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Abstract  
Intuitively perceived symmetry is formalized for effective application in physics, mathematics, 
and engineering. In this regard, several scientific research directions are indicated, which are 
expressed by three generalizations: a) the concept of symmetry using the example of 
normalized Hadamard matrices; b) cross vector product for the cases of three arguments and 
seven-dimensional space, c) Lorentz transformations for doubling the spacetime dimension. 
To generalize and formalize the concept of symmetry, the preservation of the symmetry of 
matrices under permutations of rows (columns) is studied. It is shown that the set of symmetry-
preserving permutations does not constitute a group. For the development of the octonion 
toolkit and the best generalization of the vector product, based on symmetry considerations, 
the decomposition of the triple product of octonions into the sum of a triple anticommutator, a 
triple commutator (generalized vector product) and an associator is deduced. To begin the 
generalization of Lorentz transformations Lorentz boost is recorded in terms of quaternions so 
that the treated expressions retain their meaning in the octonionic space. To speed up the 
assimilation of the research results, the paper proposes some elementary information on the 
three listed topics, which it is desirable to place in reference books, as well as bring to the 
attention of students in general education courses at technical universities. 
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1. Introduction 

More than 30 years ago the author has been starting research in mathematical physics with the 
formalization of natural (intuitively perceived) symmetry and published out the results in the USSR 
patent [1] for a game series. Later, this type of games was reinvented in Japan and was called 
"Symmetrixes" [2]. It was conceived, starting with games, then to publish the results related to the 
properties of spacetime symmetry. However, to our surprise, at the moment we found that some early 
scientific results partially retained their novelty. So, in this paper we reveal the scientific background 
of the mentioned games and offer the ideas of its further development and utilization.  

In Section 2, the additive decomposition of an operator into self-adjoint and skew-symmetric parts 
is generalized, the notions of permutation and reassignment are refined, as well as the notion of 
permutational matrix symmetry is introduced. Section 3 deals with the development of the apparatus of 
hypercomplex numbers by generalizing the cross vector product. Section 4 describes the progress of 
work on the generalization of the Lorentz transformations. In the Conclusion some corrections and 
additions to commonly used reference books, as well as classic textbooks on the related topic, are 
discussed using specific examples.  
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2. Permutable symmetric truncated normalized Hadamard matrices 

A truncated (down-sized) normalized Hadamard matrix (NHM) is understood as a normalized 
Hadamard matrix [3] without the row and the column of only  that are deleted. NHMs arise in linear 
algebra when generalizing the additive decomposition of a linear operator into symmetric (self-adjoint) 
and skewsymmetric parts (Figure 1, [1,4]).  
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Figure 1: Permutable symmetric truncated NHMs  
 
Black and white cells in Figure 1 denote  and,  respectively. At the top left in Figure 1, the 

well-known additive decomposition of a linear operator is written out. It is described by the truncated 
 NHM, that contains the single , and shown at the bottom left. The next, really black-and-white 

truncated  NHM describes the decomposition of a linear operator into four symmetric-
skewsymmetric parts, which either change or retain their sign under the action of each of the two 

operations, for example, Hermitian conjugation " " and the operator inversion " ". This  matrix 
preserves symmetry for any row permutation and is therefore always symmetric. The next black-and-
white symmetric truncated  NHM with numbered rows describes the additive operator expansion 
into an octet of symmetric-skewsymmetric parts for three commuting operations of Hermitian 
conjugation type, which form an abelian group of the self-inverse operations. The extreme right table 
lists eight digital columns obtained by permutations of the rows of the truncated  NHM that 
preserve its symmetry. Cyclic repetition of any of eight specified permutations preserves the matrix 
symmetry. Each column from the columns, isolated by bold lines, gives, respectively, two, three, and 
six additional symmetric matrices. A total of 28 symmetric matrices are obtained. 

It's remarkable, that the symmetry-preserving row permutations of matrix in Figure 1  do not 
form a group, but are only a union of cyclic subgroups of some general group of 168 permutations that 
preserve the so-called "hidden symmetry" [1, 4]. The example of a matrix possessing hidden symmetry 
is shown in Figure 2 
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Figure 2: Asymmetrical matrix with hidden symmetry 
 
The asymmetric matrix in Figure 2 is obtained by composition of a pair of permutations from 

different cyclic subgroups Figure 1. 
Regarding the expected group properties of the permutable Hadamard matrices, note that the set of 

their rows, together with the unit row containing only the s, form an Abelian group of the self-
inverse elements with respect to termwise row multiplication.  
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It is verified that among the symmetric black-and-white  matrices from all the different rows, 
the symmetric truncated  NHM are maximally permutable [1].  

As it is easy to establish, the permutability of symmetric truncated  NHM determines the set 
of rows and the matrices themselves, accurate to the reversal of the roles of black and white cells. 
Moreover, to restore the septet of rows and the matrices, it is enough to use just three digital columns, 
selected from 28 ones according to the specific algorithm [5]. 

For the convenience of checking the statements under consideration, it is useful to distinguish 
between the concepts of "substitution", "permutation" and "reassignment". 

