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Abstract 

Pymorphy2 is a morphological analyzer implemented in Python for Russian. The parser takes 

a word and, based on its morphology, produces a series of classification hypotheses regarding 

class, gender, number, case, etc. However, the analysis of the isolated word rarely occurs 

without any ambiguity. This article presents an implementation of a trigram tag model that 

works on top of the morphological parsing performed by pymorphy2 and uses the sequence of 

words in the sentence to choose the most probable morphological interpretation for each word. 
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1. Introduction

Part-of-speech tagging for Russian language is a well-researched field and many taggers have been

developed applying different approaches. When it comes to working with NLP, Python is arguably the 

most widely used programming language today and pymorphy2, a popular choice for performing the 

morphological analysis of Russian words. According to the official documentation [1] pymorphy2 is 
capable of: 

 transforming a word to its dictionary form (lemma), for example, "люди → человек", or

"гулял -> гулять";

 converting a word to the desired form, for example, change its grammatical case, put it in plural,

etc;

 providing grammatical information about a word (number, gender, case, part-of-speech, etc.).

To parse a word form, pymorphy2 relies on modified version of the dictionary of the OpenCorpora

project [2] that was optimized for speed and memory saving. The OpenCorpora dictionary is structured 

around lexemes. A lexeme consists of all the forms of a word and the labels with the grammatical 
information, where the first word form in the list corresponds to its dictionary form. For example, the 

lexeme for "ёж" (hedgehog) looks like figure 1: 

Figure 1: Example of a lexeme [3] 

If the word form does not exist in the dictionary, pymorphy2 conducts a predictive analysis on the 

unknown word, identifying suffixes, prefixes and applying other strategies that could provide a criterion 

to classify it. 
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Taken separately, Russian word forms often allow for more than one grammatical interpretation.2 

Since pymorphy2 parses one word at a time, it returns a list of possible parses with an associated 
probability. When working with bag-of-words models, a common practice is to simply select for each 

word form the parse with the highest probability. In this case, assuming only the dictionary form of the 

word is required, pymorphy2 will get the correct part-of-speech about 92% of the time. However, if the 

grammatical case of the word is taken in consideration, the precision will drop to 82% (see the 
experiment’s results in section 6) and the parsing will often produce ungrammatical sequences. 

In order to improve the percentages shown in the previous paragraph, the proposal presented in this 

article is to implement a trigram part-of-speech model to disambiguate the morphological analysis that 
pymorphy2 performs on the isolated word. The part-of-speech tags of those word classes that have 

declensions are augmented with the grammatical case, while other features such as number or gender 

are discarded in order to keep the trigram model at a reasonable size and prevent data sparseness when 
training it on a rather small corpus. 

Since this paper proposes a method to disambiguate pymorphy2 parsing results, it will focus 

exclusively on this morphological analyzer and measure its performance before and after the suggested 

extension. It does not intend to be a superior solution to other morphological analyzers available for 
Russian, but rather a helper tool for pymorphy2 users. For state-of-the-art taggers or comparisons 

between the performance of pymorphy2 and other available options (mystem3, TreeTagger, FreeLing, 

etc.), the reader is referred to the work of Kuzmenko [4] or Kotelnikov et al. [5]. 
The remainder of the paper will cover: 2. A pymorphy2’s parsing example, 3. Trigram hidden 

Markov Model, 4. Training the trigram model, 5. Code implementation example, 6. Testing the model 

and 7. Conclusions and further work. 

2. A pymorphy2’s parsing example

As noted in the introduction, pymorphy2 processes each word separately and returns one or more 

"Parse" objects containing the possible parses for the given word form. For example, the morphological 

analysis of the word forms "мама", "мыла", "раму" produces the following lists (1), (2), (3): 

[

Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'), normal_form='мама', score=1.0, 

methods_stack=((<DictionaryAnalyzer>, 'мама', 1907, 0),))

]

(1) 

[

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut sing,gent'), normal_form='мыло', score=0.333333, 

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 1),)), 

Parse(word='мыла', tag=OpencorporaTag('VERB,impf,tran femn,sing,past,indc'), normal_form='мыть', 

score=0.333333, methods_stack=((<DictionaryAnalyzer>, 'мыла', 1813, 8),)), 

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut plur,nomn'), normal_form='мыло', score=0.166666, 

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 6),)), 

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut plur,accs'), normal_form='мыло', score=0.166666, 

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 9),))

]

(2) 

[

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,masc,Geox sing,datv'), normal_form='рам', score=0.5, 

methods_stack=((<DictionaryAnalyzer>, 'раму', 32, 2),)), 

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,femn sing,accs'), normal_form='рама', score=0.5, 

methods_stack=((<DictionaryAnalyzer>, 'раму', 55, 3),))

