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Abstract  
The results of the analysis of experience in creating multi-agent sensor group control systems 
used to solve the problems of monitoring complex environments under conditions of dynamic 
changes in the composition of the group and the action of destabilizing factors in real time are 
presented. It was shown that in forming requirements to prospective monitoring systems it is 
necessary to ensure a minimum feedback time from sensors and sensors, the sensors mean a 
cybernetic device with a transceiver for receiving commands and transmitting information, for 
adequate management commands, as well as the presence of a decision-making assistance 
system for operators when working in manual or semi-automatic modes. According to the 
results of the analysis, it was concluded about the importance of using SOA architecture, 
service-oriented, in the design of software to ensure the possibility of flexible connection of 
sensors and systems, as well as the implementation of such important principles as scalability, 
alignment of organizational and structural interactions, and analysis of information received in 
real time and post analysis to implement decision support, the basic decisions in creating 
hardware. 
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1. Introduction 

The development of a management system for multi-agent sensor groups used to solve problems of 
monitoring complex environments under conditions of dynamic changes in group composition and the 
action of destabilizing factors in real time is a science-intensive process because within the big task 
there are the following, subproblems:  

 scalability; 
 task distribution in a group of heterogeneous sensors; 
 decision support; 
 support for heterogeneous action reconciliation, etc. 
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Given the actualization of the issue of automation of industrial processes in the conditions of the 
fourth industrial revolution, as well as the interest of various departments, the experience of creating 
such systems in terms of software and hardware implementation is highly relevant.  

As part of the issue of creating heterogeneous sensor control systems, the following major projects 
have been implemented: CLARATy, METERON, RoboEarth, ROS. 

However, all of them are implemented on the following principles of control systems 
implementation, namely: 

 Distributed object architecture (DOA),  
 Component-based architecture (CBA). 
 Service Oriented Architecture (SOA). 
 Robotics technology components (RTC) 
 Collaborative architecture for unmanned systems (JAUS). 
Distributed object architecture (DOA) concepts, are the result of a fusion of object-oriented design 

methods for distributed computing systems.  
Advantages of the architecture, detailed description of digital objects. 
The disadvantages of the architecture, in the implementation of the proposed system, the number of 

sensors of different kinds can be prohibitive and the description of each sensor in the system is not 
appropriate in terms of real-time operation of the system and code flexibility. 

Thus, this architecture is not suitable for the implementation of the system under development. 
CBA, is an evolutionary development of DOA approach in program design. The key feature is to 

create relationships between objects for specific scenarios.  
Advantages of the architecture, detailed description of digital objects and relationships between 

objects for specific scenarios. 
Disadvantages of the architecture, when implementing the proposed system, the number of sensors 

of different kinds can be prohibitive and the description of each sensor and the relationship between 
sensors in the system is not appropriate in terms of real-time operation of the system and code flexibility. 

Thus, this architecture is not suitable for the implementation of the system under development. 
Service-oriented architecture is a modular approach to software development, based on the use of 

distributed, loosely coupled replaceable components, equipped with standardized interfaces for 
interaction on standardized protocols.  

The advantages of the architecture, the easy ability to improve the system. The detailed description 
of the interaction protocols, promotes the different structures and modules of the system to address 
other modules of the system. Due to flexibility, the possibility of support of past functionality in new 
versions of the system is realized. 

Disadvantages of architecture, it is important factor of check of input data that they were in 
accordance with designed protocols.  

Thus, this variant of architecture is suitable for the implementation of the system under development. 
The JAUS architecture is based on components of a specific functional purpose, the messages that 

these components exchange with each other during operation, and the interfaces for integrating and 
connecting new components to the system. Each JAUS object is capable of responding to external 
requests (e.g., from control modules) and independently determining what it does, what data it 
possesses, and how it interacts with its environment. 

JAUS is a set of documents describing data formats and methods for high-level interaction of 
software components. This architecture was originally intended for building ground-based robots, but 
is now focused on autonomous vehicles of any type (air, land, over- and underwater, military and 
civilian) and guarantees a unified scheme of remote control of an arbitrary JAUS model. 

The main requirement for building a JAUS system is that all messages exchanged between 
components must be JAUS-compliant. And the messages themselves are considered the only way of 
communication between the components. The structure of these messages is designed in such a way as 
to minimize the bandwidth requirements of the communication line. 

JAUS interoperability of devices must be ensured at three levels: between subsystems (robot - robot, 
robot - controller), between nodes (onboard radar - onboard controller) and between individual 
components. 



Advantages of the architecture, the detailed and regulated structure allows to describe clearly the 
protocols of interaction, to regulate the structure of subordination. SOA like architecture. 

Disadvantages of the architecture, due to the rigid description, rapid scaling of the system will be 
difficult and will impose additional time costs when working in real time. 

Thus, the JAUS architecture is suitable when implementing the intended system. 

2. Analysis of projects that use system design architectures 

A study of control system construction principles has shown that different paradigms have different 
characteristics and properties that make them suitable for different distributed applications. DOA is 
based object, which is suitable for the lower levels, where developers require high performance, even 
if it requires a high level of concurrency control in the interaction of multiple objects. Instead, CBA and 
related middleware is more suitable for the middle levels, where the goal is to develop autonomous 
components that can be exchanged and composed based on applications. Finally, SOA is useful for 
developing loosely coupled architectures where interacting objects can be accessed without prior 
knowledge. The architecture of JAUS, is a promising one with a clear administrative monitoring of 
system usage and messaging protocol across all devices. SOA and JAUS type architectures can be 
useful to design the system for which the research is done. Further there is an analysis of real projects 
designed on SOA and JAUS architectures. 

