
A Disambiguator for Pymorphy2 Morphological Analyzer

Nicolás Cortegoso Vissioa, Victor Zakharova

a
 St Petersburg State University, 9 Universitetskaya Emb., Saint-Petersburg, 195299, Russia

Abstract

Pymorphy2 is a morphological analyzer implemented in Python for Russian. The parser takes

a word and, based on its morphology, produces a series of classification hypotheses regarding

class, gender, number, case, etc. However, the analysis of the isolated word rarely occurs

without any ambiguity. This article presents an implementation of a trigram tag model that

works on top of the morphological parsing performed by pymorphy2 and uses the sequence of

words in the sentence to choose the most probable morphological interpretation for each word.

Keywords1

Russian language, pymorphy2, NLP, tagger, part-of-speech, morphological disambiguation

1. Introduction

Part-of-speech tagging for Russian language is a well-researched field and many taggers have been

developed applying different approaches. When it comes to working with NLP, Python is arguably the

most widely used programming language today and pymorphy2, a popular choice for performing the

morphological analysis of Russian words. According to the official documentation [1] pymorphy2 is
capable of:

 transforming a word to its dictionary form (lemma), for example, "люди → человек", or

"гулял -> гулять";

 converting a word to the desired form, for example, change its grammatical case, put it in plural,

etc;

 providing grammatical information about a word (number, gender, case, part-of-speech, etc.).

To parse a word form, pymorphy2 relies on modified version of the dictionary of the OpenCorpora

project [2] that was optimized for speed and memory saving. The OpenCorpora dictionary is structured

around lexemes. A lexeme consists of all the forms of a word and the labels with the grammatical
information, where the first word form in the list corresponds to its dictionary form. For example, the

lexeme for "ёж" (hedgehog) looks like figure 1:

Figure 1: Example of a lexeme [3]

If the word form does not exist in the dictionary, pymorphy2 conducts a predictive analysis on the

unknown word, identifying suffixes, prefixes and applying other strategies that could provide a criterion

to classify it.

IMS 2021 - International Conference "Internet and Modern Society", June 24-26, 2021, St. Petersburg, Russia

EMAIL: st082534@student.spbu.ru (A. 1); v.zakharov@spbu.ru (A. 2)

ORCID: 0000-0003-1683-7270 (A. 1); 0000-0003-0522-7469 (A. 2)
© 2021 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

Taken separately, Russian word forms often allow for more than one grammatical interpretation.2

Since pymorphy2 parses one word at a time, it returns a list of possible parses with an associated
probability. When working with bag-of-words models, a common practice is to simply select for each

word form the parse with the highest probability. In this case, assuming only the dictionary form of the

word is required, pymorphy2 will get the correct part-of-speech about 92% of the time. However, if the

grammatical case of the word is taken in consideration, the precision will drop to 82% (see the
experiment’s results in section 6) and the parsing will often produce ungrammatical sequences.

In order to improve the percentages shown in the previous paragraph, the proposal presented in this

article is to implement a trigram part-of-speech model to disambiguate the morphological analysis that
pymorphy2 performs on the isolated word. The part-of-speech tags of those word classes that have

declensions are augmented with the grammatical case, while other features such as number or gender

are discarded in order to keep the trigram model at a reasonable size and prevent data sparseness when
training it on a rather small corpus.

Since this paper proposes a method to disambiguate pymorphy2 parsing results, it will focus

exclusively on this morphological analyzer and measure its performance before and after the suggested

extension. It does not intend to be a superior solution to other morphological analyzers available for
Russian, but rather a helper tool for pymorphy2 users. For state-of-the-art taggers or comparisons

between the performance of pymorphy2 and other available options (mystem3, TreeTagger, FreeLing,

etc.), the reader is referred to the work of Kuzmenko [4] or Kotelnikov et al. [5].
The remainder of the paper will cover: 2. A pymorphy2’s parsing example, 3. Trigram hidden

Markov Model, 4. Training the trigram model, 5. Code implementation example, 6. Testing the model

and 7. Conclusions and further work.

