
Emotion Recognition from Tweets
Jakub Sydor1, Szymon Cwynar1

1Faculty of Applied Mathematics, Silesian University of Technology, Kaszubska 23, 44100 Gliwice, POLAND

Abstract
These days we face more and more often internet bullying. Our goal was to develop software, which would recognize
emotions from the bare text. Our project is based on Twitter posts, but it could be also used in every single platform, in
which users communicate via text messages. We use a few solutions to make our program as accurate as it possibly could
get. Firstly we picked a large database to get the biggest context, We used World2Vec to represent words as vectors, and
lastly, we used a neural network to predict output from sentences beyond our database. Our article is mostly about different
versions of the algorithm and comparison to choose the best approach to the problem. As we learned the biggest difference-
maker was the amount of hidden layers and number of neurons inside each one of them, type of activation function, and
training algorithm. We attach a big amount of plots to visualize each of our tries. In our article, we will try to show our
approaches and data which is connected to those approaches. We created functions to monitor our error, the accuracy
function to sum up our algorithm - how efficient it is, precision function - to diagnose what proportion of identifications
was correct, recall - a fraction of relevant instances that were retrieved and f1 which combines precision and recall to make
an average of it valued from 0 to 1.

Keywords
Artificial neural network, Word2vec, emotion, tweets

1. Introduction
The assumption of our project was to create an algo-
rithm based on an artificial neural network. Its main
goal was to recognize whether the entry is neutral, neg-
ative, or positive. The algorithm is learning on a base
that contains 1.6m tweets using backpropagation algo-
rithm. We decided to use neural network as classifiers as
they have been reported in various interesting applica-
tions [1, 2, 3, 4].

In [5] neural networks are used in federated systems
in which they resource information each other during
training. Models of neural networks are also very effi-
cient in detection threats over internet [6]. We can also
find them as classifiers in images [7] and systems of IoT
to detect position of people [8, 9, 10].

We got our database from Kaggle but it was full of
unnecessary data like date or user. We cleared it and left
only 2 columns - target and text, we got rid of columns
that contained information like date, the user, or tweet
id.

To make our algorithm work we needed to divide it
into few subsections. The first of them is a section con-
nected to a database. Firstly, as mentioned before, we
dropped most of the columns, but secondly, we needed
to make sure that our data is not containing unused data

SYSTEM 2021 @ Scholar’s Yearly Symposium of Technology,
Engineering and Mathematics. July 27–29, 2021, Catania, IT
" jakusyd988@student.polsl.pl (J. Sydor);
szymcwy664@student.polsl.pl (S. Cwynar)
~ https://github.com/Harasz/ (J. Sydor);
https://github.com/SzymCwy/ (S. Cwynar)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

or data which possibly could make our algorithm less
reliable. Therefore we cleared it out of stuff like Names,
links, and mentions.

Next algorithm used in our program is Word2Vec
which is responsible for translating our sentences and
words into numbers. Every word is represented by a
10-dimensional vector. The algorithm which stands be-
hind word2Vec is nothing else than an artificial neural
network, which would be explained later. Because of the
length of our one-word vector and the maximum length
of twitter expression (280 words) we created an input
layer which size is simply the result of the multiplication
of those 2 values, which is 2800 neurons.

Then we move to the heart of our program - the artifi-
cial neural network. The whole structure is handwritten
by us, we don’t use any libraries. Its main functions are
run and addlayer, which are responsible for adding lay-
ers and running the whole algorithm. The run function
returns 2 output neurons, which represent, by using soft-
max, for the probability of label. The first neuron is the
possibility of positive output and the second one for nega-
tive. We also add a function that check the absolute value
of its difference, if it’s small enough then the output is
equal to neutral. The artificial network includes the input
layer with 2800 neurons, a first hidden layer with 600
neurons, a second hidden layer with 200 neurons, third
hidden layer with 20 neurons, and output layer which
consists of 2 neurons.

