
An NMF solution to the TTC2021 incremental

recompilation of laboratory workflows case

Georg Hinkel
1

1Tecan Software Competence Center GmbH, Peter-Sander-Straße 41a, 55252 Wiesbaden, Germany

Abstract

This paper presents a solution to the Incremental Recompilation Laboratory Workflows Case at the TTC 2021 using the .NET

Modeling Framework (NMF). This solution is able to derive an incremental change propagation almost entirely in an implicit

manner.

Keywords

Incremental, Model transformation, Laboratory automation, Workflows

1. Introduction

The transformation of high-level process models to low-

level jobs actually executed on machines is a common

problem not only in laboratory automation but also in

other domains such as smart production. In these do-

mains, it is desirable to adapt an executed process in case

of errors or at least avoid wasting resources if it is clear

that the complete workflow cannot be performed com-

pletely. As there are typically a lot of things that could go

wrong, it is desirable to design a transformation system

in such a way that an incremental change propagation

can be inferred, i.e. does not have to be specified by the

developer.

To assess to what degree current model transformation

tools are able to infer an incremental change propagation

in such scenarios, the Transformation Tool Contest
1

2021

hosts a case for incremental recompilation of laboratory

automation workflows. This paper presents a solution

to this case using the .NET Modeling Framework (NMF)

[1].

NMF is a framework built to support model-driven en-

gineering, incremental model analyses and incremental

model transformations. In particular, NMF Expressions

[2] is an incrementalization system able to incremen-

talize arbitrary function expressions and NMF Synchro-

nizations [3, 4] is an incremental model transformation

approach. Using both tools in combination, it is possi-

ble to solve the incremental laboratory workflows case

in a declarative manner such that the required change

propagations can be derived mostly implicitly.

The remainder of this paper is structured as follows:

TTC’21: Transformation Tool Contest, Part of the Software
Technologies: Applications and Foundations (STAF) federated
conferences, Eds. A. Boronat, A. García-Domínguez, and G. Hinkel,
25 June 2021, Bergen, Norway (online).
" georg.hinkel@tecan.com (G. Hinkel)

© 2021 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1
https://www.transformation-tool-contest.eu

Section 2 gives a brief overview on how NMF Expressions

and NMF Synchronizations work. Section 3 explains the

actual solution. Section 4 evaluates the solution against

the reference solution. Finally, Section 5 concludes the

paper.

2. NMF Expressions and NMF

Synchronizations

NMF Expressions [2] is an incrementalization system

integrated into the C# language. It takes expressions of

functions and automatically and implicitly derives an

incremental change propagation algorithm. This works

by setting up a dynamic dependency graph that keeps

track of the models’ state and is adapted when necessary.

The incrementalization system is extensible and supports

large parts of the Standard Query Operators (SQO
2

).

NMF Synchronizations is a model synchronization ap-

proach based on the algebraic theory of synchronization

blocks. Synchronization blocks are a formal tool to run

model transformations in an incremental (and bidirec-

tional) way [4]. They combine a slightly modified notion

of lenses [5] with incrementalization systems. Model

properties and methods are considered morphisms be-

tween objects of a category that are set-theoretic products

of a type (a set of instances) and a global state space Ω.

A (well-behaved) in-model lens 𝑙 : 𝐴 →˓ 𝐵 between

types 𝐴 and 𝐵 consists of a side-effect free Get mor-

phism 𝑙 ↗∈ 𝑀𝑜𝑟(𝐴,𝐵) (that does not change the

global state) and a morphism 𝑙 ↘∈ 𝑀𝑜𝑟(𝐴 × 𝐵,𝐴)
called the Put function that satisfy the following condi-

tions for all 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 and 𝜔 ∈ Ω:

𝑙 ↘ (𝑎, 𝑙 ↗ (𝑎)) = (𝑎, 𝜔)

𝑙 ↗ (𝑙 ↘ (𝑎, 𝑏, 𝜔)) = (𝑏, 𝜔̃) for some 𝜔̃ ∈ Ω.