A division of the government agency NASA. The center has been involved in many NASA missions, 
leading in astrobiology, small spacecraft, robotic lunar exploration, technology for the Constellation 
Program, the search for habitable planets, supercomputers, smart and adaptive systems, thermal 
protection, and aerial astronomy. Ames is the center of several key NASA science missions (Kepler 
Missions, LCROSS, SOFIA, LADEE). Significant contributions have been made to the Exploration 
Project (Orion spacecraft and Ares I boosters). The CLARAty project was developed as part of this 
center Figure 1. 

 

 
Figure 1: An abstract view of CLARATy and its inner sublevels 

 
The CLARAty architecture has two different levels: the functional level and the decision-making 

level. The functional layer uses an object-oriented decomposition of the system and uses a number of 
well-known SOA design patterns to achieve reusable and extensible components. These components 
define the interface and provide basic system functionality that can be adapted to various real-world or 
simulated robots. The interface provides both low- and medium-level autonomy. The decision-making 
layer links the planning and execution system. The decision-making layer reason globally about the 
intended goal, system resources, and the state of the system and its environment. The decision level 



uses a declarative model, while the functional level uses a procedural model. Because the functional 
level provides adaptations to the physical or simulated system, all of the specific model information is 
combined in the system adaptations. The decision-making layer obtains this information by querying 
the functional layer for predictive resource use, state updates, and model information. 

METERON is a project being developed jointly with the space agencies of the United States, the 
European Union and Russia. The project implemented a large infrastructure to control the final Mars 
rovers and access to the obtained data in near real time from any command post of the countries 
participating in this project Figure 2. 

 

 
Figure 2: The shape of the METERON project infrastructure 

 
The project was implemented according to the DOA design paradigm. The control delay of the 

robotic vehicle used in the METERON project. From the operator to the robotic means was 25-50 ms, 
considering that the robotic means itself communicated with the METERON system infrastructure via 
a Wi-Fi modem installed on the robot via Beagleboard, in conditions close to the real one. In real 
conditions, the real-time latency could be up to 102 ms. 

RoboEarth, the ideology of the creation of this project, lies in the paradigm of software design in 
SOA architecture Figure 3. 

 

 
Figure 3: Three interconnected levels of the RoboEarth system 

 
RoboEarth is realized on the basis of a three-level architecture. The core of this architecture is the 

server layer, which contains the RoboEarth database. It stores globally the model, including reusable, 
object information (e.g., images, point cloud, models), environments (e.g., maps and object locations), 
and actions (e.g., scripts and functions) associated with semantic information (e.g., object properties), 
and provides the underlying logic for web services. The database and database services are accessed 
through common web interfaces. The second layer implements universal components, which are part 



of the local control program of the robot. Their main purpose is to allow the robot to interpret its actions 
in RoboEarth. Additional components extend the robot's analysis, modeling and learning functionality, 
which closes the loop from the robot to the first level. The third level implements skills and provides a 
general interface to specific hardware-dependent functions of the robot through the skill abstraction 
level. 

A robotics operating system (ROS) developed by a Stanford research team and further developed 
by Willow Garage. The project is implemented as Open Source, can run on Linux-oriented hardware 
with strong computing power. It integrates with Gazebo software for research visualization and 
computer simulation of robots which are equipped with ROS.  

When ROS runs, a "graph" - a point-to-point (peer-to-peer network) of processes is built, which 
communicate with each other through the ROS infrastructure.  

ROS implements several different styles of communication: synchronous (RPC-style) 
communication between services, asynchronous data flows through Topics, data storage on the 
Parameter Server. ROS is not a real-time system, although it is possible to integrate ROS with real-time 
code.  

ROS works on the SOA paradigm and evolves through research done by international scientific and 
amateur teams by releasing new libraries to implement this or that functionality. 

DREAMachine (Defect / Test Reduction Empowered by Analytics and Machine Learning) is based 
on the application of machine learning methods that allow to quickly analyze huge amounts of 
information, recognize complex dependencies and predict the required output information for decision-
making based on the available data. 

DREAMachine uses a modular architecture that is extremely similar in design to SOA to achieve 
greater predictive accuracy and insight into system-level processes, as well as flexible application of 
developed algorithms to solve similar problems. 

DREAMachine testing (Raytheon experts have set a precedent and substantiated the application of 
machine learning methods) showed the following results: 

 teacher-assisted learning methods provided up to 99% accuracy in predicting failures of both 
components and the system being analyzed as a whole; 

 the methods of learning without a teacher identified areas of redundancy in the testing process, 
providing opportunities to optimize this process; 

 the proposed process optimization can increase production capacity by 40%. 

3. System hardware and software requirements 

Due to the fact that the management is planned in real-time, it is necessary to design the node of 
storage and processing of large and ultra-large amounts of information using server nodes on the 
software shells Apache Flink and Apache Storm. In addition, since there are heterogeneous sensors 
within the system and their scalability can be drastic, the hardware under development should, be 
equipped with support for Docker container technology or others. Thus, according to the results of the 
analysis and past research within the subject, the system under development, should be Linux-oriented 
and have basic characteristics. 

4. Conclusion 

Thus, the paper analyzed the approaches and methods of designing flexible and high-loaded systems. 
When developing a heterogeneous sensor control system, based on the reconfiguration of the 
composition and structure of the system in conditions of destabilizing factors, it is important to focus 
on SOA (Service-Oriented Architecture) programming architecture. Because, this architecture provides 
flexibility in dealing with heterogeneous robots and sensors, as proved by the projects of international 
teams. Also, the testing of this method of system design by Rayethon scientists led to the conclusion 
that the use of SOA will increase the performance of the analytics system in real time by 40%. 
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