is always

strictly 1:1. Hence, it is not clear for a practitioner how

such non-trivial correspondences are supported in exist-

ing incremental model transformation tooling. Further-

more, it is not clear which incremental transformation

approaches are capable of specifying such constraints, i.e.

that change propagation of some elements is restricted

to some specific states. Therefore, this paper presents

a transformation challenge and benchmark how such

change propagation systems can be specified and exe-

cuted in an incremental manner.

The remainder of this paper presents a tool challenge

to solve a minimized version of this problem. At first, we

describe the challenges that we see in this case in Section

2. Section 3 then describes the case itself. Section 4 in-

troduces the benchmark framework and Section 5 briefly

explains the reference solution and its deficits. Section 6

finally sums up the differences to previous benchmarks.

2. Challenges
In particular, the following aspects of the problem are

especially important:

• Because the transformation from high-level pro-

cess models to low-level execution jobs happens

at runtime, the performance of this transforma-

tion is important. However, it is sufficient when

the jobs are clear when they have to be executed,

i.e. it does not matter if the planning is not fin-

ished for the entire jobs as long as it is clear what

the instrument shall be doing next. How long
does it take for the transformation to return the
first low-level element?

• If a job fails, one needs to identify how the process

model needs to be adapted. How to specify this in
an understandable way?

• Given a change of the process model, one needs

to adjust the jobs that need to be performed as

quick as possible. How long does it take?
• While propagating changes to the low-level jobs,

it is tremendously important that the jobs that

have been executed already stay in place. How
to make sure that the change propagation does not
affect elements representing actions that have hap-
pened in the past?



Figure 2: Minimized metamodel of laboratory workflows.

• The support for change propagation should not

degrade the understandability of the transforma-

tion from the abstract process model to the low-

level. What changes are necessary to enable an
incremental change propagation?

We ask all authors of solutions to comment on how

their tool copes with the challenges described above.

Similar challenges occur in domains such as smart

production where one needs to plan steps according to

a general production protocol. Therefore, we aim to

address the following general research questions with

this benchmark:

• Are non-trivial (i.e. not 1:1) correspondences sup-

ported by recent incremental model transforma-

tion approaches?

• Is it (still) possible to implicitly derive an incre-

mental change propagation in the presence of

non-trivial correspondences?

• If not possible implicitly, what is the required

development effort to implement change propa-

gation in the presence of non-trivial correspon-

dences?

• How does the presence of non-trivial correspon-

dences affect performance of incremental model

transformations?

3. Case description
The benchmark uses two metamodels. The first is a high-

level description of laboratory workflows, the second

one is a low-level description of liquid handling jobs. In

the scope of the benchmark, we omit all layers below

the specification of what an arm should do and we also

removed the scheduling problem. Therefore, the trans-

formation is limited to calculate what the RLH has to do,

but not when or where.

In the remainder of this section, we present these two

metamodels in Sections 3.1 and 3.2. Then, we discuss

the transformation rules in Section 3.3 and the change

propagation rules in Section 3.4.

3.1. The high-level laboratory process
metamodel

The minimized metamodel of laboratory workflows that

we use for the benchmark is shown in Figure 2. The cen-

tral element is a JobRequest that represents to process a

range of samples using a givenAssay. This assay element

represents the actual process. Meanwhile true laboratory

workflows often consist of a vast variety of operations,

the benchmark only considers four possible process steps,

namely distributing sample, adding a reagent, washing

or incubating. Each protocol step has an id for the sake

of identifying it in the remainder. Further, protocol steps

carry links to their previous and next steps in order to

ease analysis. Meanwhile most workflows require the

replication of samples and also need to include standards

such as positive and negative controls, this is also omitted

in this simplified model.

Samples are identified by a sample id, which is usually

the barcode on the sample. Assays have a name assigned

to them. In Figure 2, they are contained in a JobRequest

to make it easier to work with them, though in practice

they usually stand for themselves.



