
Code Protection Techniques when Distributed in Source
Format: an Adobe Connect Pod Written in Javascript
Alessandro Simonetta1, Francesco Rinaldi1

1Department of Enterprise Engineering, University of Rome “Tor Vergata”, Via del Politecnico n.1, 00133, Rome, Italy

Abstract
The purpose of this article is to describe techniques for protecting code when distributed in source format. This situation oc-
curs when, for instance, the client component of a web application, whose source code is easily extractable from the browser
even by inexperienced users. The case study proposed uses the Adobe Connect© platform, an emerging technology in the
field of video communication, content sharing and e-learning environments, which allows to easy integration of applications
written in javascript language. The astonishing ease of realization of embedded applications within Adobe®’s ecosystem
contrasts with the impossibility of protecting the work done, which is visible and redistributable simply by copying the file
containing it. The unwary author may thus run the risk of seeing his work thwarted by losing any intellectual property
rights arising from the use of the software he has created. For this reason we have realized a form of intellectual property
protection when software is distributed in source format.

Keywords
development, coding, source code, software protection, javascript, adobe connect, copyright, API, COVID-19, Pod, intellec-
tual property

1. Introduction
Software production has evolved considerably in recent
years thanks to the advent of new technologies, innova-
tive development and deployment methodologies, such as
DevOps [1][2][3]. Monolithic applications, which are of-
ten obsolete, have been replaced by microservice applica-
tions with greater advantages in terms of resilience, scal-
ability, speed of development (time-to-market and contin-
uous integration & delivery) and, last but not least, sim-
plicity of release on the cloud [4][5]. The availability of
server-side microservices has made the front-end graphi-
cal interfaces on the clients strongly decoupled from the
rest of the code. This facilitated integration via Applica-
tion Programming Interface (API) with the software plat-
forms of Content Management System (CMS), Customer
Relationship Management (CRM) and and Learning Man-
agement System (LMS). In most cases these integrations,
Pods or Plug-ins, are limited to the creation of a front-end
application that interacts with the exposed services. In
this context, the protection of the produced source code
has become a complex issue to deal with and difficult to
manage.

This article will briefly review the history of software
application protection systems. It is followed by the pro-
posed solution to protect the source code of a web ap-
plication. Finally, a real case will be described, i.e. the

SYSTEM 2021 @ Scholar’s Yearly Symposium of Technology,
Engineering and Mathematics. July 27–29, 2021, Catania, IT
" alessandro.simonetta@gmail.com (A. Simonetta);
franin@gmail.com (. F. Rinaldi)
� 0000-0002-0877-7063 (A. Simonetta)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

protection of a Pod realized in javascript on Adobe Con-
nect©1.

2. History of software protection
systems

The protection of developed code is a problem that has
always existed in the field of information technology.
Source code written in compiled programming languages
(e.g. C++) is transformed into object code, directly com-
prehensible by the machine. This step makes the code
unintelligible to a human being because it is coded in
binary. However, it is always possible to use a decompiler
that allows you to restore it to a source form similar (but
not the same) to the original [6]. Creating an application
that cannot be cracked is not an easy task. To understand
the extent of the phenomenon, just consult the interna-
tional reports [7],[8]. When it comes to protection or
security, we know that it is almost impossible to use ab-
solute terms, but it is necessary to use relative criteria.
Indeed, what we have to do is study the motivations, the
level of preparation and the financial resources of those
who might be interested in compromising the protection
of our software. A general criterion is to assume a higher
position than the potential positions of the other parties,
because it would not make sense to spend more energy
than that. In the assessment it must be considered that
the free circulation of software, even if unauthorised,
favours its dissemination and knowledge [9][10], that
which is normally paid for by investments in marketing
campaigns. On the other hand, if a company considers

1https://www.adobe.com/products/adobeconnect

32

mailto:alessandro.simonetta@gmail.com
mailto:franin@gmail.com
https://orcid.org/0000-0002-0877-7063
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

software useful, it will certainly find it more convenient
to purchase it than to risk using it without a license. Over
time, various techniques have been used to protect soft-
ware applications, methods that have changed with the
evolution of architectures and, above all, with the advent
of the network that has made it possible to control li-
censes in real time, initially on a LAN and later on the
Internet.