2. A pymorphy2’s parsing example

As noted in the introduction, pymorphy2 processes each word separately and returns one or more

"Parse" objects containing the possible parses for the given word form. For example, the morphological

analysis of the word forms "мама", "мыла", "раму" produces the following lists (1), (2), (3):

[

Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'), normal_form='мама', score=1.0,

methods_stack=((<DictionaryAnalyzer>, 'мама', 1907, 0),))

]

(1)

[

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut sing,gent'), normal_form='мыло', score=0.333333,

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 1),)),

Parse(word='мыла', tag=OpencorporaTag('VERB,impf,tran femn,sing,past,indc'), normal_form='мыть',

score=0.333333, methods_stack=((<DictionaryAnalyzer>, 'мыла', 1813, 8),)),

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut plur,nomn'), normal_form='мыло', score=0.166666,

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 6),)),

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut plur,accs'), normal_form='мыло', score=0.166666,

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 9),))

]

(2)

[

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,masc,Geox sing,datv'), normal_form='рам', score=0.5,

methods_stack=((<DictionaryAnalyzer>, 'раму', 32, 2),)),

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,femn sing,accs'), normal_form='рама', score=0.5,

methods_stack=((<DictionaryAnalyzer>, 'раму', 55, 3),))

]

(3)

With the exception of "мама", the other word forms have more than one possible interpretation. In

the case of the noun "раму" the ambiguity arises in gender and case, while "мыла" can be analysed as

2 For example, the nominal and accusative plural cases endings for nouns like "сталь" (declension type 8a according to A. A. Zaliznyak's

classification) are identical for the singular cases of the genitive, dative and locative; most of the singular feminine adjectives in the genitive,

dative, locative and instrumental cases share the same inflection; a word form can even belong to different word classes, like "мыла", that can

be analyzed as a noun or a verb.

82 PART 1: Computational Linguistics

a verb or noun. Every parse object inside the list has a parameter "score" with an associated probability.

Korobov [3] states that the score corresponds to the conditional probability p (analysis | word) estimated
on the basis of the OpenCorpora corpus. This is obtained by counting how many times a certain analysis

has been associated with a given word form and, based on these frequencies, its conditional probability

is calculated using Laplace smoothing. The parse objects within the list are sorted according to this

probability in descending order, therefore picking the first item in the list is equivalent to selecting the
parse object with the most probable interpretation for the given word form. For example, the parse

objects with the highest score for each of the word forms analysed in (1), (2) and (3) would be:

Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'), normal_form='мама', score=1.0,

methods_stack=((<DictionaryAnalyzer>, 'мама', 1907, 0),))
(4)

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut sing,gent'), normal_form='мыло', score=0.333333,

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 1),))
(5)

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,masc,Geox sing,datv'), normal_form='рам', score=0.5,

methods_stack=((<DictionaryAnalyzer>, 'раму', 32, 2),))
(6)

If "мама", "мыла", "раму" are no longer treated as separate tokens, but as words in the sentence

"мама мыла раму", the parse object with the highest score incorrectly classifies the last two. When

working with bag-of-words models and lemmas, the misclassification in case is usually not harmful
(most of the time it will still provide the right dictionary form)3, but a wrong part-of-speech attribution

will produce a different interpretation of the lemma. The next section suggests how the score values can

be combined with the trigram tag model to obtain better results.

3. Trigram hidden Markov model

Hidden Markov models (HMM) are probabilistic sequence classifiers that have been widely used in

NLP tasks like part-of-speech tagging and word class disambiguation. The task of the model is to find

for any string of word forms of the set Ψ (the observable states) the most probable sequence of part-of-

speech tags of the set Ω (the hidden states). For a better understanding of HMM the reader is referred
to Jurafsky [6] or Bocharov et al. [7]. Although, nowadays POS-taggers are build using more advanced

techniques, for example those based on neural networks, for the purpose envisaged here of eliminating

the ambiguity of the analysis previously carried out by pymorphy2, a modified HMM model would be
an easy solution to implement. The HMM is briefly described below along with the intended

modification to disambiguate the analysis from pymorphy2.