Figure 3: Minimized metamodel of liquid handling jobs

3.2. The low-level job metamodel
The low-level metamodel has a viewpoint that is more

concerned with the actual execution of the workflow on

a RLH. Here, the execution of the entire process is repre-

sented by a JobCollection that consist of a series of Job

elements and a list of labware that is needed. Labware

means in this context the consumables needed to execute

a workflow. The jobs could be LiquidTransfer, Wash

or Incubate elements. For laboratory automation, one

often uses microplates for processing, essentially plates

with a large number of wells (‘holes’) that are used as

small tubes (see Figure 4). Microplates have a standard-

ized size, but multiple formats with different amounts

of wells exist. The probably most common format is a

microplate with 96 wells. Tube runners are racks that

can host multiple tubes and allow easy loading of an in-

strument with new tubes. Troughs are simple containers

with a relatively large volume (usually 100ml or more)

that are used to host reagents.

Each LiquidTransfer element represents the execu-

tion of a liquid transfer command in the RLH. Because

RLHs are usually equipped with multiple pipettes, the

RLH can pipette multiple cavities of a microplate or tube

rack at once. Therefore, a LiquidTransfer element has

up to eight TipLiquidTransfer elements that specify

which wells the individual tips of the transfer operation

should target. It is important that the pipettes of a pipet-

tor usually share the X axis, which means that all source

cavity indices of TipLiquidTransfer elements inside a

LiquidTransfer elements may only differ by their re-

mainder in the division by 8. Similarly, all target cavity

indices must be the same except for the modulo 8. That

is, it is allowed to pipette cavity indices 0 and 1 inside the

same element, but not 0 and 8. Liquid can be transferred

from and to any kind of labware.

We assume here that a separate device is used for wash-

ing that only works with microplates, but washes cavities

separately. Therefore, a Wash element carries a list of all

cavity indices that should be washed and a reference to

the plate that should be washed.

Similarly, an Incubate steps works only for mi-

croplates, but it always incubates an entire plate, because

it is physically difficult to heat only parts of it.

3.3. Transformation rules
The transformation from the high-level process model

to the low-level job model needs to follow these require-

ments:

• For each JobRequest, a JobCollection should

be created.

• Samples are processed on microplates but come

in tubes stored on racks with 16 tubes called tube

runners. Therefore, for each Sample, a cavity of

a TubeRunner should be assigned. Further, the

transformation needs to store a mapping between

a Sample and a combination of aMicroplate and

a cavity index. The combination of microplate

and cavity needs to be unique. At most 96 cavi-

ties of a microplate can be used. For tracing, the

microplates should be simply numbered with a

common prefix. The first microplate should be

named Microplate1 and so on and so forth.



• We assume that reagents are stored in troughs.

Therefore, for each Reagent element, there

should be a Trough element with the name set

to the name of the reagent.

• For each combination of ProtocolStep and Sam-

ple that is not in the Error state, a Job needs to

be added to the JobCollection corresponding

to the parent JobRequest of the parent Assay as

defined per the following rules:

– For each DistributeSample element,

there must be a TipLiquidTransfer that

represents the transfer of the sample from

cavity 0 of the tube containing the sam-

ple to the cavity of the assigned mi-

croplate. Multiple TipLiquidTransfer el-

ements may share the same parent Liquid-

Transfer element.

– For each AddReagent element, there

must be a TipLiquidTransfer that repre-

sents the transfer of reagent to the cavity

with the sample, i.e. from cavity 0 of the

trough created for the reagent to the cav-

ity and microplate assigned to the sample.

Again, multiple TipLiquidTransfer ele-

ments may share a parent LiquidTrans-

fer element if the conditions regarding the

cavity indices are met.

– For each Wash, a WashJob should be cre-

ated that washes the microplate assigned

to the sample and at least the cavity in-

dex of the sample. However, the same

WashJob may be reused for multiple sam-

ples provided that the transformation as-

signs the samples to the same microplate.

– For each Incubate, an IncubateJob with

the same temperature and duration should

be created that incubates the microplate

assigned to the sample. The same Incu-

bateJob must be reused for the incubation

of the same microplate, provided that the

transformation assigns them to the same

microplate.

– Each created job must have the name of the

protocol step from which it was created.