The first local techniques used a protection which
checks whether the license related to the hardware on
the machine where it was first installed. This required
a double step: the generation of a key depending on the
hardware factors of the machine (serial number of the
hard disk, date of the ROM, MAC address of the network
card, ...) at the time of installation and the verification, at
each execution, that the key calculated at that moment
was the same as the one registered during installation.
Clearly, when there was a failure of a hardware com-
ponent, the installation had to be repeated in order to
restore the correct values. To overcome this problem,
the alternative was the availability of a token stored on
non-copyable removable media. Early systems used com-
mon floppy disks, later CD-ROMs, which had defective
sectors in some tracks of the medium. In this way, it
was not possible to duplicate the medium with the faulty
tracks because the copying programs only acted on the
data. Soon, copiers were created that were able to mark
the faulty tracks, so that the media could be reproduced
identical to the original, making it possible to use the
software on several machines (each with duplicate pro-
tection media). A better protection was only introduced
later with the advent of USB memories, both because
these hardware devices are difficult to duplicate, and
also because they are only accessible from the relevant
application. The protection provided by a USB device,
commonly called dongle, requires the use of a key at the
running location, so if there are several users using the
software at different times, they must be able to exchange
the device. It is also possible associates the license to a
person, who carries the device with him and can there-
fore use the software on different locations. Obviously,
in order to solve the difficulties caused by the use of a
dongle, it would be sufficient to purchase several user
licenses.

With the increasing use of networks, computers were
no longer stand-alone (i.e., isolated from each other) but
they could exchange information with each other. At
this point, the token could be used by a central server
that had the task of controlling the installation of ap-
plications within the local network on the basis of the
license purchased, distributing the privileges of use (li-
cense manager). The need for protection has diversified
in web architectures, especially in those for which is
sufficient to have access in terms of credentials on a re-
mote server, while for copying the code, it is distributed

in open format (typically HTML and javascript) on the
client [11]. The availability of the source code renders
all the protection systems examined so far useless, since
a malicious user could easily remove them.

Although a developer can always register the source
code to be able to legally claim both authorship and
wrongful use, none of these threats are better deterrents
than a well-designed protection system.

3. The proposed solution
The proposed solution considers the source code dis-
tributed on the client of a typical web application as the
target to be protected. It is based on three concentric
protection levels:

• the basic level, it marks the GUI of the applica-
tion with the logo and the name of the licensee
(watermark);

• the intermediate level, it makes the source code
unreadable and unmodifiable to a programmer
through code obfuscation techniques;

• the server level (license manager):

– monitors the clients and decides action
strategies in relation to the client’s license;

– sends the missing source code to the client;
– checks that the client’s code has not been

altered and that the logo and the licensee’s
name are consistent with the license.

The architecture of the proposed solution is shown in
the Fig. 1.

Figure 1: The architecture of the proposed solution

3.1. Basic level: watermarking
In order to prevent the diffusion and use of counterfeit
copies of a product (not necessarily software), a good
deterrent may be to indelibly and clearly mark the prod-
uct itself with the logos and name of the licensee. It is
unlikely that a professional user will use it with the name
of another licensee, also because if there were a check

33



Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

on the software, it would be difficult to prove that the
purchase was made legally.

Ideally, a certificate of originality should be included
in the HTML file, or in the javascript source, without the
ability to be deleted or altered, the same level of guarantee
that the watermark on a banknote has that ensures its
originality [12]. On the other hand, in a source code, it
is quite easy to alter the loading of an image from an
external file or to change the name of the licensee if it
is written in plain text as a sequence of characters. The
solution is to devise an encapsulation and information
hiding mechanism that makes the licensee’s logo and
name unreadable in the HTML file but visible to run-
time, only after a complex calculation process. This first
level of protection must be followed by two others, which
aim to encapsulate and protect it. We can say that it is
similar to the technique that has been used for centuries
to protect fortresses with outer walls.

3.2. Intermediate level: code obfuscation
The second level of protection is based on the technique
of source code obfuscation, a practice well known in
literature [13][14].

In recent years, we are witnessing machine learning
being used in a wide variety of ways [15][16][17][18]
thanks to the discovery of increasingly efficient imple-
mentations [19][20][21]. It has been shown that such
algorithms can also be successfully implemented in ob-
fuscation techniques [22][23].

However, software obfuscation for the purpose of in-
tellectual property protection remains a very challenging
topic [24], even though it has been shown that, while
reading a web page, it is possible to automatically de-
tect the content of obfuscated javascript strings [25].
The transformation of the code and its execution flow is
isofunctional: the original behavior is kept unchanged.
What changes is the complexity, which increases because
processes are made convoluted and variables are scat-
tered throughout the code. The goal is to transform a
source code and make it similar to an object code, from
the point of view of comprehensibility. There are several
tools that perform this transformation, but there are just
as many that perform the reverse operation (deoffusca-
tors)[26][27]. Although the final result is always far from
the original one, it is possible to insert in the source code
some useless instructions (junk code) that will never be
used and that have the purpose only to amplify the com-
plexity. As an example, let’s see how an obfuscator acts
on a simple javascript function:

f u n c t i o n l o c a l S t o r a g e i n c r e m e n t ( ) { \ \
l o c a l S t o r a g e . s e t I t e m ( ' streamL ' ,

