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Abstract
In Artificial Intelligence, one of the most important issue concerns the necessity to understand why a particular prediction is
chosen by a model from the considered input data. In this work, we propose a model, named Global Prediction Architecture,
based on three layers (MultiLayerPerceptron, Closest Classes and Elements, and a third layer to combine them), where first
layer produces both a partial prediction and features extraction useful for the second layer. We are interested in analyzing the
behavior of the model both for accuracy and for explainability in terms of input data. We apply our study in the healthcare
context of diabetes. Diabetes (diabetes mellitus) is a disease present when a person has a high blood sugar level for a long
period. One import issue is related to the possibility to do prevention of the disease. We analyze the possibility to determine
the diabetes risk in respect to daily lifestyle and health parameters, such as Body Mass Index, age, waist circumference, use
of blood pressure medication, history of high blood glucose, physical activity, consumption of vegetables/fruits/berries, and
family history of diabetes. We produce datasets randomly generated according to the rule named Finnish Diabetes Risk Score.
This work aim to produce random and anonymized diabetes risk datasets, to test a model in terms of improving accuracy
for the prediction of diabetes risk, and, most of all, to propose and test a method for explainability in the context of diabetes
prediction, using an approach initially derived from Layer-Wise Relevance Propagation and Deep Taylor Decomposition.

Keywords
Diabetes risk prediction, FINnish Diabetes RIsk SCore, Multilayer Perceptron, Explainability, Layer-Wise Relevance Propa-
gation, Deep Taylor Decomposition

1. Introduction
In healthcare, one of the topics of interest is the diseases
prevention. In this work, we consider the problem of
identifying risks for type 2 diabetes for a person. We are
interested in three principal issues: production of testing
datasets, definition of a model to improve prediction ac-
curacy, definition of an explainability method adequate
to the prediction model. About first issue, we use dataset
randomly generated according to the rule FINnish Dia-
betes RIsk Score (FINDRISC) [1]. Using random datasets,
we have the possibility to establish controlled data useful
to compare different models, and without any privacy
problem. About second issue, we consider a new model
based on three layers, first of all Multilayer Perceptron
(MLP). This layer produces both prediction and features
extraction. Extracted features are used by a second layer
based on comparing one unlabeled node (testing node)
with all labelled nodes (training nodes) in terms of simi-
larities, considering class (diabetes risk level) similarity
too. Third layer put together the predictions of first two
layers in a weighted manner. We name the overall model
Global Prediction Architecture (GPA). We obtain an ac-
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curacy better than using some algorithms of Waikato
Environment for Knowledge Analysis (WEKA) tool [2],
and an accuracy slightly better than using only MLP
component. We establish the diabetes risk according to
daily lifestyle and health parameters, such as Body Mass
Index (BMI), age, waist circumference, use of blood pres-
sure medication, history of high blood glucose, physical
activity, consumption of vegetables/fruits/berries, and
family history of diabetes. There are other works about
the issue for diabetes (e.g. [3]). About third issue, we
propose an explainability solution based on reasoning
about relevance of input data in respect to the prediction.
In particular, we combine a new solution conceptually
derived from Layer-Wise Relevance Propagation (LRP)
and Deep Taylor Decomposition (DTD) (e.g., [5], [7]),
with the distribution of extracted features testing data,
to capture the relevance of the features in the second
layer. Hence, from the explainability point of view, we
have a theoretical model considering first, and implicitly
third, layers, and a model based on data distribution (we
consider the standard deviation of the single feature in
respect to training data) for second, and implicitly third,
layers. We could add our solution to other studies in a
similar context (e.g., [8]). We could also explore the use of
the solution in an Internet of Things (IoT) context, consid-
ering the possibilities of 5G network too (about this last
subject, e.g. see [9], [11]), and for other domain different
architectures (e.g. see [12], [13, 14]). The following sec-
tions organize as follows. Related work section reports
some works about prediction on diabetes and a summary
of the major concepts behind LRP and DTD. Methodol-
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ogy section reports the step followed in the research for
this work. Tools and environments section reports the
principal tools and environments used to implement and
test our solution. Dataset definition section outlines the
rule used to implement random generated datasets, with
a visual distribution in terms of mean and standard devi-
ation over all input attributes. Dataset analysis section
reports the result of an analysis conducted on the great-
est training dataset. It presents the results of a prediction
test using some algorithms available on WEKA tool. Pre-
diction model section describes the model defined and
tested in this work in the context of diabetes risk predic-
tion. In this section, we present also the used accuracies
definition, the values of hyper-parameters which instan-
tiate the model, and the prediction results. Explainability
model section presents our solution to explain the behav-
ior of the prediction model in terms of input data. This
section reports also the hyper-parameters used in the
test finalized to explainability and the results in terms of
input data relevance for the prediction. In the conclusion
section, we briefly summarize the obtained results about
dataset creation, accuracy prediction, and explainability.

