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Abstract
When dealing with sensor’s data, it’s important to keep track of what it’s really happening in the tracked environments
since failures, interruptions and misreadings must be expected at any time. Especially with logging processes involving
extremely voluminous reports, an automatic method to detect entries that are not following the normal distribution of data
(i.e. anomalies) should be the ideal solution. In the presented work the task performed by the autoencoder is to generate a
reproduction error, used as metric for the classification of a sample in one of two classes: anomalous or non-anomalous.
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1. Introduction
When dealing with sensor’s data, it’s important to keep
track of what it’s really happening in the tracked envi-
ronments since failures, interruptions and misreadings
must be expected at any time. Especially with logging
processes involving extremely voluminous reports, an
automatic method to detect entries that are not following
the normal distribution of data (i.e. anomalies) should be
the ideal solution.
Neural Networks can be used in this type of task as de-
tectors for the distance of the sample from the natural
distribution underlying the dataset.
In particular, autoencoders [1] are a type of neural net-
work capable of compressing the input into a reduced,
meaningful representation and finally decoding it back,
reproducing it with the minimum error possible [2, 3].
This type of networks has currently been used success-
fully for image denoising [4, 5, 6], NLP’s tasks and generic
dimensionality reduction [7, 8]. The first use of this type
of network dates back to the 80s, however its origins and
authors are unclear, caused by changes in nomenclatures
and definitions.
In this work, the reproduction error (i.e. the error be-
tween the input sample and the output of the autoen-
coder) over a set of sample is exploited to discriminate
which samples are anomalous in the given set and which
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not.
Ideally, the anomalies are a minimal part of a dataset
with generally low probabilities to be drawn from the
distribution describing the set: this scarcity implies a
big reproduction error from the autoencoder. Moreover,
the more a gradient descent is performed over a set of
inputs, the more the loss should decrease (until it hits its
minimum), vice versa, if a datum is not common, the loss
is greater with respect to other well known data.
This method is shown to work over a real life, unlabelled
dataset, posing the problem in the unsupervised learning
landscape.

2. Related Works
Anomalies detection tasks have been already studied and
solved with neural networks exploiting the reproduction
error : the difference between a generic sample and a re-
construction of itself performed by some mathematical
model.
In [9], a module made up by stacked LSTMs networks
is trained over non-anomalous data and its prediction
error over the future steps is used as an indicator for the
anomaly of the sample. However, this approach needs
the dataset to be labelled, increasing the work needed in
the creation and the difficulty of application in real life
scenarios.
Similarly, in [10], they proposed a novel architecture
called ALAD (Adversarially Learned Anomaly Detection),
an approach based on generative adversarial networks.
The GAN generates an adversarially learned set of fea-
tures used to project the high-dimensional original space
of the dataset into a reduced one. The reduced represen-
tations are then decoded and the reproduction error is
used as an anomaly indicator.
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More similar to the approach proposed in this work but
extremely more advanced, [11] makes use of robust tech-
niques paired with autoencoders to detect anomalies and
type of anomalies like random corruptions, recurrent
corruptions (i.e. corruptions present in more that one
instance) and so on.
In the presented work the task performed by the autoen-
coder is to generate a reproduction error, used as metric
for the classification of a sample in one of two classes:
anomalous or non-anomalous.

3. Background and method
description

3.1. Autoencoder
An autoencoder is made up by two functions: an encoder
and a decoder. The goal of the encoding function is to
map (i.e. to encode) the input into a different space. Sym-
metrically, the decoder must map the encoded vector
back to the original input, without losing information.
Conveniently, the encoding space is often chosen smaller
in dimensions than the original space, making the au-
toencoder performing also a dimensionality reduction.
More formally, given an encoding function 𝐸(𝑥) and a
decoding function 𝐷(𝑥), 𝐷(𝐸(𝑥)) must return back to
the original 𝑥.
The two mentioned above functions can be approximated
by symmetric neural networks, solving the following op-
timization problem:

min
𝜃𝐷,𝜃𝐸

‖𝑥−𝐷(𝐸(𝑥))‖2

where 𝜃𝐷 and 𝜃𝐸 are the parameters of the respective
neural networks.

3.2. Architecture
The only constraint that need to be taken in consideration
is the presence of a bottleneck, a layer smaller than all
the other layers in the network, essential for the dimen-
sionality reduction. Without a bottleneck, the network
is not "forced" to ignore useless or non-representative
features in the input, losing the capacity of mapping the
input in a denser space.
The networks’ architectures are completely adaptable
to the problem. Normally, the input (e.g. time-series,
images) is embedded into a vectorial representation and
then reduced till the bottleneck. This representation is
the projection of the input into a different space carried
out by the encoder part. The latent vector (i.e. the output
of the bottleneck) is then passed to a generally symmet-
ric network, returning a representation belonging to the
original input space.