2
http://msdn.microsoft.com/en-us/library/bb394939.aspx;

SQO is a set of language-independent standard APIs for queries,

specifically defined for the .NET platform.

mailto:georg.hinkel@tecan.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.transformation-tool-contest.eu
http://msdn.microsoft.com/en-us/library/bb394939.aspx

The first condition is a direct translation of the orig-

inal PutGet law. Meanwhile, the second line is a bit

weaker than the original GetPut law because the global

state may have changed. In particular, we allow the Put

function to change the global state.

A (single-valued) synchronization block 𝑆 is an 8-

tuple (𝐴,𝐵,𝐶,𝐷,Φ𝐴−𝐶 ,Φ𝐵−𝐷, 𝑓, 𝑔) that declares a

synchronization action given a pair (𝑎, 𝑐) ∈ Φ𝐴−𝐶 :
𝐴 ∼= 𝐶 of corresponding elements in a base isomor-

phism Φ𝐴−𝐶 . For each such tuple in states (𝜔𝐿, 𝜔𝑅),
the synchronization block specifies that the elements

(𝑓(𝑎, 𝜔𝐿), 𝑔 ↗ (𝑏, 𝜔𝑅)) ∈ 𝐵 ×𝐷 gained by the lenses

𝑓 and 𝑔 are isomorphic with respect to Φ𝐵−𝐷 .

𝐴 𝐶

𝐵 𝐷

Φ𝐴−𝐶

𝑓 𝑔

Φ𝐵−𝐷

Figure 1: Schematic overview of unidirectional synchroniza-
tion blocks

A schematic overview of a synchronization block is

depicted in Figure 1. The usage of lenses allows these

declarations to be enforced automatically and in both di-

rections, if required. The engine computes the value that

the right selector should have and enforces it using the

Put operation. Similarly, a multi-valued synchronization

block is a synchronization block where the lenses 𝑓 and

𝑔 are typed with collections of 𝐵 and 𝐷, for example

𝑓 : 𝐴 →˓ 𝐵* and 𝑔 : 𝐶 →˓ 𝐷* where stars denote

Kleene closures.

Synchronization blocks have been implemented in

NMF Synchronizations, an internal DSL hosted by C#

[3, 4]. For the incrementalization, it uses the extensible

incrementalization system NMF Expressions. This DSL

is able to lift the specification of a model transforma-

tion/synchronization in three orthogonal dimensions:

• Direction: A client may choose between trans-

formation from left to right, right to left or in

check-only mode

• Change Propagation: A client may choose

whether changes to the input model should be

propagated to the output model, also vice versa

or not at all

• Synchronization: A client may execute the

transformation in synchronization mode between

a left and a right model. In that case, the engine

finds differences between the models and han-

dles them according to the given strategy (only

add missing elements to either side, also delete

superfluous elements on the other or full duplex

synchronization)

1 public void InitializeContext(IEnumerableExpression<ISample>
samples, ISynchronizationContext context) {

2 context.Data.Add(_platesKey, samples
3 .ChunkIndexed(8, (samples, column) => new

ProcessColumn(column,
4 samples.Select(tuple => new ProcessWell(

tuple.Item2 % 96, tuple.Item1))))
5 .Chunk(12, (columns, plateIndex) => new ProcessPlate(

$"Plate{plateIndex+1:00}", columns))
6 .AsNotifiable());
7 context.Data.Add(_tubesKey, samples
8 .ChunkIndexed(16, (samples, tubeIndex) => new Tubes($

"Tube{tubeIndex+1:00}",
9 samples.Select(tuple => new ProcessWell(

tuple.Item2 % 16, tuple.Item1))))
10 .AsNotifiable());
11 }

Listing 1: Setting up the mapping of samples to plates

and wells

This flexibility makes it possible to reuse the specifi-

cation of a transformation for a broad range of different

use cases. Furthermore, the fact that NMF Synchroniza-

tions is an internal language means that a wide range

of advantages from mainstream languages, most notably

modularity and tool support, can be inherited [6].

3. Solution

This section describes key aspects of our solution. First,

we describe how samples are chunked into plates and

columns in Section 3.1. Next, we give a high-level

overview of the actual synchronization in Section 3.2.