2. Related work
In this section, we first briefly cite three chosen works
about prediction in the context of diabetes. Then, we
present some concepts about explainability, in particular
for LRP and DTD.

In [15], they use Pima Indian Diabetes (PID) dataset
and they test seven Machine Learning (ML) algorithms
for predictions related to diabetes, using WEKA tool too.
They obtain the best results by using Logistic Regression
(LR) and Support Vector Machine (SVM) for diabetes pre-
diction. They also implemented a Neural Network (NN)
with two hidden layers for the accuracy. In [16], they
evaluate the risk of diabetes based on lifestyles and fam-
ily background. They consider 952 instances produced
by questionnaire related to health, lifestyle and family
background. They applied different ML algorithms both
to this dataset and to PID dataset. Most accurate perfor-
mance is for Random Forest (RF) Classifier. Also in [17],
they trained the ML models using PID dataset. They pro-
pose a framework based on pre-processing, K-fold Cross-
validation (KCV), Grid search for hyper-parameters, to
select the best model among different algorithms. In fu-
ture work they are interested in applying their results in
other medical context to verify the general usefulness.
In the general context of explainability, as basis for our
studying we are interested on LRP and DTD. In this sec-
tion, we review some of the concepts described in [5], [7],
[18], [19], and [20]. In LRP, prediction back propagate
in the NN. Each propagation redistributes in the lower

level of the NN by a conservation rule:

𝑅𝑗 =
∑︁
𝑘

𝑧𝑖𝑘∑︀
𝑗 𝑧𝑗𝑘

𝑅𝑘 (1)

𝑧𝑖𝑘 corresponds to how much the neuron j contributes
to be relevant for neuron k. The recursive propagation
finishes at the input data. One single step can be defined
as a Taylor decomposition. In our context, we consider a
MLP as an acyclic graph based on Rectified Linear Unit
(ReLU) activation function at each layer with input data
not less than zero. Supposing to have a neuron N receiv-
ing the scalar 𝑥𝑖𝑛𝑝𝑢𝑡 = (𝑥1, . . . , 𝑥𝑛) and producing the
scalar 𝑦𝑜𝑢𝑡𝑝𝑢𝑡, we have:

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 = max(0,

𝑛∑︁
𝑘=1

𝑥𝑖 𝑤𝑖𝑗 + 𝑏𝑗) (2)

with 𝑏𝑗 <= 0. Considering DTD, we have that LRP
corresponds to a succession of Taylor expansions local
for each neuron. We now consider that the output can
be described as a first-order Taylor expansion. Defining
[𝑦𝑜𝑢𝑡𝑝𝑢𝑡]𝑖 as the redistribution of 𝑦𝑜𝑢𝑡𝑝𝑢𝑡 on the neuron
i of the lower layer, we have the rule of redistribution
(𝑧+-rule) when the lower level of N is a ReLU layer:

[𝑦𝑜𝑢𝑡𝑝𝑢𝑡]𝑖 =
𝑥𝑖 𝑤

+
𝑖,𝑗∑︀𝑛

𝑘=1 𝑥𝑘 𝑤+
𝑘𝑗

𝑦𝑜𝑢𝑡𝑝𝑢𝑡 (3)

n equals to the number of neurons in the lower level of
N; 𝑣+ = |𝑣|. Defining 𝑥𝑓 as the final output of the NN
for a particular input data, we have that [[𝑥𝑓 ]𝑗 ]𝑖 corre-
sponds to the quantity of 𝑥𝑓 distributed from one node j
to one node i, where i is an input node for node j. [𝑥𝑓 ]𝑖
corresponds to the quantity of 𝑥𝑓 distributed on node i:

[𝑥𝑓 ]𝑖 =

𝑛1∑︁
𝑗=1

[[𝑥𝑓 ]𝑗 ]𝑖 (4)