To train an HMM model, it is necessary to calculate two parameters in a tagged corpus: the emission
and the transition probabilities.

The emission probabilities

���� ∨ ��� (7)

where p is the conditional probability that the word wi corresponds to the tag ti. This assumes that

the probability of an output observation wi depends only on the state that produced the observation ti

and not on any other states or observations.

The transition probabilities

���� ∨ ��	
, ��	�� (8)

where p is the probability that the tag ti occurs, provided that is preceded by the tags ti-1 and ti-2. This

assumes that the probability of a particular tag depends only on the previous two tags (trigram).

3 Here the missclassification of “раму” produces a different dictionary form.

IMS-2021. International Conference “Internet and Modern Society” 83

The HMM tagging algorithm chooses as the most likely tag sequence the one that maximizes the

product of two terms: the probability of the sequence of tags (the transition probability) and the
probability of each tag generating a word (the emission probability).

Trigram HMM

�������
, . . . , ��, �
, . . . ���
� ≈ ������
��

��

��� ∨ ��	
, ��	����

�

��

��� ∨ ��� (9)

where p(yi| yi-1, yi–2) is the transition probability and p(xi|yi) is the emission probability.

The approach taken here is to implement the tagging algorithm on top of the pymorphy2 parsing
results and use the score values from the Parse object as the emission probabilities.

Modified trigram HMM

�������
, . . . , ��, �
, . . . ���
� ≈ ������
��

��

��� ∨ ��	
, ��	����

�

��

��� ∨ ��� (10)

where the last term of the equation, the emission probability of a word given a tag, is replaced by

the score value from the pymorphy2 parse: the probability of the analysis given a word.

4. Training the trigram POS tag model

Pymorphy2 not only implements the OpenCorpora dictionary, it also adopts the same set of tags. To

take advantage of this fact, the model was trained on the OpenCorpora labeled subcorpus with

homonyms removed [8] (26011 sentences, 256311 tokens, 188319 words), so no modifications on the
tags were required. As mentioned in the previous section, the emission probabilities are directly

replaced by the score values from the parse objects. Therefore, only the transition probabilities in the

corpus were calculated on the basis of the following 49 tags, which were obtained by combining the 20
basic part-of-speech tags from pymorphy2/OpenCorpora and the grammatical case (where applicable):

Table 1

Part-of-speech tags without case declension

part-of-speech tag

adverb ADVB

comparative COMP

conjunction CONJ

gerund GRND

infinitive INFN

interjection INTJ

particle PRCL

predicative PRED

preposition PREP

verb VERB

short form adjective ADJS

short form participle PRTS

As table 2 shows, those part-of-speech that have declensions, were augmented with the grammatical

case. Gender and number were not taken into account to keep the tag set within reasonable limits. It

was assumed that case is a good predictor to be included in the transition probabilities (although this
hypothesis remains to be proven). Table 4 presents a fragment of the resulting matrix with the transition

probabilities. The cells contain the conditional probability for the tag in the row when it is preceded by

the two tags from the columns. For example, the probability that an adjective in the nominative case
appears at the very beginning of the sentence is 0.0731339900. Those combinations that were not

84 PART 1: Computational Linguistics

observed in the corpus were assigned a very small probability of 0.000000001; for instance an adjective

in any other case than is not instrumental after an adjective in the instrumental case at the beginning of
the sentence. The transition probabilities were stored in a JSON-format file.

Table 2

Part-of-speech tags with case declension

case noun adjective participle pronoun numeral

nominative NOUN nomn ADJF nomn PRTF nomn NPRO nomn NUMB nomn

genitive NOUN gent ADJF gent PRTF gent NPRO gent NUMB gent

accusative NOUN accs ADJF accs PRTF accs NPRO accs NUMB accs

dative NOUN datv ADJF datv PRTF datv NPRO datv NUMB datv

locative NOUN loct ADJF loct PRTF loct NPRO loct NUMB loct

instrumental NOUN ablt ADJF ablt PRTF ablt NPRO ablt NUMB ablt

vocative NOUN voct

2nd genitive NOUN gen2

2nd locative NOUN loc2

Table 3

Other tags

part-of-speech tag

Latin word or character LATN

roman number ROMN

unknown class UNKN

Table 4

Fragment of the matrix with the transition probabilities

<*>_<S>4 <S>_ADJF ablt <S>_ADJF accs <S>_ADJF datv ...