( p a r s e I n t ( l o c a l S t o r a g e .
g e t I t e m ( ' streamL ' ) ) + 1 ) + ' ' ) ;

l o c a l S t o r a g e .
s e t I t e m ( 'w ' , '&w=n ' ) ;

}

After applying obfuscation techniques:

f u n c t i o n l o c a l S t o r a g e i n c r e m e n t ( ) {
var _ 0 x 3 f 4 3 6 f = _0x30e3d7 ; l o c a l S t o r a g e [
' s e t I t e m ' ] ( _ 0 x 3 f 4 3 6 f ( 0 x166 ) ,
p a r s e I n t ( l o c a l S t o r a g e [ _ 0 x 3 f 4 3 6 f ( 0 x12e ) ]
( ' streamL ' ) ) + 0 x1 + ' ' ) , l o c a l S t o r a g e
[ _ 0 x 3 f 4 3 6 f ( 0 x176 ) ] ( 'w ' , _ 0 x 3 f 4 3 6 f ( 0 x17b ) ) ; }
}

The transformation proves the difficulty of interpretation
that an attacker might have in deducing the behavior of
the function in question. This difficulty is amplified if the
code is very long and, above all, if there are useless parts
to analyze. In this case the reverse engineering activity
is long, laborious and has little chance of success.

3.3. Server level: license manager
The third level of protection is by means of a remote
server: the license manager which monitors who uses
the client, sends the parts of code that the client lacks in
order to work, and checks which there are no alterations
to the code (e.g. substitution of the logo or name of
the licensee). Therefore, the application that uses this
protection system needs a connection to the Internet in
order to work. This requirement is also necessary to
guarantee the functionality of the application itself since
it is based on web technology on an internet network.

Moreover, the same server has modifiable policies
where the application usage criteria are defined. Accord-
ing to the policies of software diffusion and to the risk
(loss of profit, illicit duplication,...) you want to assume
in maintaining active functioning demonstrative licenses,
you can decide if:

• the demonstration state is unlimited and used to
advertise the product;

• the demo status remains active for a limited trial
period, after which if there is no connection to
the server, the license expires and stops working;

• the product does not work if it has no connection
with the server.

Whenever the client software is started, it connects
with the server and provides information about the tasks
it is called to perform. This conversation is necessary
for the client to have all the software necessary for its
operation.

Generally, the minimum requirement for requesting
services from a server is to be authenticated. In the ab-
sence of authentication, an attack from a not trusted

34



Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

client can be avoided by excluding the possibility of the
cross-domain: the source code will be sent only if the
request comes from an authorized client and domain.

The availability of the license manager is also funda-
mental to check if the javascript file on the client still
contains the logos of the registered licensee or if some
form of code alteration has happened. All this can be
easily implemented with a hashing function, so if a user
should manage to penetrate the first two protection levels
and change the logo in the source code, the hashing func-
tion will return a different value from the expected one,
and the license manager could decide the best strategy
to implement.

Any software application that wants to adopt the pro-
posed protection solution does not need to know not
send personal data in the conversation from the client
to the license manager. Also because it depends on the
regulations in the country where the user is located and
the license manager server too. In Europe such legisla-
tion is Regulation (EU) 2016/679 (General Data Protection
Regulation)[28].

4. Case Study
This Case Study aims to demonstrate, with a practical ex-
ample, the theoretical concepts described so far. In recent
years we have been witnessing an increase in the use of
video communication software especially in relation to
the problem of the pandemic caused by the coronavirus,
SARS-CoV-2, also known as COVID-19 [29][30][31][32].
Similarly, new requirements have arisen encouraging the
distancing of people in all meeting occasions in social
and work occasions [33], for example, in reserving seats
in the cafeteria of a work environment or in the need to
perform tasks remotely through a collaborative platform
for meetings, training or job interviews.

These platforms can be enriched with new functionali-
ties and promote new job opportunities for programmers
who have a new space where to spread their ideas. For
this reason, we have chosen to use the Adobe Connect©
communication platform for reasons of dissemination
[34][35][36] but also because it allows us to write appli-
cations in a programming language already known and
established as javascript.

4.1. The Adobe Connect platform
Adobe Connect© makes available its Software Develop-
ment Kit (SDK)2 that contains all the documentation and
tools useful for developers to build embedded applica-
tions. The SDK consists of:

• the manual for the use of the javascript-capable
Application Programming Interface (API);

2https://console.adobe.io/servicesandapis

• the example application to start from;
• the library itself that contains the classes and

methods to be called upon in development.