As usual, substitution here refers to the reversible mapping of a set of some elements onto  

themselves, for example, for digital elements: . Let's order the top row 
in substitutions, as in the left one in the given example. Omitting the natural series of digits in the top 
row of substitutions, we represent the product of substitutions as the product of rows. For example 

. Similarly, the product of substitutions is represented as the 
product of columns: 

. 

(1) 

Let's treat the product of a pair of substitutions on the left side (1) either as a permutation of the left 
column of the pair, or as a reassignment of its right column, by which the column on the right side (1) 
is obtained. 

The meaning of the formulated permutation and reassignment definition manifests itself when 
multiplying by a given column on the right or/and on the left of some table of several columns and lies 
in the fact that the columns of the table can be transformed term by term, or the entire table can be 
transformed with the same result. Moreover, due to the associativity of a substitution composition, when 
performing multiplication on the right and on the left, the result does not depend on the order in which 
the right and left multiplication is performed. 

For a pair  of any symmetry-preserving permutations from the set , it is true that their 

composition  also belongs to :  

  (2) 

Property (2) means that the complete permutability table of 28 columns for Figure 1 is preserved up 
to the permutation of the columns when multiplying from the left and also from the right by any of its 
columns.  

Property (2) implies that cyclic permutation groups are subsets of the set : 

  (3) 

A specific feature of just the  black-and-white matrix in Figure 1 is that it is antisymmetric 
with respect to the secondary diagonal, wherein antisymmetry notion is defined with the necessary 
reservations regarding the elements occupying the secondary diagonal [1]. According to the [1], non-
trivial permutations of the columns of the truncated  NHM in Figure 1, provide to get eight such 
symmetric-antisymmetric matrices of the 7th order. Are there such symmetric-antisymmetric matrices 
of the 15th order, that is the current important question.  

3. Twofold generalization of a cross vector product  

The above-mentioned decomposition of the operator into symmetric-skewsymmetric parts turned 
out to be useful in a twofold generalization of the vector product to the case of three arguments, as well 
as to the seven-dimensional subspace of the eight-dimensional octonionic space [6,7]. 
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In [7], a linear operator is considered, which is produced by conjugation of a vector argument with 
subsequent multiplication by fixed vectors on the left and on the right. Then, the decomposition of the 
product of three octonions into four symmetric-skewsymmetric parts is obtained using a pair of suitable 
operations of the Hermitian conjugation type. One of four part turned out to be zero. The rest of the 

parts are: triple anticommutator, triple commutator and associator. Triple commutator  is 
defined in two ways by the formulaе:  

, 
(4) 

where , ,  are arbitrary octonions,  is conjugated octonion ,  is the 
multiplicative identity, i.e. a unit vector along the real axis.  

The triple commutator  possesses the property of antipermutability of its arguments, is 
orthogonal to each argument, and turns into an ordinary two-argument cross vector product when the 

central argument is replaced by the multiplicative identity . It also has other properties that are 
characteristic for an ordinary two-argument cross vector product that are detailed in [7].  So, the triple 

commutator  is exactly what it is a doubly generalized cross vector product, coinciding with 

the conventional two-argument cross vector product  written in the space of quaternions or 

octonions [7]. And the expressions for  taken from [7] complete the prolonged search [8–11] 
for most perspective generalization of cross vector product.  

4. The problem to generalize Lorentz transformations  

It was William Rowan Hamilton who first discovered quaternions as the spacetime [12]. Nowadays 
the generalization of quaternions (octonions) and the double generalization of the cross vector product 
have been invented, which provides convenient work with non-associative octonions. So, а 
generalization of the Lorentz transformations suggests itself in order to clarify and develop the motion 
laws. On the way to this goal, a quaternionic record of Lorentz boost was found in [13,14]. It turns out 
that the Lorentz boost is decomposed into a linear combination of rotation and orthogonal multiplicative 
transformation, expressing in twofold ways by the formulae: 

,  (5) 

where the cross denotes the Hermitian conjugation, ,  is the unit vector along the 

speed,  is the rapidity: ,  is the speed magnitude,  is the speed of light. 
It should be noted that in [15] the Lorentz boost is expressed by the half-expression (5), but this is 

done by increasing the dimension of the vector space. 
It is noteworthy that quaternionic expressions of Lorentz boost, as well as the rotation expression 

 do not depend on the multiplication order and retain their meaning in octonions, 
that exemplify the possible generalization of Lorentz transformations. At first glance, this is quite 
sufficient for the eight-dimensional generalization of the Lorentz transformations  as a superposition 
of rotation  and Lorentz boost . This may be true, but other options should also be considered for 
comparison.  

In four-dimensional space, both the rotation  and the Lorentz boost  are the elementary 
transformations that modify some two-dimensional plane and do not change the orthogonal vectors in 
another two-dimensional plane.  

In both quaternions and octonions, Lorentz boost (5) describes the stretching by a certain number of 
times of one vector and the contraction by the same number of times of another vector that belong to 
the same complex plane while preserving purely spatial vectors that are orthogonal to this complex 
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plane. The transformation of the rotation  in octonions is more complicated than 
the Lorentz boost, because it modifies the rest six-dimensional subspace of pure spatial vectors, while 
maintaining the complex plane defined by the rotational axis.  