]

(3) 

With the exception of "мама", the other word forms have more than one possible interpretation. In 

the case of the noun "раму" the ambiguity arises in gender and case, while "мыла" can be analysed as 

2 For example, the nominal and accusative plural cases endings for nouns like "сталь" (declension type 8a according to A. A. Zaliznyak's 

classification) are identical for the singular cases of the genitive, dative and locative; most of the singular feminine adjectives in the genitive, 

dative, locative and instrumental cases share the same inflection; a word form can even belong to different word classes, like "мыла", that can 

be analyzed as a noun or a verb. 
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a verb or noun. Every parse object inside the list has a parameter "score" with an associated probability. 

Korobov [3] states that the score corresponds to the conditional probability p (analysis | word) estimated 
on the basis of the OpenCorpora corpus. This is obtained by counting how many times a certain analysis 

has been associated with a given word form and, based on these frequencies, its conditional probability 

is calculated using Laplace smoothing. The parse objects within the list are sorted according to this 

probability in descending order, therefore picking the first item in the list is equivalent to selecting the 
parse object with the most probable interpretation for the given word form. For example, the parse 

objects with the highest score for each of the word forms analysed in (1), (2) and (3) would be: 

Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'), normal_form='мама', score=1.0, 

methods_stack=((<DictionaryAnalyzer>, 'мама', 1907, 0),))
(4) 

Parse(word='мыла', tag=OpencorporaTag('NOUN,inan,neut sing,gent'), normal_form='мыло', score=0.333333, 

methods_stack=((<DictionaryAnalyzer>, 'мыла', 54, 1),))
(5) 

Parse(word='раму', tag=OpencorporaTag('NOUN,inan,masc,Geox sing,datv'), normal_form='рам', score=0.5, 

methods_stack=((<DictionaryAnalyzer>, 'раму', 32, 2),))
(6) 

If "мама", "мыла", "раму" are no longer treated as separate tokens, but as words in the sentence 

"мама мыла раму", the parse object with the highest score incorrectly classifies the last two. When 

working with bag-of-words models and lemmas, the misclassification in case is usually not harmful 
(most of the time it will still provide the right dictionary form)3, but a wrong part-of-speech attribution 

will produce a different interpretation of the lemma. The next section suggests how the score values can 

be combined with the trigram tag model to obtain better results. 

3. Trigram hidden Markov model

Hidden Markov models (HMM) are probabilistic sequence classifiers that have been widely used in 

NLP tasks like part-of-speech tagging and word class disambiguation. The task of the model is to find 

for any string of word forms of the set Ψ (the observable states) the most probable sequence of part-of-

speech tags of the set Ω (the hidden states). For a better understanding of HMM the reader is referred 
to Jurafsky [6] or Bocharov et al. [7]. Although, nowadays POS-taggers are build using more advanced 

techniques, for example those based on neural networks, for the purpose envisaged here of eliminating 

the ambiguity of the analysis previously carried out by pymorphy2, a modified HMM model would be 
an easy solution to implement. The HMM is briefly described below along with the intended 

modification to disambiguate the analysis from pymorphy2. 

To train an HMM model, it is necessary to calculate two parameters in a tagged corpus: the emission 
and the transition probabilities. 

The emission probabilities 

���� ∨ ��� (7) 

where p is the conditional probability that the word wi corresponds to the tag ti. This assumes that 

the probability of an output observation wi depends only on the state that produced the observation ti 

and not on any other states or observations. 

The transition probabilities 

���� ∨ ��	
, ��	�� (8) 

where p is the probability that the tag ti occurs, provided that is preceded by the tags ti-1 and ti-2. This 

assumes that the probability of a particular tag depends only on the previous two tags (trigram). 

3 Here the missclassification of “раму” produces a different dictionary form. 
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The HMM tagging algorithm chooses as the most likely tag sequence the one that maximizes the 

product of two terms: the probability of the sequence of tags (the transition probability) and the 
probability of each tag generating a word (the emission probability). 

Trigram HMM 

�������
, . . . , ��, �
, . . . ���
� ≈ ������
��


��

��� ∨ ��	
, ��	����

�

��

��� ∨ ��� (9) 

where p(yi| yi-1, yi–2) is the transition probability and p(xi|yi) is the emission probability. 

The approach taken here is to implement the tagging algorithm on top of the pymorphy2 parsing 
results and use the score values from the Parse object as the emission probabilities. 

Modified trigram HMM 

�������
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�

��
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where the last term of the equation, the emission probability of a word given a tag, is replaced by 

the score value from the pymorphy2 parse: the probability of the analysis given a word. 