𝑛1 equals to the number of nodes in the higher level for
node i. Considering [𝑥𝑓 ]𝑗 = 𝑥𝑗 𝑐𝑗 (neuron activation
and constant value), we have:

[𝑥𝑓 ]𝑖 =

𝑛1∑︁
𝑗=1

[[𝑥𝑓 ]𝑗 ]𝑖 =

𝑛1∑︁
𝑗=1

[𝑥𝑗 𝑐𝑗 ]𝑖 =

𝑛1∑︁
𝑗=1

[𝑥𝑗 ]𝑖 𝑐𝑗 = 𝑥𝑖 𝑐𝑖

(5)
𝑛1 equals to the number of nodes in the higher level of
node i. Moreover,

𝑐𝑖 =

𝑛1∑︁
𝑗=1

𝑤+
𝑖𝑗 [𝑥𝑓 ]𝑗∑︀𝑛

𝑖1=1 𝑥𝑖1 𝑤+
𝑖1𝑗

(6)

𝑛1 equals to the number of nodes in the higher level
of node i, and n is the number of neurons in the lower
level of j (the same level of i). At the beginning, we have
[𝑥𝑓 ]𝑓 = 𝑥𝑓 𝑐𝑓 and 𝑐𝑓 = 1. By induction, there is a
product structure with a backward propagation rule and
the conservation of the output (redistribution on input
nodes).
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Table 1
Used environments and tools.

Set Tool and environment

Datasets definition
Prediction

Explainability

Colaboratory (Colab) - Backend Google Compute Engine Python™ 3
RAM: 0.75GB out of 12.69GB; available disk space: 38.47GB

out of 107.72GB Tensor Processing Unit (TPU)

Dataset analysis
Weka 3.8.5 - Windows 8.1 (64 bit) – Intel® Celeron® CPU 1007U

1.50Ghz RAM 4G (3.88G usable)

3. Methodology
In this research, we firstly analyzed some papers about
diabetes risk predictions and explainability for LRP and
DTD. We selected a rule (FINDRISC) to produce random
datasets. We defined our prediction model, named GPA,
with three layers: MLP for partial prediction and features
extraction, Closest Classes and Elements (CCE) for partial
prediction, Weighted Sum (WS) for final prediction. CCE
evaluates similarity between one unlabeled node and all
labelled nodes, using extracted features. WS sums the
two partial predictions, adequately weighted, to define
the final prediction by argmax. We analyzed the best
hyper-parameters, using GridSearchCV of scikit-learn
tool too. We analyzed the test predictions comparing
GPA accuracies against MLP accuracies and some WEKA
algorithms accuracies. We defined explainability solu-
tion based on a forward DTD derived component for
first and implicitly third layer, and on weight (standard
deviation) of extracted features (related to the training
data) for second and implicitly third layer. We tested the
explainability using a simplified MLP.

4. Tools and environments
Table 1 reports the used environments and tools distin-
guishing between first set (datasets definition, prediction,
explainability) and second set (only dataset analysis).

5. Dataset definition
We generate eight datasets according to FINDRISC [1].
Four datasets are for prediction experiments (2500 el-
ements for testing; 1000, 1500, and 2000 for training),
and other four are for explainability experiments (1750
elements for testing; 1000, 1250, and 1500 for training).
The rule identifies risk individuals, without laboratory
tests. It considers five risk levels in respect to score: very
low (0-3), low (4-8), moderate (9-12), high (13-20) and
very high (21-26). All datasets are equally balanced in
respect to the possible scores. These are the attributes to
be considered: BMI (weight (kg) / height squared (m2)),

age (years), waist circumference (differentiating for gen-
der), use of blood pressure medication, history of high
blood glucose, physical activity expressed in hours/week,
daily consumption of vegetables, fruits or berries, family
history of diabetes. The score is calculated according to
the rule. The random input data are normalized to [0, 1].
These are the input data of our prediction model, while
the risk score is the right prediction. In Figure 1, we can
see the distribution (mean and standard deviation) of the
generated datasets.

6. Dataset analysis
For a preliminary analysis of the produced datasets, we
considered the dataset with 2000 elements and we ana-
lyzed in details both their data distribution and accuracy
results, by using WEKA tool [2]. In Table 2 we can see
accuracy results for the considered algorithms: J48, KStar,
MLP, Naïve Bayes (NB), RandomTree (RT). We used 10-
fold cross-validation for the analysis.