Sections 3.3–?? describe how the different high-level pro-

tocol steps are synchronized. Section 3.6 explains the

synchronization of the Next reference and finally, Sec-

tion 3.7 shows how the synchronization is initiated.

3.1. Assignments of plates, columns and

wells

As a first step, the samples to process are grouped into

plates and columns. Each column consists of 8 wells that

can be pipetted at the same time. This is done using the

Chunk operation recently built into NMF. This comes in

two versions, Chunk and ChunkIndexed where the lat-

ter also keeps the original index in the original collection.

The code for calculating the assignments of samples to

plates, columns and tubes is depicted in Listing 1. This

listing shows how to register a collection of samples with

a synchronization context. That is, because the assign-

ment of plates is needed in many places throughout the

synchronization, we put it as context.

The input type IEnumerable<ISample> used in

Line 1 of Listing 1 denotes an incrementalizable collection

of samples. NMF essentially implements the Standard

Query Operators of C# and a few more operators on

1 public class JobRequestToJobCollection :
SynchronizationRule<IJobRequest, IJobCollection> {

2 public override void DeclareSynchronization() {
3 SynchronizeManyLeftToRightOnly(SyncRule<ReagentToTrough

>(),
4 request => request.Assay.Reagents, jobCollection =>

jobCollection.Labware.OfType<ILabware, Trough>()
);

5 SynchronizeManyLeftToRightOnly(SyncRule<
ProcessPlateToMicroplate>(),

6 (request, context) => GetPlates(context),
7 (jobCollection,_) => jobCollection.Labware.OfType<

ILabware, Microplate>());
8 SynchronizeManyLeftToRightOnly(SyncRule<

SamplesToTubeRunner>(),
9 (request, context) => GetTubes(context),

10 (jobCollection,_) => jobCollection.Labware.OfType<
ILabware, TubeRunner>());

11 SynchronizeManyLeftToRightOnly(SyncRule<
ProtocolStepToJobsRule>(),

12 (request, _) => request.Assay.Steps,
13 (jobCollection, context) => new

CollectionOfJobCollections(jobCollection,
context));

14 }
15 }

Listing 2: The entry point synchronization rule

top of this interface in order to derive an incremental

change propagation for a given query. That is, the system

allows developers to obtain incremental updates of the

results upon changes of the input models, such as adding

a sample.

Lines 3–5 in Listing 1 calculate columns as chunks

of samples. These columns are then chunked into mi-

croplates. Line 6 forces the incrementalization of this

collection. The idea of this order as opposed to chunking

the samples into plates and then further into columns

is to allow NMF to rebalance samples between columns

and then rebalance columns between plates. However,

we did not specify a balancing strategy and thus, NMF

will not try to rebalance the chunks. Similar, lines 8–9

calculate the collection of tube runners from different

chunks of the input samples.

3.2. The model synchronization

The actual model synchronization is split into several

synchronization blocks that act as isomorphisms. Each

synchronization rule defines a list of synchronization

blocks that define what data should be synchronized.

The entry point synchronization rule, depicted in Listing

2, synchronizes an overall high-level job request with a

low-level job collection. In this listing, Lines 3–4 denote

that the reagents are mapped to troughs and lines 5–

10 denote that that tube runners should be created to

host the samples as well as microplates for processing.

For the tubes and the microplates, we consume a second

parameter in the lens to access the plate collections stored

in the context (cf. Listing 1).

In Lines 11–13 of Listing 2, we define that the steps

1 public class AddReagentToJobsRule : SynchronizationRule<
AddReagent, JobsOfProtocolStep> {

2 public override void DeclareSynchronization() {
3 MarkInstantiatingFor(SyncRule<ProtocolStepToJobsRule>()

);
4 SynchronizeManyLeftToRightOnly(
5 SyncRule<AddReagentLiquidTransferToLiquidTransfer>(),
6 (step, context) => GetPlates(context)
7 .SelectMany(p => p.Columns, (plate, column) => new

AddReagentLiquidTransfer(column, plate, step))
8 .Where(transfer => transfer.Column.AnyValidSample.