– Each created job must reference jobs cre-

ated for the previous protocol step for the

same samples such that the job is sched-

uled afterwards.

• The transformation should ideally produce the

minimum amount of elements, i.e. the Liquid-

TransferJob, WashJob and IncubateJob ele-

ments should be shared where this is possible.

3.4. Change propagation rules
As denoted earlier, there are two change propagations in

the benchmark. One is to change the high-level model

as reaction to low-level changes and the other change

propagation is in the direction vice versa.

The first change propagation will be very simple in

the scope of this benchmark. Whenever a Job is failed,

all corresponding samples have to change their state to

failed as well. If a LiquidTransferJob fails, only those

samples using the failed TipLiquidTransfer elements

have to be set to failed.

The more interesting change propagation is the change

propagation in the opposite direction. In the scope of

the benchmark, we only consider changes to the state of

samples. If a sample changes its state to failed (e.g. as

a consequence of a change propagation from the lower

level), all jobs created for this sample need to be removed,

provided that they are still only planned and no other

samples are affected. That is, a WashJob or IncubateJob

may only be removed if all samples on the corresponding

plate are failed.

4. Benchmark
We provide a benchmark framework that can automati-

cally compile, run and check solutions and generate dia-

grams to analyze the results. The benchmark framework

is based on the Train Benchmark [9]. The framework as

well as metamodels, input models and the reference so-

lution is publicly available online at https://github.com/

tecan/ttc21incrementalLabWorkflows.

In the remainder of this section, we first describe the

phases of the benchmark in Section 4.1, then explain

how to run it in Section 4.2. Next, we introduce the input

models in Section 4.3. Section 4.4 explains the correctness

checks and Section 4.5 introduces the evaluation criteria

for solutions. Section 6 then explains the procedure to

add a solution to the benchmark.

4.1. Phases
The benchmark is divided into the following phases:

1. Initialization: Loading the transformation and

metamodels

2. Load: Loading the input models

3. Initial: Creating the initial JobCollection

4. Update: Reading changes to job executions and

propagate

The last step is performed repeatedly 20 times. The

benchmark seeks to compare execution times for all of

the phases. For the last step, any efforts necessary for

parsing and loading the changes can be excluded from

the time measurements.

https://github.com/tecan/ttc21incrementalLabWorkflows
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4.2. Running the benchmark
The benchmark framework only requires Python 2.7 or

above and R to be installed. R is required to create dia-

grams for the benchmark results. Furthermore, the so-

lutions may imply additional frameworks. We would

ask solution authors to explicitly note dependencies to

additional frameworks necessary to run their solutions.

If all prerequisites are fulfilled, the benchmark can

be run using Python with the command python
scripts/run.py. Additional command-line options

can be queried using the option –help.

1 {
2 "Tools": ["Reference"],
3 "Scenarios": [
4 {
5 "Name": "test",
6 "Models": ["minimal"]
7 }],
8 "Sequences": 20,
9 "Runs": 5,

10 "Timeout": 6000
11 }

Listing 1: A minimal benchmark configuration

The benchmark framework can be configured using

JSON configuration files. A minimal test configuration is

depicted in Listing 1. When creating a new solution, we

highly recommend to overwrite the contents of this con-

figuration file locally. In the configuration from Listing

1, only the test scenario with just one minimal model is

executed, using only the solution in Reference 5 times.

4.3. Input Models
As inputs, we use models of a very abstract Elisa (Enzyme-

linked Immunosorbent Assay) workflows. These work-

flows are generally used to detect antibodies, for example

to proof that a patient has experienced a Covid-19 infec-

tion or has been vaccinated. For this, we assume that

we have access to microplates that are already prepared

with Covid antigens at the bottom of the wells. Then, we

add the sample. After an incubation period, antibodies

against Covid-19 in the sample, if any, will bind to the

antigens at the bottom of the well. Then, the plate is

washed (in order to get rid of other antibodies) and a

conjugate is added. In a second incubation step, special

marked antibodies bind to the Covid-19 antibodies, if any.

Afterwards, the plate is washed again and a substrate is

added that reacts with the marked antibodies and, after

another incubation period, results in a color reaction.