7. Prediction model
Our prediction model have three layers: first layer is
MLP, second layer is CCE (it uses features extracted from
MLP), and third layer combines predictions of both MLP
and CCE. MLP have the following elements: dense, batch
normalization, activation–ReLU, dropout, dense, batch
normalization, activation–ReLU, dropout, dense, batch
normalization, activation–ReLU, dropout, dense, activa-
tion–Softmax. CCE uses the features extracted from third
dense layer; for each testing node we implement this al-
gorithm:

• Calculate Euclidean distance between the consid-
ered testing node and all training nodes

• Normalize these distances to [0,1]
• Using normalized distances, calculate Gaussian

kernel similarity between the considered testing
node and all training nodes:

𝑠𝑖𝑚𝑖,𝑗 = 𝑒
− 𝑑(𝑖,𝑗)2

2 𝜎2 (9)
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Figure 1: Dataset distribution for input data (from left to right: prediction and explainability experiments).

Table 2
WEKA prediction tests using dataset with 2000 nodes (10-fold cross-validation).

Model Accuracy

J48 0.826
KStar 0.71
MLP 0.7965
NB 0.713
RT 0.7595

• Normalize these similarities to [0, 1]
• For each possible label (risk class), calculate the

sum of similarities
• Normalize all sums to the overall sum
• Recalculate sum distribution, considering the sim-

ilarity between labels too, according to the fol-
lowing algorithm (m is the number of labels/risk
classes):

STemp=NP.copy(S)
S[0]=STemp[0]+STemp[1]*(m-1)/m
for h in range(1,m-1): S[h]=STemp[h]+(STemp[h-
1]+STemp[h+1])/2*(m-1)/m
S[m-1]=STemp[m-1]+STemp[m-2]*(m-1)/m
S=S/NP.sum(S)

The third layer of the prediction model, considering the
single testing node, for each class produces the weighted
sum of probabilities obtained by both MLP and CCE for
that class. Prediction is obtained by argmax function.

7.1. Accuracy definition
We consider two accuracy definitions (eq. 7 and eq. 8).
The second definition uses the similarities between labels,
because risk levels are orderable. In particular: np is the
number of unlabeled nodes, 𝑅𝐿𝑖 is the right label for i
node, 𝑃𝐿𝑖(𝑗) is the value of probability distribution for
unlabeled node i considering label j, and m is the number
of possible labels (classes, risk levels).

7.2. Hyper-parameters
Hyper-parameters have been chosen with some prelimi-
nary tests. Initially, for MLP component we considered
GridSearchCV for a first analysis. We produced a random
dataset of 1000 nodes using mlpClassifier with 200 max
iterations and the following parameter space: hidden-
LayerSizes with (128,256,32), (256,512,32), (512,1024,32);
learningRateInit with 0.01, 0.1; validationFraction with
0.1, 0.2; batchSize with 50, 100. For this analysis, we
obtained this results as best: batchSize=100, hiddenLay-

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑︀𝑛𝑝
𝑖=1 𝑖𝑓(𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈{1,...,𝑚}𝑃𝐿𝑖(𝑗) = 𝑅𝐿𝑖, 1, 0)

𝑛𝑝
(7)

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦1 =

∑︀𝑛𝑝
𝑖=1 (1−

|𝑎𝑟𝑔𝑚𝑎𝑥𝑗∈{1,...,𝑚}𝑃𝐿𝑖(𝑗)−𝑅𝐿𝑖|
𝑚−1

)

𝑛𝑝
(8)
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Table 3
Hyper-parameters for prediction tests.

Component Parameter Value

input numberOfAttributes 9
MLP batchSizeMLP 100
MLP decayMLP 1e-6
MLP dropoutParameterMLP 0.25
MLP epochsMLP 1000
MLP learningRateMLP 0.01
MLP unitsFirstDenseMLP 512
MLP unitsSecondDenseMLP 1024
MLP unitsThirdDenseMLP 16, 32 (extracted features)
MLP unitsFourthDenseMLP 5 (prediction classes)
MLP validationSplitMLP 0.2
CCE gaussianKernelWidth 0.5
WS modelWeightMLP 0.05
WS modelWeightCCE 0.95