<E>5 0.006326730 0.05263158 0.04285714 0.052631589 ...

ADJF ablt 0.007155230 0.09473684 0.000000001 0.000000001 ...

ADJF accs 0.005272275 0.000000001 0.1 0.000000001 ...

ADJF datv 0.001431046 0.000000001 0.000000001 0.052631589 ...

ADJF gent 0.003765910 0.000000001 0.000000001 0.000000001 ...

ADJF loct 0.000150636 0.000000001 0.000000001 0.000000001 ...

ADJF nomn 0.073133990 0.000000001 0.000000001 0.000000001 ...

...

5. Code implementation example

The code written in python6 implements the Viterbi algorithm to find the most probable sequence of

parse objects from the morphological analysis performed by pymorphy2. It takes as input the JSON file
with the transition probabilities and a list that contains all the possible parse objects that pymorphy2

returns for each word. The output is a new list with only one parse object per word. The code and the

file with the transition probabilities are available for download from a GitHub repository [9].

4 Symbol for “start of sentence”.

5 Symbol for “end of sentence”.

6 System requirements: python3, pymorphy2 version 0.8.

IMS-2021. International Conference “Internet and Modern Society” 85

Code implementation example

from pymorphy2 import MorphAnalyzer #1

from hmmtrigram import MostProbableTagSequence #2

morph = MorphAnalyzer() #3

token_list = ['Мама', 'мыла', 'Раму', '.'] #4

pymorphy2_parsed = [morph.parse(token) for token in token_list] #5

mpts = MostProbableTagSequence('transition_probabilities.json') #6

mpts.get_sequence(pymorphy2_parsed) #7

(11)

#1: imports the class for morphological analysis from the package “pymorphy2”

#2: imports the class for calculating the most probable tag sequence from “hmmtrigram”
#3: instantiates the object “morph” from the class “MorphAnalyzer”

#4: any list of tokens

#5: the “parse” method of the “morph” object parses each token in the list and stores the parsing
results in the new list “pymorphy2_parsed”

#6: instantiates the object “mpts” from the class “MostProbableTagSequence” with the name of the

json file that contains the transition probabilities as argument
#7: the “get_sequence” method of the “mpts” object takes the list with the parse objects stored in

“pymorphy2_parsed” and returns a new list with the most probable parsing for the sequence of tokens.

Code output
[
Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'),
normal_form='мама', score=1.0, methods_stack=((<DictionaryAnalyzer>, 'мама', 1907,
0),)),
Parse(word='мыла', tag=OpencorporaTag('VERB,impf,tran femn,sing,past,indc'),
normal_form='мыть', score=0.333333, methods_stack=((<DictionaryAnalyzer>, 'мыла',
1813, 8),)),
Parse(word='раму', tag=OpencorporaTag('NOUN,inan,femn sing,accs'),
normal_form='рама', score=0.5, methods_stack=((<DictionaryAnalyzer>, 'раму', 55,
3),)),
Parse(word='.', tag=OpencorporaTag('PNCT'), normal_form='.', score=1.0,
methods_stack=((<PunctuationAnalyzer>, '.'),))
]

(12)

The most probable sequence correctly disambiguates 'мама' as a noun in the nominative case, 'мыла'

as verb and 'раму' as a noun in the accusative case.

6. Testing the model

The test was conducted on the OpenCorpora subcorpus without homonyms and unknown words of

10966 sentences, 72671 tokens and 50433 words. The experiment presents the results for 55 275 tokens

(no punctuation marks).
The baseline summarizes the results of selecting the parse object with the highest score for each

independent word form (the first item in the list that pymorphy2 generates).