Value),
9 (jobsOfStep, _) => jobsOfStep.Jobs.OfType<IJob,

LiquidTransferJob>());
10 }
11 }

Listing 3: Synchronizing the jobs for an AddReagent

protocol step

of the requested assay should be synchronized with

the job collections in the low-level model. For this,

we use a custom collection implementation that essen-

tially groups the low-level jobs of the resulting job

collection by name. This needs access to the trans-

formation context as it will store information such

as the affected samples of a job. The four calls to

SynchronizeManyLeftToRightOnly basically define

collection-valued unidirectional synchronization blocks

that are only enforced from the left to the right.

3.3. Synchronization of AddReagent

The actual high-level process steps are translated using

separate synchronization rules. That is, we synchronize

a protocol step with the jobs implementing this protocol

step. The approach to transform the other types of high-

level jobs is conceptually similar, although the different

complexity of the job types leads to a different complex-

ity of the synchronization rules required. The synchro-

nization rule for the synchronization of AddReagent is

depicted in Listing 3.

Line 3 marks the synchronization rule as instanti-

ating for ProtocolStepToJobsRule, which means

that the synchronization rule is used when the

ProtocolStepToJobsRule is executed with an Add-

Reagent protocol step. Lines 4–9 denote the synchro-

nization block that computes the elements from which

to create the jobs, using a dedicated class to represent

the request for a liquid transfer. The query calculates all

columns of all plates that have at least any valid (i.e., not

failed) sample.

Because the latter needs to be calculated incremen-

tally for each ProcessColumn, the calculation (and its

incrementalization) is separated into a static function

(see Listing 4).

The reason to separate the logic into an

ObservingFunc instance here is that the incre-

1 private static ObservingFunc<ProcessColumn, bool>
_anyNonErrorSample = new ObservingFunc<ProcessColumn,
bool>(c => c.AllSamples.Any(s => s.State !=

SampleState.Error));
2 ...
3 AnyValidSample = _anyNonErrorSample.Observe(this);

Listing 4: Calculating whether a column has any sample

that is not in the error state.

1 public class AddReagentLiquidTransferToLiquidTransfer :
SynchronizationRule<AddReagentLiquidTransfer,
LiquidTransferJob> {

2 public override void DeclareSynchronization() {
3 SynchronizeLeftToRightOnly(SyncRule<ReagentToTrough>(),

step => step.AddReagent.Reagent, liquidTransfer =>
liquidTransfer.Source as Trough);

4 SynchronizeLeftToRightOnly(SyncRule<
ProcessPlateToMicroplate>(), step => step.Plate,
liquidTransfer => liquidTransfer.Target as
Microplate);

5 SynchronizeManyLeftToRightOnly(SyncRule<
AddReagentTipToTipTransfer>(),

6 step => step.Column.Samples
7 .Where(s => s.Sample.State != SampleState.Error)
8 .Select(s => new AddReagentTip(step, s)),
9 liquidTransfer => new TipCollection(liquidTransfer.

Tips));
10 SynchronizeManyLeftToRightOnly(
11 (step, _) => step.Column.AllSamples,
12 (liquidTransfer, context) => GetAffectedSamples(

context, liquidTransfer));
13 }
14 }

Listing 5: The synchronization of add reagent elements

to actual LiquidTransferJob elements.

mentalization of a method in NMF involves some

reflection and takes a bit of time while applying it to

a particular element is rather cheap. Using a static

instance essentially caches the incrementalization and

applies it to multiple instances. For this reason, although

supported by NMF, nested queries are currently rather

slow and hence we refrain from using the C# query

syntax in the mappings such as Listing 3.

The child synchronization rule AddReagentLiquid-
TransferToLiquidTransfer defines how the in-

stances of this intermediate class are transformed into a

low-level job as depicted in Listing 5. Line 3 defines that

the source of the liquid transfer should be synchronized

with the trough created for the reagent. Line 4 specifies

that the reagent should be pipetted into the microplate

created for the processing request. In Lines 5–9, the syn-

chronization block denotes which tips exactly need to be

created. We use an intermediate class and a custom col-

lection again in Line 9 in order to control that a tip liquid

transfer is only removed when it is still planned. Lines

10–12 specify that the samples created for this liquid

transfer are stored inside the transformation context.