Table 4
Accuracies results for MLP and GPA

Model Number of labelled nodes Number of extracted features Accuracy Accuracy1

MLP 1000 16 0.8252 0.9559
MLP 1000 32 0.8188 0.9543
MLP 1500 16 0.8356 0.9587
MLP 1500 32 0.8392 0.9597
MLP 2000 16 0.8552 0.9638
MLP 2000 32 0.8564 0.9641
GPA 1000 16 0.82673008 0.9562
GPA 1000 32 0.82512752 0.9558
GPA 1500 16 0.8399342399999999 0.9597
GPA 1500 32 0.8463356799999999 0.9614
GPA 2000 16 0.8599420799999999 0.9649
GPA 2000 32 0.8583425600000001 0.9645

erSizes=(128, 256, 32), learningRateInit=0.01, validation-
Fraction=0.1. After other empirical tests, we chose the
hyper-parameters described in Table 3.

7.3. Prediction results
In Table 4, we present accuracy results for both only MLP
component and all model GPA. In Figure 2, we outline
the differences between accuracy of GPA and MLP. As we
can see, we have a slightly better performance with GPA.
Moreover, the results are better than the results obtained
with the algorithms tested with WEKA tool. Of course,
we must remember that we are reasoning with restricted
random datasets and so our conclusions are useful only
from a testing point of view and not for healthcare formal
deductions. In Table 5, we present execution times for
prediction tests.

8. Explainability model
Considering DTD theory, we define a simplified rule
to calculate the relevance of the single input parameter
against the single feature extracted from MLP first layer.
We consider the weights of the edges for the trained
MLP. We do not consider biases. Moreover, we manage
the possible weight of the features for the Gaussian ker-
nel distances in the CCE layer. The potential weight is
calculated according to labelled nodes, corresponding
to training data. We weight the standard deviation of
a feature. In fact, features with a high variation give a
high contribute to the substantial distances and so they
have a significant contribute for prediction classification
(we could also analyze better the possibility to normalize
training features values). We first obtain a formula for
explainability which does not depend from the particular
input data and prediction. Then, we apply the formula
to a single input data by multiplication, so to calculate
the percentage of relevance for that parameter in the
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Figure 2: GPA-MLP accuracy/accuracy1 vs number of extracted feature (left: 16; right: 32).

Table 5
Execution times of prediction model.

Number of labelled nodes Number of extracted features Execution time

1000 16 00:03:28
1000 32 00:03:31
1500 16 00:04:50
1500 32 00:04:53
2000 16 00:06:14
2000 32 00:06:21

considered prediction. Here, we use a forward definition
for explainability, maintaining the conservation of total
relevance. Formally, if we have a normalized unlabeled
node represented by the input data (𝑣1, . . . , 𝑣𝑛), with
∀𝑖 ∈ {1, . . . , 𝑛} 𝑣𝑖 ∈ [0, 1], we can establish the rele-
vance of input i in the prediction as 𝑅𝑖,𝑣 ddefined in the
equations (10), (11), (12), (13). Where:

• F is the number of extracted features
• 𝑥𝑖

𝑓 is the value of feature f for labelled node i
• N is the number of labelled nodes (training dataset)
• 𝐶𝑙+1 is the number of neurons for layer l+1 of

MLP (layer 0 is the input data)
• LF is the layer of MLP for features extraction;

for a particular f, this layer has only one neuron

𝑅𝑖,𝑣 =
𝑣𝑖

∑︀𝐹
𝑓=1 [𝑅𝑛𝑜𝑟𝑚𝑓

𝑖,0 𝜎𝑓 ]∑︀𝑛
𝑗=1 𝑣𝑗

∑︀𝐹
𝑓=1 [𝑅𝑛𝑜𝑟𝑚𝑓

𝑗,0 𝜎𝑓 ]
(10)

𝜎𝑓 =

√︂∑︀𝑁
𝑖=1 (𝑥

𝑖
𝑓 −

∑︀𝑁
𝑖=1 𝑥𝑖

𝑓

𝑁
)2 −𝑚𝑖𝑛𝑓∈{1,...𝑓}

√︂∑︀𝑁
𝑖=1 (𝑥

𝑖
𝑓 −

∑︀𝑁
𝑖=1 𝑥𝑖

𝑓

𝑁
)2

𝑚𝑎𝑥𝑓∈{1,...𝑓}

√︂∑︀𝑁
𝑖=1 (𝑥

𝑖
𝑓 −

∑︀𝑁
𝑖=1 𝑥𝑖

𝑓

𝑁
)2 −𝑚𝑖𝑛𝑓∈{1,...𝑓}

√︂∑︀𝑁
𝑖=1 (𝑥

𝑖
𝑓 −

∑︀𝑁
𝑖=1 𝑥𝑖

𝑓

𝑁
)2

(11)