The application is assembled in a container that we will
call Pod in ZIP format. The process of developing and
deploying an application (Fig. 2) consists of the following
steps:

• collection of functional requirements including
the definition of the GUI;

• definition of the layout of the web page;
• identification of the API necessary for the func-

tioning of the application;
• development of the application components (cus-

tom library);
• release of the ZIP file on the Adobe Connect©

server.

The collection of requirements is preparatory to the de-
sign of the human-machine interface (HTML file) and
to identify the APIs necessary for the operation of the
application through the mechanism of callback. In this
way it will be possible to activate the new custom de-
veloped functions, following the events that the system
will receive. Once the application components have been
created, they will be inserted in the javascript library ac-
cessible by the HTML file. At this point it will be possible
to create the ZIP file that will contain:

• the HTML file with the page of the developed
application;

• the configuration file (breeze-manifest.xml) with
the names and paths of the application compo-
nents;

• the folder lib with the SDK and the custom li-
braries developed;

• the folder css eventually added for the webpage
layout settings.

To distribute the Pod it will be sufficient to load it into
Adobe Connect© and use the product sharing mecha-
nisms (e.g. virtual rooms) without the need for installa-
tion and configuration.

Below there is a simple example of using the
SDK classes available in the javascript file (con-
nect_customPodSDK.js):

< s c r i p t type =" t e x t / j a v a s c r i p t " >
cpu=ConnectCustomSDK . SyncConnector | | { } ;
cpu . i n i t ( onConf igured ,

" com . adobe . connec t . b a s i c l i s t s y n c " ,
" 9 . 5 . 0 0 1 " , " connectsdkhook " ) ;

</ s c r i p t >

35



Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

Figure 2: Pod development and deply process

4.2. The development of a protected Pod
Suppose we want to create an application that allows a
teacher to show, during a teaching session (meeting), a
video presentation on a streaming server available on the
Internet.

Figure 3: The UML context-scheme

The application must have two modes of operation de-
pending on the user who is connected (teacher or learner).
The teacher must be able to choose the video to send in
broadcast to all students, start it and block it. The stu-
dent must view the video sent by the teacher during the
teaching session.

The application sends information to the license man-
ager about the activities and receives the code parts and
details about the operation mode from the license man-
ager. In Fig. 3 is shown in UML language the context
diagram of the application.

The class MyUserDetail available in the SDK allows us

Figure 4: UML Class Diagram ConnectCustomSDK

to read the information related to the user role (Fig. 4)
and consequently to select the operational mode.

var myUserData = cpu . g e t M y U s e r D e t a i l s ( ) ;
i f ( myUserData . d a t a . r o l e == ' owner ' ) {

/ / t e a c h e r a c t i o n s
} e l s e {

/ / s t u d e n t a c t i o n s
}

Once the application logic has been defined, it will be nec-
essary to link the system events to the custom javascript
methods through the callback registration. For simplicity
and without loss of generality, we will define javascript
methods that are homonyms to the Adobe Connect© API.
Communication between the teacher and the learner is
done using the APIs: dispatchSyncMessage and syncMes-
sageReceive. The first API send broadcast messages from
one participant to the others, the second API allows par-
ticipants to receive messages.

cpu . r e g i s t e r C a l l b a c k ( " U s e r J o i n e d " ,
U s e r J o i n e d ) ;

/ / New u s e r j o i n s the room
f u n c t i o n U s e r J o i n e d ( e v t ) {

/ / e v t . u s e r i s i s t a n c e o f MyUserData i l s
var f u l l n a m e = e v t . u s e r . f u l l n a m e ;
/ / send b r o a d c a s t the message
cpu . d i s p a t c h S y n c M e s s a g e ( " USERJOINED " ,

[ f u l l n a m e ] ,
f a l s e , t r u e ) ;

/ / s y n c h r o n i z e s the v i d e o f o r new u s e r
checkVideoSync ( ) ;

}

During a teaching session, a teacher may need to stop
the video to add a contribution relating to the video they
have just watched. In this case, it is useful to realize
a function that allows the video to be blocked for all
students following the lesson. This can be easily done
sending a message to all learner connected:

36



Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

cpu . r e g i s t e r C a l l b a c k
( " syncMessageRece ived " ,

syncMessageRece ived ) ;

f u n c t i o n syncMessageRece ived ( syncMsg ) {
i f ( syncMsg . msgNm== 'STOPVIDEO ' )

s t o p V i d e o ( ) ;
}

In Fig. 5 it is shown how the Pod is distributed from the
Adobe Connect© server to the student client worksta-
tions. This is done automatically with no intervention
required from the user connecting to the meeting.