The result is a plate where some cavities are colored

while others are not, as illustrated in Figure 4. Such

a plate can be read by an absorbance reader, which the

limited process model does not support. In such an image,

the color correlates with the amount of antibodies present

in the sample.

Figure 4: Example result of an Elisa process

In the scope of the benchmark, we always use the

same assay, but vary the number of samples or work

with duplicates of the assay. That is, the benchmark has

a sequence of models with increasing number of samples

but the same assay or an increasing number of steps in

the assay (by replicating the steps) and a constant number

of samples. There are multiple change sequences that

scale the assay or the number of samples, with or without

new samples on the fly.

To specify changes in the low-level job model, we use

text files that specify these jobs in terms of the high-level

model. Each line of these text files corresponds to one

state change of one job. The lines are in the format

<ProtocolStepName>_<Plate>_<State> where

state is either S for success or F for a failure (we skip

the executing state). These status lines have been

generated independently from an actual solution and

thus, they include also status changes of jobs for samples

that would have to be set to a failed state due to a

previous failure. In case of a liquid transfer, there are

96 states, indicating the success state for each cavity,

independently of whether this cavity is used or not.

However, changes may also affect the samples, i.e. new

samples may be added dynamically. This is indicated by

a line in the format NewSample_<SampleId>.

As stated above, the time needed to calculate the job el-

ements that are actually affected by these changes should

be excluded from the time measurements, but the actual

change propagation should be included.

The high-level process models are available in EMF

format, but can be made available in other formats as

well, upon request.

4.4. Correctness checks
The benchmark framework performs the following cor-

rectness checks after the initial transformation and after

each update:



• It checks that only the step names of input model

elements are used.

• It checks that no liquid transfer is made into the

same cavity of the same labware and the same

protocol name.

• It checks that no cavity index greater or equal to

96 is used.

• For the initial execution, the requirement that

only the minimal amount of jobs are used is a

must and the benchmark framework checks the

number of elements.

4.5. Evaluation criteria
The solutions are evaluated along the following criteria:

• Correctness

• Understandability

• Conciseness

• Number of successful samples

• Number of elements in the low-level model

• Execution time

Because the solutions have some degrees of freedom

with regard to the low-level jobs they produce, the result

models cannot be tested for equality directly. Instead, the

benchmark framework performs the following checks:

• The protocol step names must be the names of

actual protocol steps.

• The target wells of TipLiquidTransfer elements

are between 0 and including 95.

• The same well is not pipetted into multiple times.

The understandability of the solutions will be evalu-

ated by a poll during the TTC event. To evaluate the

conciseness, we ask every solution to note on the lines of

code of their solution. This shall include the model trans-

formation and glue code to actually run the benchmark.

Code to convert the change sequence or code generated

from the metamodels can be excluded. For any graphical

part of the specification, we ask to count the lines of code

in a HUTN
2

notation of the underlying model.

The number of elements is collected from the check

application and does not have to be calculated by the

solutions. Similarly, the number of successful samples is

calculated by the benchmark framework. For that, the

benchmark framework calculates all cavities where no

liquid transfers into the cavity failed and no incubation

or wash of the corresponding plate failed.

For the execution time, the benchmark framework

calculates the means for each phase per change sequence,

tool and phase. We are particularly interested in the

incremental change propagation phase, i.e., the Update
phase.

2
https://www.omg.org/spec/HUTN/

1 from sample in samples
2 let location = locationRepository.LocateSampleProcessing(

sample )
3 group (sample, location) by (location.Plate, location.

Cavity / 8) into transferChunk
4 select TraceAll( AddTips( new LiquidTransferJob
5 {
6 ProtocolStepName = Id,
7 Source = locationRepository.LocateReagent( Reagent ),
8 Target = transferChunk.Key.Plate
9 }, transferChunk.Select(l => l.location.Cavity) ),

10 trace, transferChunk.Select(g => g.sample));

Listing 2: Generating the liquid transfers for an

AddReagent in the reference solution.