The synchronization rule AddReagentTipToTip-
Transfer depicted in Listing 6 specifies the transfor-

1 public class AddReagentTipToTipTransfer :
SynchronizationRule<AddReagentTip, ITipLiquidTransfer
> {

2 public override void DeclareSynchronization() {
3 SynchronizeLeftToRightOnly(well => well.AddReagent.

Volume, transfer => transfer.Volume);
4 SynchronizeLeftToRightOnly(well => well.TargetWell.Well,

transfer => transfer.TargetCavityIndex);
5 SynchronizeRightToLeftOnly(well => IsSampleFailed(well.

TargetWell.Sample), transfer => transfer.Status
== JobStatus.Failed);

6 }
7 }

Listing 6: Synchronization rule

AddReagentTipToTipTransfer

mation of tip liquid transfers. Lines 3–4 synchronize the

volumes and the target cavity (the source cavity is always

0 for a trough).

The last synchronization block in line 5 specifies that

the failure of the tip transfer should be synchronized back

to the high-level job request model.

3.4. Synchronization of

DistributeSample

The synchronization of DistributeSample elements

works exactly like the synchronization of AddReagent

with one important exception: While the source labware

of an AddReagent is accessible easily via the transfor-

mation trace from the reagent, this is unfortunately not

as easy for DistributeSample.

As a reason, the current design of the solution has

no direct connection between a column of a processing

microplate and the tube runner that holds the samples.

First, we created an approach that would calculate the

mapping incrementally, but this turned out to be very

resource-intensive both in terms of time and memory.

1 private static Tubes GetSourceTube(ITransformationContext
context, ProcessColumn column) {

2 return GetTubes(context)
3 .AsEnumerable()
4 .FirstOrDefault(t => t.Samples
5 .AsEnumerable()
6 .Any(s => column.Samples
7 .AsEnumerable()
8 .Any(s2 => s.Sample == s2.Sample)));
9 }

Listing 7: Calculating the rube runner for a given column

of a processing plate

The solution now is to break out of the incremental-

ization monad explicitly and calculate the source tube

runner only once as depicted in Listing 7: We explicitly

call the AsEnumerable method here in order to instruct

the compiler to actually compile the lambda expressions

used to calculate the tube runner. This, however, breaks

the support of rebalancing the chunks making up the

columns and plates.

1 public abstract class MicroplateProtocolStepRule<TProtocol,
TJobRule, TJob> : SynchronizationRule<TProtocol,

JobsOfProtocolStep>
2 where TProtocol : IProtocolStep
3 where TJob : class, IJob
4 where TJobRule : MicroplateJobRule<TProtocol, TJob>
5 {
6 public override void DeclareSynchronization() {
7 MarkInstantiatingFor(SyncRule<ProtocolStepToJobsRule>()

);
8 SynchronizeManyLeftToRightOnly(
9 SyncRule<TJobRule>(),

10 (step, context) => GetPlates(context)
11 .Where(plate => plate.AnyValidSample.Value)
12 .Select(plate => Tuple.Create(step, plate)),
13 (jobsOfStep, _) => jobsOfStep.Jobs.OfType<IJob, TJob

>());
14 }
15 }
16 public abstract class MicroplateJobRule<TProtocol, TJob> :

SynchronizationRule<Tuple<TProtocol, ProcessPlate>,
TJob>

17 where TProtocol : IProtocolStep
18 where TJob : IJob
19 {
20 public override void DeclareSynchronization() {
21 SynchronizeManyLeftToRightOnly(
22 (step, _) => step.Item2.AllSamples,
23 (job, context) => GetAffectedSamples(context, job)

);
24 SynchronizeRightToLeftOnly(
25 step => AreAllFailed(step.Item2.AllSamples),
26 job => job.State == JobStatus.Failed);
27 SynchronizeLeftToRightOnly(SyncRule<

ProcessPlateToMicroplate>(),
28 tuple => tuple.Item2, MicroplateProperty);
29 }
30 protected abstract Expression<Func<TJob, IMicroplate>>

MicroplateProperty { get; }
31 }

Listing 8: Template for synchronization of microplate

processing protocol steps

3.5. Synchronization of Wash and

Incubate

The synchronization of Wash steps and Incubate steps

is very similar, because both steps (as many in lab au-

tomation) operate on entire microplates. The protocol

step needs to be instantiated for each microplate used for

sample processing.