Figure 5: Pod distribution to learner’s clients

Now let’s see how the authorised client requests from
the license manager the javascript code it needs to func-
tion. One method is to perform a GET call from the client
to the server that returns the code inserted in a client’s
HTML tag (demo in the following example).

<p i d =" demo" > </p>
. . . .
\ $ ( document ) . r eady ( f u n c t i o n ( ) {

\ $ . a j a x (
{

u r l : " h t t p s : / / servername / i n j e c t " ,
' method ' : 'GET ' ,
' s u c c e s s ' : f u n c t i o n ( answer ) {

document . ge tE l ementBy Id ( " demo " )
. innerHTML = answer [ 0 ] . s c r i p t ;

} ,
' e r r o r ' : f u n c t i o n ( ) {

a l e r t ( ' something wrong ' ) ;
}

. . . .

5. Conclusion
The software intellectual property’s protection is a com-
plex issue. When the code is distributed in the compiled
form, it maintains an intrinsic basic protection due to the
fact that there is no visibility of the processes wired into

it. Although, it is always possible to trace the source code
that generates it, the source code (except in the case of
particular programming languages) will never have the
same readability and form as the original code. There-
fore, it may be more difficult to copy it and reuse it in
environments other than where it was licensed.

In the case of open source distribution, there are vari-
ous forms of licenses that the owner can choose, but it is
not easy to block copying and use.

The growing use of video communication, content
sharing and e-learning environments is encouraging the
development of embedded applications and offering new
scenarios and opportunities for work.

The Adobe Connect© communication platform encour-
ages the development of applications in the javascript
language that is already known to the developer commu-
nity.

The idea of the proposed solution shows how it is
possible to adopt a multi-layered protection solution in
order to protect the intellectual property of the developed
code when it is distributed in source format.

Although the case study is focused on an embedded
application, the proposed method remains valid in gen-
eral and can be adopted regardless of the programming
language.

6. Acknowledgments
We would like to thank Luciano Fazio and Katherine L.
Ryan for their careful revisions and valuable suggestions
to the text. We are also grateful to Maria Cristina Paoletti
and Emanuele Iannaccone for the stimulating discussion
on the research articles and to the President of the UNI
CT 510 Security Commission, Fabio Guasconi, for his
interesting suggestions on security issues.

All trademarks mentioned in this article belong to their
rightful owners, have been used for explanatory purposes
only, without any purpose of infringement of Copyright
rights in force.

References
[1] P. Perera, R. Silva, I. Perera, Improve software

quality through practicing DevOps, 2017, pp. 1–
6. doi:10.1109/ICTER.2017.8257807.

[2] M. Senapathi, J. Buchan, H. Osman, Devops capa-
bilities, practices, and challenges: Insights from
a case study, in: Proceedings of the 22nd In-
ternational Conference on Evaluation and Assess-
ment in Software Engineering 2018, EASE’18, As-
sociation for Computing Machinery, New York,
NY, USA, 2018, p. 57–67. URL: https://doi.org/
10.1145/3210459.3210465. doi:10.1145/3210459.
3210465.

37

http://dx.doi.org/10.1109/ICTER.2017.8257807
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1145/3210459.3210465
http://dx.doi.org/10.1145/3210459.3210465
http://dx.doi.org/10.1145/3210459.3210465


Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

[3] C. Napoli, G. Pappalardo, E. Tramontana, Using
modularity metrics to assist move method refactor-
ing of large systems, in: 2013 Seventh International
Conference on Complex, Intelligent, and Software
Intensive Systems, IEEE, 2013, pp. 529–534.

[4] S. R. Dileepkumar, J. Mathew, Optimize contin-
uous integration and continuous deployment in
azure DevOps for a controlled microsoft .NET en-
vironment using different techniques and prac-
tices, IOP Conference Series: Materials Science
and Engineering 1085 (2021) 012027. URL: https:
//doi.org/10.1088/1757-899x/1085/1/012027. doi:10.
1088/1757-899x/1085/1/012027.

[5] D. Taibi, V. Lenarduzzi, C. Pahl, Continuous Ar-
chitecting With Microservices and DevOps: a
Systematic Mapping Study, 2019. doi:10.1007/
978-3-030-29193-8_7.

[6] O. Katz, Y. Olshaker, Y. Goldberg, E. Yahav, Towards
neural decompilation, 2019. arXiv:1905.08325.