4. Training the trigram POS tag model

Pymorphy2 not only implements the OpenCorpora dictionary, it also adopts the same set of tags. To 

take advantage of this fact, the model was trained on the OpenCorpora labeled subcorpus with 

homonyms removed [8] (26011 sentences, 256311 tokens, 188319 words), so no modifications on the 
tags were required. As mentioned in the previous section, the emission probabilities are directly 

replaced by the score values from the parse objects. Therefore, only the transition probabilities in the 

corpus were calculated on the basis of the following 49 tags, which were obtained by combining the 20 
basic part-of-speech tags from pymorphy2/OpenCorpora and the grammatical case (where applicable): 

Table 1 

Part-of-speech tags without case declension 

part-of-speech tag 

adverb ADVB 

comparative COMP 

conjunction CONJ 

gerund GRND 

infinitive INFN 

interjection INTJ 

particle PRCL 

predicative PRED 

preposition PREP 

verb VERB 

short form adjective ADJS 

short form participle PRTS 

As table 2 shows, those part-of-speech that have declensions, were augmented with the grammatical 

case. Gender and number were not taken into account to keep the tag set within reasonable limits. It 

was assumed that case is a good predictor to be included in the transition probabilities (although this 
hypothesis remains to be proven). Table 4 presents a fragment of the resulting matrix with the transition 

probabilities. The cells contain the conditional probability for the tag in the row when it is preceded by 

the two tags from the columns. For example, the probability that an adjective in the nominative case 
appears at the very beginning of the sentence is 0.0731339900. Those combinations that were not 
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observed in the corpus were assigned a very small probability of 0.000000001; for instance an adjective 

in any other case than is not instrumental after an adjective in the instrumental case at the beginning of 
the sentence. The transition probabilities were stored in a JSON-format file. 

Table 2 

Part-of-speech tags with case declension 

case noun adjective participle pronoun numeral 

nominative NOUN nomn ADJF nomn PRTF nomn NPRO nomn NUMB nomn 

genitive NOUN gent ADJF gent PRTF gent NPRO gent NUMB gent 

accusative NOUN accs ADJF accs PRTF accs NPRO accs NUMB accs 

dative NOUN datv ADJF datv PRTF datv NPRO datv NUMB datv 

locative NOUN loct ADJF loct PRTF loct NPRO loct NUMB loct 

instrumental NOUN ablt ADJF ablt PRTF ablt NPRO ablt NUMB ablt 

vocative NOUN voct 

2nd genitive NOUN gen2 

2nd locative NOUN loc2 

Table 3 

Other tags 

part-of-speech tag 

Latin word or character LATN 

roman number ROMN 

unknown class UNKN 

Table 4 

Fragment of the matrix with the transition probabilities 

<*>_<S>4 <S>_ADJF ablt <S>_ADJF accs <S>_ADJF datv ... 

<E>5 0.006326730 0.05263158 0.04285714 0.052631589 ... 

ADJF ablt 0.007155230 0.09473684 0.000000001 0.000000001 ... 

ADJF accs 0.005272275 0.000000001 0.1 0.000000001 ... 

ADJF datv 0.001431046 0.000000001 0.000000001 0.052631589 ... 

ADJF gent 0.003765910 0.000000001 0.000000001 0.000000001 ... 

ADJF loct 0.000150636 0.000000001 0.000000001 0.000000001 ... 

ADJF nomn 0.073133990 0.000000001 0.000000001 0.000000001 ... 

... ... ... ... ... ... 

5. Code implementation example

The code written in python6 implements the Viterbi algorithm to find the most probable sequence of 

parse objects from the morphological analysis performed by pymorphy2. It takes as input the JSON file 
with the transition probabilities and a list that contains all the possible parse objects that pymorphy2 

returns for each word. The output is a new list with only one parse object per word. The code and the 

file with the transition probabilities are available for download from a GitHub repository [9].  

4 Symbol for “start of sentence”. 

5 Symbol for “end of sentence”. 

6 System requirements: python3, pymorphy2 version 0.8. 
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Code implementation example 

from pymorphy2 import MorphAnalyzer #1

from hmmtrigram import MostProbableTagSequence #2

morph = MorphAnalyzer() #3 

token_list = ['Мама', 'мыла', 'Раму', '.'] #4

pymorphy2_parsed = [morph.parse(token) for token in token_list] #5

mpts = MostProbableTagSequence('transition_probabilities.json') #6

mpts.get_sequence(pymorphy2_parsed) #7

(11) 

#1: imports the class for morphological analysis from the package “pymorphy2” 

#2: imports the class for calculating the most probable tag sequence from “hmmtrigram” 
#3: instantiates the object “morph” from the class “MorphAnalyzer” 

#4: any list of tokens 

#5: the “parse” method of the “morph” object parses each token in the list and stores the parsing 
results in the new list “pymorphy2_parsed” 

#6: instantiates the object “mpts” from the class “MostProbableTagSequence” with the name of the 

json file that contains the transition probabilities as argument 
#7: the “get_sequence” method of the “mpts” object takes the list with the parse objects stored in 

“pymorphy2_parsed” and returns a new list with the most probable parsing for the sequence of tokens. 