The synchronization rule templates for protocol steps

operating on a single microplate is depicted in List-

ing 8. There are two rule templates, one for synchro-

nizing a protocol step with a collection of low-level

jobs, the other for actually synchronizing the proto-

col step for a given microplate into a given job. The

MicroplateProtocolStepRule class marks the rule

as instantiating and registers the calls to the child rule.

The template for the latter, MicroplateJobRule, reg-

isters affected samples, sets the samples to failed (using

another lens called AreAllFailed in Line 25) and syn-

chronizes the target microplate. As the target metamodel

does not use a shared base class for jobs operating on

microplates, the rule template uses an abstract property

1 public class WashToJobsRule : MicroplateProtocolStepRule<
Wash, WashToWashJob, WashJob> {}

2

3 public class WashToWashJob : MicroplateJobRule<Wash,
WashJob> {

4 protected override Expression<Func<WashJob, IMicroplate>>
MicroplateProperty => wash => wash.Microplate;

5 public override void DeclareSynchronization() {
6 base.DeclareSynchronization();
7 SynchronizeManyLeftToRightOnly(
8 tuple => tuple.Item2.Columns.SelectMany(c => c.Samples.

Where(s => s.Sample.State != SampleState.Error).
Select(s => s.Well)),

9 wash => wash.Cavities);
10 }
11 }

Listing 9: Synchronization of Wash steps

such that instance rules have to specify the property used

to store the microplate.

The instantiation of the rule templates for Wash ele-

ments is depicted in Listing 9. Since the rule to synchro-

nize Wash protocol steps is sufficiently described using

the synchronization template, we do not need to provide

any further specification other than the type parameters

to be used, including a reference to the child rule. Unfor-

tunately, the C# compiler is not (yet?) able to infer the

type parameters TProtocol and TJob, so they must be

specified explicitly.

For the synchronization of a Wash in conjunction with

a specific processing plate, we need to specify the prop-

erty holding the microplate (in Line 4) and handle the

additional reference to the cavities that should be washed.

For this, we need to override the declaration of the syn-

chronization rule. Because we do want to inherit the

declaration of the template, we need to call the base dec-

laration in line 6. Then, we add the synchronization of

the cavities in lines 7–9.

The synchronization of Incubate protocol steps

works in the same way, except that the child rule extends

the template with synchronization blocks for tempera-

ture and duration.

3.6. Synchronization of the Next
reference

In order for the scheduler to be able to actually schedule

the low-level jobs, the base class for jobs keeps a reference

to the next and previous jobs. That is, the scheduler may

only schedule a job if all previous jobs are completed and

in the opposite direction, the job is a prerequisite for all

next jobs.

To aid this situation, we use a utility class called

CollectionBinding that essentially enforces the syn-

chronization of elements between an incrementalizable

source collection (typically a query) and a target col-

lection that should be adapted. The implementation is

1 CollectionBinding.Create(
2 _nextJobs.Jobs.Where(j => ProtocolSynchronization.

GetAffectedSamples(_context, j).Intersect(samples
).Any()),

3 item.Next)

Listing 10: Binding the next low-level jobs to the jobs of

the next job collection that affect the same

samples

depicted in Listing 10. The query calculates the jobs

for which the set of affected samples intersects the af-

fected samples of the current job. The return value is an

instance of the IDisposable interface, the typical inter-

face in .NET to dispose objects. In this case, the binding

is stopped when disposed. Since NMF supports bidirec-

tional references, only one direction of the the association

has to be set manually, the other is set automatically by

NMF.

Unfortunately, the management of the collection bind-

ing currently has to be done manually by handling change

events of the jobs created for a job collection.

3.7. Starting the synchronization

To run the solution, we create a new context for the

model synchronization, initialize the samples and start

the model synchronization in the direction LeftToRight
with change propagation in both directions.