𝑅𝑛𝑜𝑟𝑚𝑓
𝑖,𝑙 =

𝐶𝑙+1∑︁
𝑗=1

𝑅𝑛𝑜𝑟𝑚𝑓
𝑗,𝑙+1 𝑤+

𝑖𝑙𝑗𝑙+1∑︀𝐶𝑙
𝑘=1 𝑤

+

𝑘𝑙𝑗𝑙+1

(12)

𝑅𝑛𝑜𝑟𝑚𝑓
1,𝐿𝐹 = 1 (13)
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Table 6
Hyper-parameters for explainability tests.

Component Parameter Value

input numberOfAttributes 9
MLP batchSizeMLP 100
MLP decayMLP 1e-6
MLP dropoutParameterMLP 0.25
MLP epochsMLP 1000
MLP learningRateMLP 0.01
MLP unitsFirstDenseMLP 64
MLP unitsSecondDenseMLP 128
MLP unitsThirdDenseMLP 8 (extracted features)
MLP unitsFourthDenseMLP 5 (prediction classes)
MLP validationSplitMLP 0.2
CCE gaussianKernelWidth 0.5
WS modelWeightMLP 0.05
WS modelWeightCCE 0.95

explainability C [9,64,128,1]
explainability LF 3
explainability MLPLevelsForExplainability [0,4,8]

corresponding to the particular feature extracted
f

• 𝑤+

𝑖𝑙𝑗𝑙+1 is the absolute value of the weight of MLP
for the edge which connect neuron i of layer l
with neuron j of layer l+1

As we can see, 𝑣𝑖 is the only element related to the par-
ticular input data. All the other elements expressed in
the formulas depends only on fixed hyper-parameters
and on original training dataset. Moreover, in our tests,
we calculate the constant components of 𝑅𝑖,𝑣 only once,
so to optimize the tests computation.

8.1. Hyper-parameters
Starting from hyper-parameters used for prediction tests,
we simplified MLP component establishing new hyper-
parameters for explainability tests, where we repeated
training and prediction process too. We report the chosen
configuration values in Table 6.

8.2. Explainability results
In Figure 3, we present the results of explainability tests.
In particular, we can see the average relevancies for all
input data in respect to all testing predictions. E.g., we
can see particular relevancies for parameter 1 (age), 2
(BMI), 3 (waist circumference), 8 (family history) and
less relevancies for parameter 2 (gender). Of course, we
must remember that we are reasoning with restricted
random datasets and so our conclusions are useful only
from a testing point of view and not for healthcare formal
deductions. In Table 7, we present execution times for
explainability tests.

Figure 3: Average relevancies vs number of training nodes
(left/top: 1000; right/top: 1250; left/bottom: 1500).

9. Conclusion
In this work, we have proposed an explainable model to
predict diabetes risk. We have tested our model using ran-
dom defined datasets produced according to a healthcare
rule named FINDRISC. We chose to define random data to
have the possibility to evaluate our model in a controlled
manner (input data are sufficiently distributed and risk
predictions are equally distributed) and to overcome any
privacy problem. We defined our model, named GPA, us-
ing three layers. First layer considers a MLP module and
it is used both to produce a first partial mixed prediction
and to extract features for the second layer. This layer,
named CCE, produces a partial mixed prediction consid-
ering the similarity between a single unlabeled node in
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Table 7
Execution times of explainability model.

Number of labelled nodes Number of extracted features Execution time

1000 8 00:02:44
1250 8 00:02:32
1500 8 00:02:39

respect to all labelled nodes, managing class distances
too. In this layer, a node is represented by the features ex-
tracted from first layer. Third layer, named WS, considers
the sum of the partial mixed prediction of the first and
second layer (in a weighted manner) to obtain the final
prediction by argmax. Experimentally, we noticed that
accuracy improves using the all GPA model in respect to
using only MLP layer. Moreover, we noticed that accu-
racy results are better than considering accuracy results
produced using some algorithms of WEKA tool. The
most contribute of our research is the explainability of
our model in terms of input parameters, useful for a MD
(medical doctor) understanding, also considering more
predictions together. Generally, we must remember that
now our conclusions are useful only from a testing point
of view and not for real deductions.
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