[7] United States Trade Representative (USTR),
Special 301 report, 2021. URL: https:
//ustr.gov/sites/default/files/files/reports/2021/
2021%20Special%20301%20Report%20(final).pdf.

[8] S. Sahni, I. Gupta, Piracy in the Digital Era: Psy-
chosocial, Criminological and Cultural Factors,
2019. doi:10.1007/978-981-13-7173-8.

[9] J. Wang, R. L. Axtell, A. Loerch, Utilizing the pos-
itive impacts of software piracy in monopoly in-
dustries (2017). URL: https://dl.acm.org/doi/10.5555/
3106078.3106083.

[10] A. Prasad, V. Mahajan, How many pirates should
a software firm tolerate? an analysis of piracy pro-
tection on the diffusion of software, International
Journal of Research in Marketing 20 (2003) 337–353.
doi:10.1016/j.ijresmar.2003.02.001.

[11] T. Groß, T. Müller, Protecting javascript apps from
code analysis, in: Proceedings of the 4th Workshop
on Security in Highly Connected IT Systems, SHCIS
’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 1–6. URL: https://doi.org/
10.1145/3099012.3099018. doi:10.1145/3099012.
3099018.

[12] L. Regano, D. Canavese, C. Basile, A. Lioy, Towards
optimally hiding protected assets in software ap-
plications, in: 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS),
2017, pp. 374–385. doi:10.1109/QRS.2017.47.

[13] S. Hosseinzadeh, S. Rauti, S. Laurén, J.-M. Mäkelä,
J. Holvitie, S. Hyrynsalmi, V. Leppänen, Diversi-
fication and obfuscation techniques for software
security: A systematic literature review, Infor-
mation and Software Technology 104 (2018) 72–
93. URL: https://www.sciencedirect.com/science/
article/pii/S0950584918301484. doi:https://doi.
org/10.1016/j.infsof.2018.07.007.

[14] C. K. Behera, D. L. Bhaskari, Different obfus-
cation techniques for code protection, Pro-
cedia Computer Science 70 (2015) 757–763.
URL: https://www.sciencedirect.com/science/
article/pii/S1877050915032780. doi:https:
//doi.org/10.1016/j.procs.2015.10.114,
proceedings of the 4th International Conference
on Eco-friendly Computing and Communication
Systems.

[15] G. Capizzi, G. Lo Sciuto, C. Napoli, E. Tramon-
tana, A multithread nested neural network archi-
tecture to model surface plasmon polaritons prop-
agation, Micromachines 7 (2016). doi:10.3390/
mi7070110.

[16] R. Avanzato, F. Beritelli, M. Russo, S. Russo, M. Vac-
caro, Yolov3-based mask and face recognition al-
gorithm for individual protection applications, in:
CEUR Workshop Proceedings, 2020, pp. 41–45.

[17] G. Capizzi, G. Lo Sciuto, C. Napoli, E. Tramontana,
M. Woźniak, A novel neural networks-based tex-
ture image processing algorithm for orange defects
classification, Int. J. Comput. Sci. Appl. 13 (2016)
45–60.

[18] C. Napoli, F. Bonanno, G. Capizzi, Exploiting
solar wind time series correlation with magneto-
spheric response by using an hybrid neuro-wavelet
approach, Proceedings of the International As-
tronomical Union 6 (2010) 156–158. doi:10.1017/
S1743921311006806, cited By 26.

[19] G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, D. Gi-
ardino, A. Nannarelli, M. Re, S. Spanò, A pseudo-
softmax function for hardware-based high speed
image classification, Scientific Reports 11 (2021).
doi:10.1038/s41598-021-94691-7.

[20] S. Spanò, G. C. Cardarilli, L. Di Nunzio, R. Fazzo-
lari, D. Giardino, M. Matta, A. Nannarelli, M. Re,
An efficient hardware implementation of rein-
forcement learning: The q-learning algorithm,
IEEE Access 7 (2019) 186340–186351. doi:10.1109/
ACCESS.2019.2961174.

[21] S. Russo, S. Illari, R. Avanzato, C. Napoli, Reducing
the psychological burden of isolated oncological
patients by means of decision trees, volume 2768,
2020, pp. 46–53.

[22] M. Romanelli, K. Chatzikokolakis, C. Palamidessi,
Optimal obfuscation mechanisms via machine
learning, arXiv preprint arXiv:1904.01059 (2019).

[23] D. Canavese, L. Regano, C. Basile, A. Viticchié, Esti-
mating software obfuscation potency with artificial
neural networks, in: G. Livraga, C. Mitchell (Eds.),
Security and Trust Management, Springer Interna-
tional Publishing, Cham, 2017, pp. 193–202.