2. Data Base
Our database consists of 1 600 000 tweets, each item is
represented by 5 columns. One record includes the date

40

mailto:jakusyd988@student.polsl.pl
mailto:szymcwy664@student.polsl.pl
https://github.com/Harasz/
https://github.com/SzymCwy/
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Jakub Sydor et al. CEUR Workshop Proceedings 40–47

of the tweet, posting users nickname, the id of a tweet,
the content of the tweet, and the label - if it’s positive or
negative. We needed to modify our database to contain
only 2 of 5 columns because only text and labels will be
used. Except that we needed to adapt our database to our
use and clear it of meaningless text.

So firstly we loaded the database using ’pandas’ and
provided our data frame with labels to make the access
easier. Also, we’ve implemented a function whose main
task was to clear any irrelevant text, such as pronouns,
conjunctions, links, and mentions, to make sure our al-
gorithm will learn properly.

3. Algorithm overall
Our algorithms inputs are sentences that in the next steps
are converted into words. Using Word2Vec each word in
the sentence is converted into ten-dimensional vectors
and those vectors are inserted into the array, each vector
as a separate element of our array. Those words are easily
available because of two mechanisms, word to id and id to
word. Now using an artificial network, weighted sum and
activation function the algorithm is filling every single
neuron with proper values. In the output layer, we have
2 neurons that, at the end of the algorithm, return two
values between 0 and 1. Because of softmax, those values
can be identified as the probability of each label. When
learning those two values are collated with expected
outcomes. That way we get the distance between our
result and the real label and we used that values in the
algorithm of backward propagation to change all of the
weights so that our program is getting more and more
precise with each iteration.

4. Word2Vec algorithm
We are using the gensim library to implement the algo-
rithm of Word2Vec. This part of our code lets us change
words in the database to vectors, so they can be used
in our calculations. The algorithm as input data takes
the whole data frame with all sentences, each row rep-
resented as one sentence. Firstly sentences need to be di-
vided into words. Nextly we count how many times each
word occurs in the text and based on that information we
create 2 dictionaries - word to id and id to word, which
would make the conversion from text to id and inversely
easier. In the built-in function, we need to specify the size
of the vector, minimal number of occurrences, window,
and source of words. In our example we set minimum
occurrence to 1, size of vector to 10 and window to 7,
to make sure our dictionary would be big, to connect
big amounts word witch each other and also we needed
10-dimensional vector for every word so it would fit our
input layer. Word2Vec is nothing else than an artificial

neural network and it allows us to make mathematical
operations on words. Gensims Wor2Vec implements two
functions - Continuous Bag Of Words(CBOW) and Skip-
Gram.

In the CBOW model surrounding words is combined to
predict the word they surround, while in the Skip-Gram
we use a word to predict the context.

5. Mathematical representation of
Skip-Gram model

Mathematically, we can describe n-word sentence
𝑤1, . . . , 𝑤𝑛, using skip-gram as following formula:

𝑆𝑘𝑖𝑝𝐺𝑟𝑎𝑚 = 𝑤𝑖1 , 𝑤𝑖2 , . . . , 𝑤𝑖𝑛 |
𝑛∑︁

𝑗=1

𝑖𝑗 − 𝑖𝑗−1 < 𝑘

(1)
where k is max skip-distance and n to subsequence

length.
For example, when we have the sentence ”I love to

write scripts” and k is equal to 1 and n to 2, that means
we will connect 2 words, which have a maximum of
one word between them. Those connections would
be: {I,love},{I, to},{love, to},{love, write},{to, write},{to,
scripts},{write,scripts}.

6. Backward propagation
A backward propagation algorithm is used in our pro-
gram to modify the weights of each neuron to get the best
results. Our neurons have pregenerated weights from 0
to 1. To make our algorithm more precise by analyzing
the errors backward propagation algorithm correct na-
tive weights starting from the end of our artificial neural
network. As an input, it takes the probability of each la-
bel and the expected label. It calculates the error of each
of the output neurons and those errors are propagated
to previous layers. Each weight in our network is being
modified based on the value of the error. This algorithm
has its limit so you need to be careful while setting its
iterations. After a few runs values are being modified to
a lesser extent, so when those changes are minor, that’s
the sign to stop the algorithm.