Table 5

Pymorphy2 part-of-speech tagging results (most probable parse object)

method precision recall

baseline (simple tags) 0.92 0.91

Table 5 shows the averaged precision and recall for the 20 part-of-speech tags (the base POS tags

without case). This outlines the performance that can be expected of getting the right part-of-speech

86 PART 1: Computational Linguistics

(POS) tag for a given word form. When grammatical case is also taken into account (augmented tags),

these values drop significantly (compare with the baseline in table 6).

Table 6

Baseline and trigram model extension using augmented tags

method precision recall

baseline (augmented POS tags) 0.82 0.80

trigram model 0.94 0.89

Table 6 contrasts the averaged precision and recall for the 49 augmented tags (part-of-speech + case)

for the baseline with those for the implementation of the trigram model to choose between the parse
objects returned by pymorphy2.

Table 7

Long form adjectives with case for the baseline and the trigram model

POS tags + case F-score (baseline) F-score (3-gram model)

ADJF ablt 0.68 0.97

ADJF accs 0.73 0.92

ADJF datv 0.64 0.88

ADJF gent 0.81 0.95

ADJF loct 0.63 0.93

ADJF nomn 0.91 0.96

Table 7 shows the F-score for the long form adjectives + case for the baseline and the trigram model.

When considering case declensions, the trigram model improves clearly over the baseline. However,

those differences are less extreme for word classes that do not have case declensions (see table 8).

Table 8

POS tags without case declension for the baseline and the trigram model

POS tags F-score (baseline) F-score (3-gram model)

ADJS (short adjectives) 0.90 0.98

ADVB (adverbs) 0.94 0.96
CONJ (conjunctions) 0.91 0.90

INTJ (interjections) 0.90 0.88

Conjunctions and interjections constitute the two cases within the 49 tags where the implementation

of the trigram model performs slightly below the baseline.

7. Conclusions and further work

The testing results support the benefit of applying the trigram model to disambiguate the analysis
preformed by pymorphy2. However, if pymorphy2 is being used only to get the part-of-speech or the

dictionary form of the words within a bag-of-words model, the suggested extension will produce little

improvement over the baseline. For that purpose, selecting the first parse object in the list will be
enough. The implementation of the trigram model to choose the most probable sequence of parse objects

is useful for those tasks that require valid POS tag sequences or greater precision in determining the

grammatical case of a word. In Russian, by disambiguating the grammatical case of a word form, most
of the time its gender and number are also obtained correctly. The effects of broadening the combination

of part of speech + case with respect to number and / or gender remain to be explored.

IMS-2021. International Conference “Internet and Modern Society” 87

8. References

[1] Documentation. Morphological analyzer pymorphy2. URL:
https://pymorphy2.readthedocs.io/en/stable/user/index.html

[2] OpenCorpora. URL: http://opencorpora.org/

[3] M. Korobov, Morphological Analyzer and Generator for Russian and Ukranian Languages, in:
Analysis of Images, Social Networks and Texts, 2015, pp. 320-332.

[4] Е. Kuzmenko, Morphological Analysis for Russian: Integration and Comparison of Taggers, in: D.

Ignatov et al. (eds) Analysis of Images, Social Networks and Texts. AIST 2016. Communications
in Computer and Information Science, vol. 661, Springer, Cham, 2017.

[5] E. Kotelnikov, E. Razova and I. Fishcheva, A Close Look at Russian Morphological Parsers:

Which One Is the Best? in: Communications in Computer and Information Science, 2018.

[6] D. Jurafsky and J. Martin, Speech and language processing: An introduction to natural language
processing, computional linguistics, and speech recognition, 2nd. ed. Pearson, Upper Saddle River,

New Jersey, 2009, pp. 139-151.

[7] V. Bocharov and O. Mitrenina, Computer morphology, in: I. Nikolaev, O. Mitrenina and T. Lando
(eds), 2nd. ed., URSS, Saint Petersburg, 2017, pp. 14–33.

[8] Downloads. OpenCorpus. URL: http://opencorpora.org/?page=downloads

[9] N. Cortegoso-Vissio. Github repository. URL:

https://github.com/nicolascortegoso/morphological_analyzer_for_russian

88 PART 1: Computational Linguistics