5. Reference solution
The repository also contains a reference implementation

that mimics how this kind of functionality would be im-

plemented using standard object-oriented code. That is, it

uses NMF [10] for the model representation but processes

the models using the generated model API using only

functionality offered by the .NET Framework. For this,

we extended the model classes with a separate interface

as needed for the transformation and created separated

dedicated interfaces for tracing, which is done manually.

The following trace links are created:

• For each sample, we store the tube runner and

the tube index where the sample comes into the

system and the microplate and cavity where it is

processed. These trace links are created in both di-

rections, such that we can also trace a microplate

cavity back to a sample.

• For each job, we trace which samples it processes,

both forwards and backwards, such that we can

identify the jobs for a sample and the samples

processed by a job.

• For each reagent, we trace the trough in which

the reagent is placed.

Essentially, the reference solution calculates the re-

quired jobs for a number of input samples separately

through queries. As an example, the query for creat-

ing the liquid transfers for a AddReagent element is

depicted in Listing 2.

In this listing, we first obtain the processing location

for each sample, group them by plate and row and create

a liquid transfer job for each group, adding the tip indices

and trace links in separate methods not shown in the

listing. Similar queries exist also for the other high-level

elements.

When changes of the high-level process model need to

be propagated, the solution calculates the samples that

are affected by the failures following the trace links. For

LiquidTransferJobs, this is depicted in Listing 3.

https://www.omg.org/spec/HUTN/


1 Tips.Where( t => t.Status == JobStatus.Failed )
2 .Select( tip => locationRepository.IdentifySample( Target

, tip.TargetCavityIndex ) )
3 .Where( s => s != null );

Listing 3: Calculating failed samples for a

LiquidTransferJob

1 foreach(var sample in failedSamples.Distinct()) {
2 sample.State = SampleState.Error;
3 foreach(var job in _affectedJobsPerSample[sample]) {
4 if (job.State == JobStatus.Planned) {
5 job.GetProcessedSamples().Remove( sample );
6 if(job.GetProcessedSamples().Count == 0) {
7 job.Delete();
8 }
9 else if(job is LiquidTransferJob liquidTransfer) {

10 var processingLocation = _locationRepository.
LocateSampleProcessing( sample );

11 var tip = liquidTransfer.Tips.FirstOrDefault( t => t.
TargetCavityIndex == processingLocation.Cavity )
;

12 tip?.Delete();
13 }
14 }
15 }
16 }

Listing 4: Change propagation implementation of the

reference solution

Once the failed samples are identified, the reference

solution removes the trace link to jobs. If a job or tip

transfer does not have a referenced sample any more, it

gets deleted. This is depicted in Listing 4.

We believe that the usage of the query syntax makes

the reference solution actually not too bad from a read-

ability perspective and given the fact that it is imple-

mented in plain C#, we assume it also has a good per-

formance. Still, the reference solution has multiple prob-

lems:

• The high-level process model elements have an

explicit knowledge about their transformation to

low-level job elements and in the other direction,

the low-level job elements have an explicit knowl-

edge about which samples they are processing.

This is good enough for a quick solution, but nor-

mally undesirable as the high-level model is also

used in other contexts such as an editor.

• Because the tracing is done manually, it is only

done on selected points. If the transformation

becomes more complex, this leads to additional

overhead as more trace links will become neces-

sary.

• The change propagation is done manually, which

means that only selected types of changes are

actually supported. However, it is very difficult

to exclude certain types of changes because there

is usually still some scenario in which every part

of the input changes. For example, in the scope

of the benchmark, we considered the assay steps

constant, but these may also change when some

parts of the analysis could still be performed even

if other parts are no longer possible (e.g. because

reagents have run empty).

• The change propagation rules are repetitive and

duplicated while ideally, they could all be summa-

rized in the fact that Job elements should only be

present either if they have already started or as

long as any of the samples they process is not

failed. In the reference solution, this abstract

problem is encoded for each element separately

and both for the high-level and the low-level

model elements separately, leading to a threat

of inconsistency problems.

Given the advances in model transformation, espe-

cially in incremental change propagation, we think that

the problem could be solved in a better way.