[24] S. Schrittwieser, S. Katzenbeisser, J. Kinder,
G. Merzdovnik, E. Weippl, Protecting software
through obfuscation: Can it keep pace with

38

https://doi.org/10.1088/1757-899x/1085/1/012027
https://doi.org/10.1088/1757-899x/1085/1/012027
http://dx.doi.org/10.1088/1757-899x/1085/1/012027
http://dx.doi.org/10.1088/1757-899x/1085/1/012027
http://dx.doi.org/10.1007/978-3-030-29193-8_7
http://dx.doi.org/10.1007/978-3-030-29193-8_7
http://arxiv.org/abs/1905.08325
https://ustr.gov/sites/default/files/files/reports/2021/2021%20Special%20301%20Report%20(final).pdf
https://ustr.gov/sites/default/files/files/reports/2021/2021%20Special%20301%20Report%20(final).pdf
https://ustr.gov/sites/default/files/files/reports/2021/2021%20Special%20301%20Report%20(final).pdf
http://dx.doi.org/10.1007/978-981-13-7173-8
https://dl.acm.org/doi/10.5555/3106078.3106083
https://dl.acm.org/doi/10.5555/3106078.3106083
http://dx.doi.org/10.1016/j.ijresmar.2003.02.001
https://doi.org/10.1145/3099012.3099018
https://doi.org/10.1145/3099012.3099018
http://dx.doi.org/10.1145/3099012.3099018
http://dx.doi.org/10.1145/3099012.3099018
http://dx.doi.org/10.1109/QRS.2017.47
https://www.sciencedirect.com/science/article/pii/S0950584918301484
https://www.sciencedirect.com/science/article/pii/S0950584918301484
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.07.007
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.07.007
https://www.sciencedirect.com/science/article/pii/S1877050915032780
https://www.sciencedirect.com/science/article/pii/S1877050915032780
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.10.114
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.10.114
http://dx.doi.org/10.3390/mi7070110
http://dx.doi.org/10.3390/mi7070110
http://dx.doi.org/10.1017/S1743921311006806
http://dx.doi.org/10.1017/S1743921311006806
http://dx.doi.org/10.1038/s41598-021-94691-7
http://dx.doi.org/10.1109/ACCESS.2019.2961174
http://dx.doi.org/10.1109/ACCESS.2019.2961174


Alessandro Simonetta et al. CEUR Workshop Proceedings 32–39

progress in code analysis?, ACM Comput. Surv.
49 (2016). URL: https://doi.org/10.1145/2886012.
doi:10.1145/2886012.

[25] Y. Choi, T. Kim, S. Choi, C. Lee, Automatic de-
tection for javascript obfuscation attacks in web
pages through string pattern analysis, in: Y.-h. Lee,
T.-h. Kim, W.-c. Fang, D. Ślęzak (Eds.), Future Gen-
eration Information Technology, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009, pp. 160–172.

[26] Y. Fang, C. Huang, Y. Su, Y. Qiu, De-
tecting malicious javascript code based on se-
mantic analysis, Computers & Security 93
(2020) 101764. URL: https://www.sciencedirect.com/
science/article/pii/S0167404820300481. doi:https:
//doi.org/10.1016/j.cose.2020.101764.

[27] B. Yadegari, B. Johannesmeyer, B. Whitely, S. De-
bray, A generic approach to automatic deobfus-
cation of executable code, in: 2015 IEEE Sympo-
sium on Security and Privacy, 2015, pp. 674–691.
doi:10.1109/SP.2015.47.

[28] European Union, Regulation 2016/679 (Gen-
eral Data Protection Regulation), 2016. URL:
https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32016R0679.

[29] K. A. Karl, J. V. Peluchette, N. Aghakhani, Vir-
tual work meetings during the covid-19 pandemic:
The good, bad, and ugly, Small Group Re-
search (2021) 10464964211015286. URL: https://
doi.org/10.1177/10464964211015286. doi:10.1177/
10464964211015286.

[30] Z. R. Alashhab, M. Anbar, M. M. Singh, Y.-B.
Leau, Z. A. Al-Sai, S. Abu Alhayja’a, Impact of
coronavirus pandemic crisis on technologies and
cloud computing applications, Journal of Electronic
Science and Technology 19 (2021) 100059. URL:
https://www.sciencedirect.com/science/article/pii/
S1674862X20300665. doi:https://doi.org/10.
1016/j.jnlest.2020.100059, special Section
on In Silico Research on Microbiology and Public
Health.