1 _context = new SynchronizationContext(_synchronization,
2 SynchronizationDirection.LeftToRight,
3 ChangePropagationMode.TwoWay);
4 _synchronization.InitializeContext(_jobRequest.Samples,

_context);
5 _synchronization.Synchronize(ref _jobRequest, ref

_jobCollection, _context);

Listing 11: Starting the model synchronization

4. Evaluation

The strongest point of the presented solution is that

the change propagation can be inherited mostly from

a declarative specification. As a consequence, essentially

all types of changes are supported, not just the change

types executed by the benchmark framework. This means

that new types of error handling do not necessarily have

an effect on the transformation but they are supported

by default. The declarative specification, however, keeps

the understandability of the solution at a good level. The

attendees of TTC will judge on the understandability

compared to the reference solution.

In addition to the inherited change propagation, the

solution also means that no changes to the metamodel

code are necessary and the model representation can be

reused independently of the transformation.

Before we describe the results in terms of performance,

keep in mind that the reference solution is a solution

tailored manually and explicitly for the given types of

changes, without any incrementalization system or alike.

Therefore, it is hard to beat it in terms of performance

and the strengths of our solution are rather in the declar-

ativeness and large variety of supported change types.

To evaluate the solution in terms of performance, we

have run the benchmark on a system equipped with a

Intel Core i7-8850H CPU clocked at 2.6Ghz and 32GB

RAM, running Windows 10. The results are discussed in

the remainder of this section.

4.1. Scaling Samples

The results in terms of time to execute the initial trans-

formation for the scaling samples scenario are depicted

in Figure 2. In this scenario, the different models repre-

sent loads of 8 samples (size 1) to 256 samples (size 32),

applied to a simple ELISA assay model. The results show

that whereas the time for the reference solution is essen-

tially constant at around 50ms, the initial time for the

NMF solution grows worse than linear, it is more like

quadratic.

1 2 4 8 16 32 64 128 256 512 1024
Model

102

103

104

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 2: Time for the initial transformation in the scale sam-
ples scenario

We profiled the NMF solution. The results show that

much of the time is lost because NMF Synchronizations

executes the incrementalization of the queries used to

specify the synchronizations over and over again instead

of reusing it. Furthermore, the collection binding de-

picted in Listing 10 also requires the system to be in-

crementalized over and over again. We expect that the

performance gap could be reduced, if the frameworks

can be adapted to cache the incrementalization properly.

The results for propagating the state changes of low-

level elements are depicted in Figure 3. This includes both

changing the sample state and potentially removing low-

1 2 4 8 16 32 64 128 256 512 1024
Model

100

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 3: Results for the average time for an update in the
scale samples scenario

level job elements as they have become obsolete (since

all processed samples failed). Although the NMF solution

is slower, it is still within few milliseconds even for the

largest models considered.

4.2. Scaling the Assay

In the scale assay scenario, all model sizes use 96 samples,

but the number of protocol steps varies: Whereas the

smallest model (size 1) uses a simplified ELISA assay

model with 8 steps, the largest model uses 32 repetitions

(256 protocol steps in total). The execution time for the

initial transformation is depicted in Figure 4. The runtime

of the NMF solution is again quadratic in the size of the

model while the reference solution remains fast.

1 2 4 8 16 32
Model

102

103

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 4: Time for the initial transformation in the scale as-
say scenario

The results for updates are depicted in Figure 5. The

results look awkward because the change propagation

1 2 4 8 16 32
Model

100

2 × 100

3 × 100

4 × 100

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 5: Results for the average time for an update in the
scale assay scenario

takes longer for smaller models up to some point. This

is because the benchmark framework uses Pythons

subprocess.POpen to spawn the processes for the

model sizes and they can make use of JIT optimizations

of earlier runs. Again, the propagation of the changes

happens in a few milliseconds, both for NMF and the

reference solution, the reference solution being slightly

faster.

4.3. New samples

The results for the initial transformation in the new sam-

ples scenario are depicted in Figure 6. Not very surpris-

ingly, they are similar to the scaling samples case because

the parameters for the initial model are exactly the same.