6. Related work
There have been many benchmarks of incremental or

bidirectional model processing tools, often originating

at the Transformation Tool Contest (TTC). These bench-

marks differ from the incremental workflows benchmark

presented in this paper mainly by the relationship be-

tween input models and output models.

The Train Benchmark [9] benchmarks the incremental

update performance of solutions for queries on a railway

network that detected semantic errors. The benchmark

included queries of different complexity targeted at eval-

uating the incremental pattern matching performance.

The change sequences applied were plainly the model

update operations to fix the semantic errors detected.

Similarly, the Social Media Benchmark [11] also aims to

benchmark incremental query performance, but on a

different domain, with a query that integrated graph al-

gorithms in order to evaluate the integration of custom

dynamic algorithms and with change sequences indepen-

dent from the queries. Both of these benchmarks target

plain queries where the structure of the result is com-

pletely different than the structure of the input models

or not present at all (the result of the social media bench-

mark is just a set of three pointers to model elements).

In contrast, the Families to Persons Benchmark [12]

considers a simple bidirectional transformation scenario

where input model and output model represent the same

information, though according to different metamodels.

There is always a clear 1:1 relationship between model

elements of either side. The benchmark is thus rather

targeted at evaluating and comparing the approaches to

support bidirectional transformations. The benchmark

does consider incremental updates of the models, but



due to the 1:1 mapping, the required efforts to propagate

these changes are rather simple and clear.

The Smart Grid Benchmark [13] considers queries that

merge elements from two models into a view that com-

bines information from both input models. Still, there is

a clear 1:1 mapping between tuples of elements of both

input models and the output model.

In the Java Refactoring Benchmark [14], the task was

to extract a simplified refactoring model from a Java code

model, then apply refactorings at the simplified model

and put back the resulting changes to the Java model.

Because the refactoring model featured model elements

representing all methods with the same name regardless

of declaring class, this transformation also has a more

complex mapping than 1:1 relationships. However, the

correspondences are not bounded. Furthermore, this

benchmark is not equipped with a framework targeting

incremental update performance.
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Appendix: Solution Requirements
The solutions are required to perform the steps of the

benchmark in the order depicted above. Solutions must

report the following metrics between these steps, in case

of the update phase after every change sequence. The

reporting is done by printing the following separated by

; to the standard output:

• Tool: The name of the tool.

• Scenario: The scenario of the models (i.e. scaling

samples or assay steps)

• Model: The name of the input model set that is

currently run

• RunIndex: The run index in case the benchmark

is repeated

• Iteration: The iteration (only required for the

Update phase)

• PhaseName: The phase of the benchmark

• MetricName: The name of the reported metric

• MetricValue: The value of the reported metric

Tool, Scenario, Model and RunIndex are provided to

the solution using environment variables with the same

name. Further, the benchmark framework passes the root

directory of the models using the variable ModelPath and

the number of update iterations using Sequences.
Solutions should report on the runtime of the respec-

tive phase in integer nanoseconds (Time) and the work-

ing set in bytes (Memory). The memory measurement

is optional. If it is done, it should report on the used

memory after the given phase (or iteration of the update

phase) is completed. Solutions are allowed to perform

a garbage collection before memory measurement that

does not have to be taken into account into the times. In

the update phase, we are not interested in the time to

parse and identify the changes, but only the pure change

propagation.

To enable automatic execution by the benchmark

framework, solutions should add a subdirectory to the

solutions folder of the benchmark with a solution.ini file

stating how the solution should be built and how it should

be run. Because the solution contains the already com-

piled reference solution, no action is required for build.

However, other solutions may want to run build tools

like maven in this case to ensure the benchmark runs

with the latest version.

The repetition of executions as defined in the bench-

mark configuration is done by the benchmark. This

means, for 5 runs, the specified command-line will be

called 5 times, passing any required information such as

the model that should be computed, the run index, etc.

in separate environment variables. All runs should all

have the same prerequisites. In particular, solutions must

not save intermediate data between different runs. Mean-

while, all iterations of the Update phase are executed in

the same process and solutions are allowed (and encour-

aged) to save any intermediate computation results they

like, as long as the results are correct after each change

sequence.
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