7. Activation function
Activation function is inseparable element of every ar-
tificial neural network. We have lots of them available
but each of them is different. We use s-shaped function
- hiperbolic tangent as our activation function. It deter-
mines the output of artificial neural network. All of the
output values are between 0 and -1. The advantage of

41



Jakub Sydor et al. CEUR Workshop Proceedings 40–47

Figure 1: Graphical representation of the CBOW model and Skip-gram model [11].

Figure 2: Pseudo-code of the back-propagation algorithm in training ANN [12].

our activation function is mapping, all positive and nega-
tive values will be presented as strong values and those
which are close to 0 would be close to 0 on the tanh graph.
We also have chosen tanh function because is strongly
advised when neural network has only 2 outputs.

8. Maths behind activation
function

Our activation function - Hyperbolic tangent might be
represented as:

tanh𝑥 =
sinh𝑥

cosh𝑥
(2)

tanh𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
(3)

42



Jakub Sydor et al. CEUR Workshop Proceedings 40–47

𝜕

𝜕𝑥
tanh𝑥 =

(𝑒𝑥 + 𝑒−𝑥)(𝑒𝑥 + 𝑒−𝑥)− (𝑒𝑥 − 𝑒−𝑥)(𝑒𝑥 − 𝑒−𝑥)

(𝑒𝑥 + 𝑒−𝑥)2
(4)

Figure 3: Comprehension between sigmoid and tanh activa-
tion functions. [13].

It’s domain is range from -1 to 1. Its monotonic func-
tion, which derivative is non monotonic. Derivative of
tanh:

𝜕

𝜕𝑥
tanh𝑥 = 1− tanh2 𝑥 (5)

9. Artificial Neural Network
Our neural network algorithm is divided into to main
classes. NeuralNetwork class and Neuron class.

NeuralNetwork has 2 variables - layers and weight.
Which store respectively arrays of Neurons and theirs
weights. First funtion is addlayer which was written to
allow creating layers with specific number of neurons in-
side it given as an argument. When used it adds elements
of Neuron class into the array of layers. Get size function
is used to return number of neurons in whole artificial
neural network, thanks to that function we are able to
properly use generate weights. With the result of the
previous function we use generate weights to create array
with randomly generated numbers from 0 to 1. Load
weights function is responsible for assigning weights
to neurons. The last of them is run, it firstly checks if
algorithm has the same amount of input neurons and
inputs given by a user. If it returns true it starts to assign
values to neurons.

The next class - Neuron, is responsible for calculating
weighted sum and using activation function to assign
values to each neuron.

10. Inference
Inference in our algorithm is simply choosing an option
with a higher probability. Thanks to softmax we get on
our output layer two neurons with probabilities for each
label. Firstly we need to convert output as it is in a form
that cannot be compared to label from our database. The
output is a two-dimensional array, where first we got
the probability of positive tweet and the second as the
negative one. So we need to make a variable ’expected’,
so it would be represented as a two-dimensional array.
Next we check if the absolute value of the subtraction is
bigger than 0.1, if it’s not we make our entry neutral. If
one of the values is big enough we assign respectively
the label. As we compare these two values we also
calculate the accuracy of our algorithm. Below we
represent the pseudocode of inference. [H] Input Data:
sentence label k, array of vectors j (sentence represented
as an array of vectors), Choosing the label of sentence

𝑘 == 0 : 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = [0, 1] 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = [1, 0]
neo = Artificial neural net output as probability of each

label
absolute = Absolute value of subtraction both output

values
absolute < 0.1: Neutral neo [0] < neo [1] Positive Nega-

tive Inference Algorithm.

11. SoftMax
Softmax is exponential function, which normalizes values
of our 2 output neurons to the sum of 1. We use that
function in our program to represent both of our output
neurons values as a probability of getting positive or
negative label. Author names can have some kinds of
marks and notes:

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) =
𝑒𝑥𝑝(𝑥𝑖)∑︀
𝑗 𝑒𝑥𝑝(𝑥𝑗)

(6)

Additionaly apart from calculating softmax, we need
to get its derivative. Its used by backpropagation function
during calculating difference between expected values
and outputs from our net. We start by separately com-
puting derivatives. First for the first neuron.