1 2 4 8 16 32 64 128
Model

102

103

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 6: Time for the initial transformation in the new sam-
ples scenario

The difference to the scaling samples scenario is that

new samples are introduced during the runtime of the

1 2 4 8 16 32 64 128
Model

100

101

Ti
m

e
[m

s]

Tool
ATL_Incremental
NMF
Reference
ttc2021_iworkflows_YAMTL

Figure 7: Results for the average time for an update in the
new samples scenario

benchmark. The results for propagating these changes

are depicted in Figure 7. Still, the changes are propagated

within a few milliseconds, but this time this is much

slower than in the other two scenarios, in line with the

performance issues in the initial transformation.

5. Conclusion

The solution has shown that it is possible to derive an

incremental change propagation for most of the trans-

formation. Only for smaller parts such as the synchro-

nization of the next reference, manual code is necessary.

The evaluation shows that the performance is good, al-

though it cannot keep up with the reference solution.

In exchange, the solution supports much more types

of changes. However, the solution also shows a perfor-

mance problem caused by the current inability of NMF

to cache the query incrementalization properly.

References

[1] G. Hinkel, NMF: A multi-platform modeling

framework, in: A. Rensink, J. Sánchez Cuadrado

(Eds.), Theory and Practice of Model Transforma-

tion, Springer International Publishing, Cham, 2018,

pp. 184–194.

[2] G. Hinkel, R. Heinrich, R. Reussner, An extensible

approach to implicit incremental model analyses,

Software & Systems Modeling (2019). URL: https://

doi.org/10.1007/s10270-019-00719-y. doi:10.1007/
s10270-019-00719-y.

[3] G. Hinkel, Change Propagation in an Internal Model

Transformation Language, in: D. Kolovos, M. Wim-

mer (Eds.), Theory and Practice of Model Trans-

formations: 8th International Conference, ICMT

2015, Held as Part of STAF 2015, L’Aquila, Italy,

July 20-21, 2015. Proceedings, Springer Interna-

tional Publishing, Cham, 2015, pp. 3–17. URL: http:

//dx.doi.org/10.1007/978-3-319-21155-8_1. doi:10.
1007/978-3-319-21155-8_1.

[4] G. Hinkel, E. Burger, Change propagation and

bidirectionality in internal transformation DSLs,

Softw. Syst. Model. 18 (2019) 249–278. URL: https:

//doi.org/10.1007/s10270-017-0617-6. doi:10.1007/
s10270-017-0617-6.

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce,

A. Schmitt, Combinators for bidirectional tree trans-

formations: A linguistic approach to the view-update

problem, ACM Transactions on Programming

Languages and Systems (TOPLAS) 29 (2007). URL:

http://doi.acm.org/10.1145/1232420.1232424. doi:10.
1145/1232420.1232424.

[6] G. Hinkel, T. Goldschmidt, E. Burger, R. Reuss-

ner, Using Internal Domain-Specific Languages

to Inherit Tool Support and Modularity for Model

Transformations, Software & Systems Model-

ing (2017) 1–27. URL: http://rdcu.be/oTED. doi:10.
1007/s10270-017-0578-9.

https://doi.org/10.1007/s10270-019-00719-y
https://doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/s10270-019-00719-y
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
http://dx.doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://dx.doi.org/10.1007/s10270-017-0617-6
http://doi.acm.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://dx.doi.org/10.1145/1232420.1232424
http://rdcu.be/oTED
http://dx.doi.org/10.1007/s10270-017-0578-9
http://dx.doi.org/10.1007/s10270-017-0578-9

	1 Introduction
	2 NMF Expressions and NMF Synchronizations
	3 Solution
	3.1 Assignments of plates, columns and wells
	3.2 The model synchronization
	3.3 Synchronization of AddReagent
	3.4 Synchronization of DistributeSample
	3.5 Synchronization of Wash and Incubate
	3.6 Synchronization of the Next reference
	3.7 Starting the synchronization

	4 Evaluation
	4.1 Scaling Samples
	4.2 Scaling the Assay
	4.3 New samples

	5 Conclusion