Lorentz boost  differs significantly from the rotation  in that it has a full quartet of basis 
eigenvectors, while the rotation  through a nontrivial angle preserves only the directions of the 
rotational and the time axes. For this reason, the general Lorentz transformations in the form of a 
composition  of rotation  and boost  are subdivided into boost-like transformations with a 
quartet of basis vectors, and the rest ones, referring to as rotation-like. The most interesting is that the 

composition  of Lorentz boosts  and  is always a boost-like transformation [14].  

The eigenvectors for the composition  of the Lorentz boosts together with the corresponding 
eigenvalues are listed in Table 1.  
 
Table 1 

Eigenvectors for the composition of Lorentz boosts   

Notation  Eigenvector  Eigenvalue 

     

     

 
 

 

   

 

In Table 1  and  are the unit spatial vectors along the considered intersecting velocities, such 

that and . The cross vector product  is directed along 

the Wigner rotational axis [16], so that . The spatial part of the eigenvectors 

 and  depends on the eigenvalue  and, up to the sign, coincides with the unit vector  that is 

defined as a function of eigenvalue  in the form [14]: 

. 

(6) 

The spatial parts  and  of the eigenvectors  and  are obtained by 

substituting in (6) the values  by  and , respectively. The scalar parameter  is 
defined in accordance with well-known cosine rule: 

. 
(7) 

and the scalar parameters  and  are the rapidities, such that the velocities ,  divided by scalar 

speed of light  are expressed as , . Note that (7) refers to the half 

hyperbolic angles  ,  and  , while the well-known velocity addition is expressed via 

holistic hyperbolic angles ,  and  [17,18]. 
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It should be noted that the expressions for the eigenvectors of Table 1 turned out to be laconic. 
However, they are obtained by rather cumbersome intermediate calculations in terms of quaternions 
[14]. Meanwhile, it is precisely the laconism of calculations that is usually the main advantage of 
quaternions. So, the use of quaternions alone is not enough for a transparent derivation of the formulae 
Table 1. Apparently, for a transparent representation of obtaining of the eigenvectors Table 1 it will be 

useful to decompose  into symmetric-skewsymmetric parts according to Figure 1  and 
accompanying symmetry considerations. To generalize Lorentz transformations, it seems worth trying 

to generalize the laconic formulae (5) for the Lorentz boost to the case of a composition  of boosts 

 and , say, expressing them in terms of eigenvectors and eigenvalues from Table 1. 

The eigenvectors from Table 1 form the basis of the considered space . Their pairwise 

pseudoscalar products , accounting for commutativity, are given by the 
formulae (8). 

. 

(8) 

Using formulae (8), it is easy to expand an arbitrary vector in the basis of the eigenvectors of the 

composition  of boosts  and , and then obtain an expression for the composition  in terms 

of its eigenvectors : 

. 
(9) 

Expression (9) determines the composition of the Lorentz boosts  in terms of its own 
eigenvectors. Obviously, this formula can be rewritten as a linear combination of orthogonal 
transformations, which are elegantly expressed in terms of quaternionic multiplication. In this case, we 
obtain a generalization of the quaternionic record of the single Lorentz boost (5) to the case of a 
composition of a pair of Lorentz boosts, which is useful for further generalization to the case of an 
eight-dimensional octonionic space. 

5. Conclusions 

The current tasks formulated in the final paragraphs of the second and fourth sections are quite 
capable of solving by interested senior students. 

And it is didactic, that in [19], in the last paragraph of the section "Quaternions in Vector Symbolics", 

Erwin Madelung refers the rotation  of the complex plane in the quaternionic space to 
the class of Lorentz transformations. It would be appropriate to supplement this paragraph with the 
formulae (5) for Lorentz boost, so that the beginners do not mix it with the orthogonal transformations. 
When assimilating hypercomplex numbers (quaternions and octonions) according to the well-known 
book [6], one should pay attention to the fact that formula (8) is written out twice in the book, but when 
used for the first time the unfortunate mistake was made in this formula (the comma is omitted), which 
radically changes the meaning. The definition and examples of utilization of the doubly generalized 
vector product (4) can be presented as a useful application to [6]. Formal clarification (1) of difference 
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between the concepts of permutation and reassignment (redesignation) compensate for the rather 
confused interpretation of these concepts in most reference books on mathematics and physics. 

The latter examples show the need for some modernization of classical reference books and 
guidelines, aids for lecturers teaching students to solve the problems of current interest. The method of 
additive expansion of а linear operator and concomitant symmetry considerations Figure 1 deserve 
increased attention, as well as an introduction to the vector product in terms of quaternions. This is so 
because the conventional cross vector product appeals to intuition in the "left-hand rule," which prevents 
its generalization. Compared to the conventional one, the quaternionic cross vector product was 
invented earlier and is more promising for the effective development of scientific and, all the more sо, 
engineering research. In particular, it is promising for generalizing of classical transformations of 
coordinates to better understand the laws of motion. Let's take this into account in the future. 
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