𝜕𝑆(𝑧1)

𝜕𝑧1
=

𝜕𝑒𝑧1

𝜕𝑧1
· (𝑒𝑧1 + 𝑒𝑧2)− 𝜕

𝜕𝑧1
(𝑒𝑧1 + 𝑒𝑧2) · 𝑒𝑧1

(𝑒𝑧1 + 𝑒𝑧2)2

(7)

43



Jakub Sydor et al. CEUR Workshop Proceedings 40–47

so we have:

𝜕

𝜕𝑧1
𝑆(𝑧1) = 𝑆(𝑧1)× (1− 𝑆(𝑧1)) (8)

Now for the second one.

𝜕𝑆(𝑧2)

𝜕𝑧1
=

𝜕𝑒𝑧2

𝜕𝑧1
· (𝑒𝑧1 + 𝑒𝑧2)− 𝜕

𝜕𝑧1
(𝑒𝑧1 + 𝑒𝑧2) · 𝑒𝑧2

(𝑒𝑧1 + 𝑒𝑧2)2

(9)
so we have:

𝜕

𝜕𝑧1
𝑆(𝑧2) = −𝑆(𝑧1)× 𝑆(𝑧2) (10)

Conclusion for N outputs

𝑆(𝑧1) =
𝑒𝑧𝑖∑︀𝑁
𝑗=1 𝑒

𝑧𝑗
(11)

General formula for softmax derivative for N outputs:

𝜕

𝜕𝑧𝑗
𝑆(𝑧𝑖) =

{︃
𝑆(𝑧𝑖)× (1− 𝑆(𝑧𝑖)) if 𝑖 = 𝑗

−𝑆(𝑧𝑖)× 𝑆(𝑧𝑗) if 𝑖 ̸= 𝑗
(12)

If we are computing
𝜕

𝜕𝑧𝑖
𝑆(𝑧𝑖) the output is always

𝑆(𝑧𝑖)× (1− 𝑆(𝑧𝑖)). However when we are computing
𝜕

𝜕𝑧𝑗
𝑆(𝑧𝑖) the output changes to −𝑆(𝑧𝑖)× 𝑆(𝑧𝑗)

12. Precision function
Precision is a function which shows the proportion of
true positive identifications. If we analyse retrieval of
information, precision is fraction of correct results di-
vided by all returned results. We calculate precision from
two variables: TP and FP. Which respectively stands for
true positive and false positive. By the term true positive
we mean outcome where the model correctly predicted
positive class and false positive as incorrect prediction
of positive class.

Precision is given by the following formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(13)

When precision rate is equal to 1.0, that means that
model produces no false positives.

Example of calculating Precision:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(14)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
10

10 + 3
(15)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 10/13 ≈ 0.769 (16)

True Positives: 10 False Positives: 3
False Negatives: 2 True Negatives: 15

13. Recall function
Recall function is very similar to precision function. The
only difference is that we compare true positive values
to false negatives (incorrect predictions - model predict
incorrectly negative class). Our model is most efficient
when recall factor is 1.0 - that means there are no false
negatives.

The equation is also very similar:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(17)

And when we calculate Recall one the same set of data
as Precision that’s our outcome:

True Positives: 10 False Positives: 3
False Negatives: 2 True Negatives: 15

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
10

10 + 2
(19)

𝑅𝑒𝑐𝑎𝑙𝑙 = 10/12 ≈ 0.833 (20)

14. Comparison of recall and
precision

The comparison of those 2 function is very difficult be-
cause of tension between them. That means if you im-
prove one of them, the second one is reducing its preci-
sion. Using data above we got:
Precision ≈ 0.769
Recall ≈ 0.833

For data:

True Positives: 10 False Positives: 3
False Negatives: 2 True Negatives: 15

When we decrease number of FP and FN increases: We
got:

True Positives: 10 False Positives: 1
False Negatives: 4 True Negatives: 15

Precision ≈ 0.91
Recall ≈ 0.71

44



Jakub Sydor et al. CEUR Workshop Proceedings 40–47

And when we do the opposite thing, we decrease num-
ber of FN and increase number of FP: We got:

True Positives: 10 False Positives: 4
False Negatives: 1 True Negatives: 15

Precision ≈ 0.71
Recall ≈ 0.91

So we got to conclusion that they are not quite com-
parable, but there is another method which uses both of
them in the calculations and it’s named F1 score.