Code output 
[ 
Parse(word='мама', tag=OpencorporaTag('NOUN,anim,femn sing,nomn'), 
normal_form='мама', score=1.0, methods_stack=((<DictionaryAnalyzer>, 'мама', 1907, 
0),)),
Parse(word='мыла', tag=OpencorporaTag('VERB,impf,tran femn,sing,past,indc'), 
normal_form='мыть', score=0.333333, methods_stack=((<DictionaryAnalyzer>, 'мыла', 
1813, 8),)),
Parse(word='раму', tag=OpencorporaTag('NOUN,inan,femn sing,accs'), 
normal_form='рама', score=0.5, methods_stack=((<DictionaryAnalyzer>, 'раму', 55, 
3),)),
Parse(word='.', tag=OpencorporaTag('PNCT'), normal_form='.', score=1.0, 
methods_stack=((<PunctuationAnalyzer>, '.'),))
]

(12) 

The most probable sequence correctly disambiguates 'мама' as a noun in the nominative case, 'мыла' 

as verb and 'раму' as a noun in the accusative case. 

6. Testing the model

The test was conducted on the OpenCorpora subcorpus without homonyms and unknown words of

10966 sentences, 72671 tokens and 50433 words. The experiment presents the results for 55 275 tokens 

(no punctuation marks). 
The baseline summarizes the results of selecting the parse object with the highest score for each 

independent word form (the first item in the list that pymorphy2 generates). 

Table 5 

Pymorphy2 part-of-speech tagging results (most probable parse object) 

method precision recall 

baseline (simple tags) 0.92 0.91 

Table 5 shows the averaged precision and recall for the 20 part-of-speech tags (the base POS tags 

without case). This outlines the performance that can be expected of getting the right part-of-speech 
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(POS) tag for a given word form. When grammatical case is also taken into account (augmented tags), 

these values drop significantly (compare with the baseline in table 6). 

Table 6 

Baseline and trigram model extension using augmented tags 

method precision recall 

baseline (augmented POS tags) 0.82 0.80 

trigram model  0.94 0.89 

Table 6 contrasts the averaged precision and recall for the 49 augmented tags (part-of-speech + case) 

for the baseline with those for the implementation of the trigram model to choose between the parse 
objects returned by pymorphy2. 

Table 7 

Long form adjectives with case for the baseline and the trigram model 

POS tags + case F-score (baseline) F-score (3-gram model)

ADJF ablt 0.68 0.97 

ADJF accs 0.73 0.92 

ADJF datv 0.64 0.88 

ADJF gent 0.81 0.95 

ADJF loct 0.63 0.93 

ADJF nomn 0.91 0.96 

Table 7 shows the F-score for the long form adjectives + case for the baseline and the trigram model. 

When considering case declensions, the trigram model improves clearly over the baseline. However, 

those differences are less extreme for word classes that do not have case declensions (see table 8). 

Table 8 

POS tags without case declension for the baseline and the trigram model 

POS tags F-score (baseline) F-score (3-gram model)

ADJS (short adjectives) 0.90 0.98 

ADVB (adverbs) 0.94 0.96 
CONJ (conjunctions) 0.91 0.90 

INTJ (interjections) 0.90 0.88 

Conjunctions and interjections constitute the two cases within the 49 tags where the implementation 

of the trigram model performs slightly below the baseline. 

7. Conclusions and further work

The testing results support the benefit of applying the trigram model to disambiguate the analysis
preformed by pymorphy2. However, if pymorphy2 is being used only to get the part-of-speech or the 

dictionary form of the words within a bag-of-words model, the suggested extension will produce little 

improvement over the baseline. For that purpose, selecting the first parse object in the list will be 
enough. The implementation of the trigram model to choose the most probable sequence of parse objects 

is useful for those tasks that require valid POS tag sequences or greater precision in determining the 

grammatical case of a word. In Russian, by disambiguating the grammatical case of a word form, most 
of the time its gender and number are also obtained correctly. The effects of broadening the combination 

of part of speech + case with respect to number and / or gender remain to be explored. 
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