[31] M. H. Nguyen, J. Gruber, J. Fuchs, W. Marler,
A. Hunsaker, E. Hargittai, Changes in digi-
tal communication during the covid-19 global
pandemic: Implications for digital inequality
and future research, Social Media + Soci-
ety 6 (2020) 2056305120948255. URL: https://
doi.org/10.1177/2056305120948255. doi:10.1177/
2056305120948255, pMID: 34192039.

[32] J. Hacker, J. vom Brocke, J. Handali, M. Otto,
J. Schneider, Virtually in this together –
how web-conferencing systems enabled a new
virtual togetherness during the covid-19 cri-
sis, European Journal of Information Systems
29 (2020) 563–584. URL: https://doi.org/10.1080/
0960085X.2020.1814680. doi:10.1080/0960085X.

2020.1814680.
[33] K. Kaspar, Motivations for social distancing

and app use as complementary measures to com-
bat the covid-19 pandemic: Quantitative survey
study, J Med Internet Res 22 (2020) e21613.
URL: http://www.jmir.org/2020/8/e21613/. doi:10.
2196/21613.

[34] B. Jamalpur, Kafila, K. R. Chythanya, K. S. Ku-
mar, A comprehensive overview of online
education – impact on engineering students
during covid-19, Materials Today: Proceed-
ings (2021). URL: https://www.sciencedirect.com/
science/article/pii/S2214785321008464. doi:https:
//doi.org/10.1016/j.matpr.2021.01.749.

[35] A. A. Oloyede, N. Faruk, W. O. Raji, Covid-
19 lockdown and remote attendance teaching
in developing countries: A review of some on-
line pedagogical resources, African Journal of
Science, Technology, Innovation and Develop-
ment (2021) 1–19. URL: https://doi.org/10.1080/
20421338.2021.1889768. doi:10.1080/20421338.
2021.1889768.

[36] S. Caliskan, R. A. Kurbanov, R. I. Platonova, A. M.
Ishmuradova, D. G. Vasbieva, I. V. Merenkova, Lec-
turers views of online instructors about distance
education and adobe connect, International Jour-
nal of Emerging Technologies in Learning (iJET) 15
(2020) 145–157. URL: https://online-journals.org/
index.php/i-jet/article/view/18807.

39

https://doi.org/10.1145/2886012
http://dx.doi.org/10.1145/2886012
https://www.sciencedirect.com/science/article/pii/S0167404820300481
https://www.sciencedirect.com/science/article/pii/S0167404820300481
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.101764
http://dx.doi.org/https://doi.org/10.1016/j.cose.2020.101764
http://dx.doi.org/10.1109/SP.2015.47
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://doi.org/10.1177/10464964211015286
https://doi.org/10.1177/10464964211015286
http://dx.doi.org/10.1177/10464964211015286
http://dx.doi.org/10.1177/10464964211015286
https://www.sciencedirect.com/science/article/pii/S1674862X20300665
https://www.sciencedirect.com/science/article/pii/S1674862X20300665
http://dx.doi.org/https://doi.org/10.1016/j.jnlest.2020.100059
http://dx.doi.org/https://doi.org/10.1016/j.jnlest.2020.100059
https://doi.org/10.1177/2056305120948255
https://doi.org/10.1177/2056305120948255
http://dx.doi.org/10.1177/2056305120948255
http://dx.doi.org/10.1177/2056305120948255
https://doi.org/10.1080/0960085X.2020.1814680
https://doi.org/10.1080/0960085X.2020.1814680
http://dx.doi.org/10.1080/0960085X.2020.1814680
http://dx.doi.org/10.1080/0960085X.2020.1814680
http://www.jmir.org/2020/8/e21613/
http://dx.doi.org/10.2196/21613
http://dx.doi.org/10.2196/21613
https://www.sciencedirect.com/science/article/pii/S2214785321008464
https://www.sciencedirect.com/science/article/pii/S2214785321008464
http://dx.doi.org/https://doi.org/10.1016/j.matpr.2021.01.749
http://dx.doi.org/https://doi.org/10.1016/j.matpr.2021.01.749
https://doi.org/10.1080/20421338.2021.1889768
https://doi.org/10.1080/20421338.2021.1889768
http://dx.doi.org/10.1080/20421338.2021.1889768
http://dx.doi.org/10.1080/20421338.2021.1889768
https://online-journals.org/index.php/i-jet/article/view/18807
https://online-journals.org/index.php/i-jet/article/view/18807

	1 Introduction
	2 History of software protection systems
	3 The proposed solution
	3.1 Basic level: watermarking
	3.2 Intermediate level: code obfuscation
	3.3 Server level: license manager

	4 Case Study
	4.1 The Adobe Connect platform
	4.2 The development of a protected Pod

	5 Conclusion
	6 Acknowledgments