15. F1 score
Firstly the name of F1 score, also known as F-measure,
is believed to refer to different F funcion, which was
concluded in Van Rijsbegens Book, when introduced to
the Fourth Message Understanding Conference.

F1 score is measurement of test’s accuracy. It is cal-
culated from the recall and precision. F-meause is the
harmonic mean (the reciprocal of the arithmetic mean of
the reciprocals of the given set of observations) of Preci-
sion and Recall. It can be modified by additional weights,
valuing precision or recall more than other.

The highest value of F1 score is 1.0 which indicates
the best precision and recall and 0 indicates that one of
precision or recall is equal to 0.

F-measue is also known as Sørensen–Dice coefficient
or Dice similarity coefficient (DSC).

𝐹1 =
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
(21)

𝐹1 = 2× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(22)

𝐹1 =
𝑇𝑃

𝑇𝑃 + 1
2
(𝐹𝑃 + 𝐹𝑁)

(23)

Example of calculating F1 score:

True Positives: 10 False Positives: 3
False Negatives: 2 True Negatives: 15

𝐹1 =
10

10 + 1
2
(3 + 2)

(24)

𝐹1 =
10

12.5
(25)

𝐹1 = 0.8

𝐹𝛽 Score is used when we want recall to be consid-
ered 𝛽 times more important than precision, where 𝛽 is
positive real factor.

𝐹𝛽 = (1 + 𝛽2)× 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛× 𝑟𝑒𝑐𝑎𝑙𝑙

(𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 𝑟𝑒𝑐𝑎𝑙𝑙
(26)

𝐹𝛽 =
(1 + 𝛽2)× 𝑇𝑃

(1 + 𝛽2)× 𝑇𝑃 + 𝛽2 * 𝐹𝑁 + 𝐹𝑃
(27)

When 𝛽 is equal to 2 recall weights are higher than
precision, however when its equal to 0.5 weights of pre-
cision are higher than recall. Example of calculating 𝐹𝛽

score

True Positives: 10 False Positives: 3
False Negatives: 2 True Negatives: 15

with 𝛽 = 2:

𝐹𝛽 =
(1 + 4)× 10

(1 + 4)× 10 + 4 * 2 + 3
(28)

𝐹𝛽 =
40

55
(29)

𝐹𝛽 ≈ 0.73

Figure 4: Sigmoid activation function [13].

16. Experiments
We’ve experimented with

• Activation Function
• Artificial neural network learning algorithms
• Structure of artificial neural network

We’ve chosen Hyperbolic tangent as our main activa-
tion function. We decided on that function after compar-
ison of three functions - ReLU, Sigmoid and Tanh, as we
thaught it would fit our algorithm best. We have tested all
of them by accuracy and f1 score functions. Also we’ve

45



Jakub Sydor et al. CEUR Workshop Proceedings 40–47

Figure 5: ReLU activation function [14].

Figure 6: Comparison of activation functions [13].

read articles that proves that this type of function is the
best to neural network with 2 neuron in output layer.
Thing that outweigh the decision was its shape. Because
of tanh function we are able to easily spot negative values
and those which are close to 0.

We also have used softmax function to represent values
on our output neurons as probability of each label. Apart
from that we have used derivative of soft max in algo-
rithm of back propagation to decrease the error.

We tried Particle Swarm Optimization and backward
propagation as our learning algorithms. After reading
articles and running some test, we decided to use back-
ward propagation as it was easier to use with softmax
and also was more efficient than PSO.

After many tries we ended our tests with 3 hidden
layers: first - 600, second 200, third 10, as input and
output layer number of neurons is constant - 2800 inputs
and 2 outputs.

Figure 7: Accuracy/Cost for Test Over Time [15].

17. Conclusions
In our work we have tested application of neural net-
works to word processing purposes. We have used spe-
cial library to work with tweets. Our idea was tested
and results show we have good model which is able to
work with tweets. in future works we will try to develop
furhter our project to make it also compare tweets be-
tween various authors. We will also work to apply other
models and ideas to compar them to this presented neural
network.

References
[1] S. Brusca, G. Capizzi, G. Lo Sciuto, G. Susi, A

new design methodology to predict wind farm en-
ergy production by means of a spiking neural net-
work–based system, International Journal of Nu-
merical Modelling: Electronic Networks, Devices
and Fields 32 (2019). doi:10.1002/jnm.2267.

[2] G. Capizzi, C. Napoli, L. Paternò, An innovative
hybrid neuro-wavelet method for reconstruction of
missing data in astronomical photometric surveys,
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics) 7267 LNAI (2012)
21–29. doi:10.1007/978-3-642-29347-4_3.

[3] G. Capizzi, F. Bonanno, C. Napoli, Hybrid neural
networks architectures for soc and voltage pre-
diction of new generation batteries storage, 2011.
doi:10.1109/ICCEP.2011.6036301.

[4] C. Napoli, F. Bonanno, G. Capizzi, An hybrid neuro-
wavelet approach for long-term prediction of solar
wind, Proceedings of the International Astronomi-
cal Union 6 (2010) 153–155.

[5] D. Połap, M. Woźniak, Meta-heuristic as manager

46

http://dx.doi.org/10.1002/jnm.2267
http://dx.doi.org/10.1007/978-3-642-29347-4_3
http://dx.doi.org/10.1109/ICCEP.2011.6036301


Jakub Sydor et al. CEUR Workshop Proceedings 40–47

in federated learning approaches for image process-
ing purposes, Applied Soft Computing 113 (2021)
107872.

[6] M. Wozniak, J. Silka, M. Wieczorek, M. Alrashoud,
Recurrent neural network model for iot and net-
working malware threat detection, IEEE Transac-
tions on Industrial Informatics 17 (2021) 5583–5594.

[7] X. Liu, S. Chen, L. Song, M. Woźniak, S. Liu, Self-
attention negative feedback network for real-time
image super-resolution, Journal of King Saud
University-Computer and Information Sciences
(2021).

[8] G. Capizzi, C. Napoli, S. Russo, M. Woźniak, Lessen-
ing stress and anxiety-related behaviors by means
of ai-driven drones for aromatherapy, volume 2594,
2020, pp. 7–12.

[9] M. Woźniak, M. Wieczorek, J. Siłka, D. Połap, Body
pose prediction based on motion sensor data and
recurrent neural network, IEEE Transactions on
Industrial Informatics 17 (2020) 2101–2111.

[10] R. Avanzato, F. Beritelli, M. Russo, S. Russo, M. Vac-
caro, Yolov3-based mask and face recognition al-
gorithm for individual protection applications, in:
CEUR Workshop Proc., 2020, pp. 41–45.

[11] T. Mikolov, Q. V. Le, I. Sutskever, Exploiting simi-
larities among languages for machine translation,
arXiv preprint arXiv:1309.4168 (2013).

[12] H. Guo, H. Nguyen, D.-A. Vu, X.-N. Bui, Forecast-
ing mining capital cost for open-pit mining projects
based on artificial neural network approach, Re-
sources Policy (2019) 101474.

[13] S. Sharma, S. Sharma, A. Athaiya, Activation func-
tions in neural networks, towards data science 6
(2017) 310–316.

[14] K. Sarkar, Relu: Not a differentiable function: Why
used in gradient based optimization? and other
generalizations of relu, Data Science Group, IITR
(2018).

[15] J. D. Seo, Unfair back propagation with tensorflow
[manual back propagation with tf], 2018.

47


	1 Introduction
	2 Data Base
	3 Algorithm overall
	4 Word2Vec algorithm
	5 Mathematical representation of Skip-Gram model
	6 Backward propagation
	7 Activation function
	8 Maths behind activation function
	9 Artificial Neural Network
	10 Inference
	11 SoftMax
	12 Precision function
	13 Recall function
	14 Comparison of recall and precision
	15 F1 score
	16 Experiments
	17 Conclusions