3.3. Training
The training procedure is the standard training proce-
dure used for generic neural networks. A sample 𝑥 is
drawn from the dataset, sampled from the distribution
𝑝𝑑𝑎𝑡𝑎𝑠𝑒𝑡(𝑋). The latent vector (i.e. the output of the bot-
tleneck layer) ℎ is generated by the encoder part of the
autoencoder, generating ℎ = 𝐸(𝑥). This representation,
at the end of the training, can be used as an approximated
reduced representation of the original input. Finally, ℎ is
used as input for the decoder 𝐷, generating 𝑥′ = 𝐷(ℎ),
belonging to the same space of 𝑥. In this case, the L1 error
between 𝑥 and 𝑥′ is minimized to train the parameters
of the network. It’s crucial that the goal of the training is
to guarantee the minimum difference between 𝑥 and 𝑥′.

3.4. Anomalies Detection
The key concept of the method is in the notion of scarcity:
an anomaly, to be defined as such, needs to be a notewor-
thy event. In practical cases, it could be an unpredictable
spike in a time series, a set of burned pixels in a photo,
the saturation of a sensor, an unexpected down time of a
link and so on.
It’s worth nothing to say that, when sampling an element
from a distribution, it’s far more probable to sample a
normal entry instead of an anomalous case (if not, other
methods must be used or some problems could be in the
dataset). With these premises, the autoencoder capac-
ity to capture a distribution and projecting it in another
space is exploited: during the training phase, multiple
epochs are performed over all the samples in dataset,
meaning that the network will experience a gradient
descent over the loss generated by the same samples
multiple times but without modifying the ratio between
non-anomalous samples and anomalous ones. Moreover,
the reproduction error will be minimized over the most
prominent distribution in the dataset, generating larger
errors in the anomalous subsets.
As shown in Figure 1, the scarcity is the fundamental
parameter that separates a normal sample from an anoma-
lous one. When inverting the contamination proportion,
the originally good samples results in a loss distributed
higher than the respective anomalous one. This example
is purely demonstrative of the analysis made on the loss:
a real-life dataset has a percentage of anomalies sensibly
lower than the ones used here.
The last thing needed to define an anomaly is the loss
threshold: after analyzing the distribution of the autoen-
coder’s reproduction loss on all the samples in the dataset,
a threshold must be manually imposed, where a sample
with a loss beyond the latter is considered anomalous.
A compromise must be reached, since all the anoma-
lous samples must be included without including non-
anomalous samples.
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3.5. Workflow
The method is fast and with big enough datasets a single
training can be performed to perform analysis on future,
unseen events.
The preprocessing of the dataset is unavoidable: normal-
izing data and orders of magnitude is necessarily to have
a good, consistent loss analysis. Samples bigger in mod-
ule can importantly alter the distribution.
Finally, the model is fine-tuned (i.e. autoencoder archi-
tecture, bottleneck dimensions and so on) and a standard
training procedure must be performed. The loss distribu-
tion is analyzed and the threshold is manually selected
by the user.
Once new data arrive, there is no need to retrain the
autoencoder: the sample is normalized and passed to the
model, finally it’s classified according to the threshold.
It may happen that long-term changes in the dataset
distribution could completely alter the outcome of the
process, requiring a new training and threshold selection.

4. Experiment

4.1. Dataset
The dataset is composed by information gathered from
real car sensors.
Each car is assigned to a client that can have multiple
fleets and, every day that the car has been used, the total
time of connection to the network is logged, saving the
duration in seconds, the start date and the end date of the
session. In case of disconnections during the same day,

Figure 1: The losses distribution of an autoencoder trained
on an artificially contaminated labelled dataset composed by
normalized vectors of dimension 24 sampled by a multivari-
ate Gaussian for the non-anomalous data and from an uni-
form distribution for the anomalous data.

multiple entries will show the multiple sessions.

• VID: An integer representing a single car in an
unique way.

• First Ping: A date in the format yyyy-dd-mm
representing the day of the session

• TotalTime: Seconds (integer) elapsed from the
first connection to the last disconnection, same
for all the sessions of the day.

• start: timestamp representing the start of the
session.

• end: timestamp representing the end of the ses-
sion.

• env: An integer representing the client owning
the car in an unique way.

• Service: An integer representing the fleet of the
client, unique for the given client.

4.2. Preprocessing
The structure of the dataset could resemble a time-series
in which, eventually, each day is made up by more en-
tries for the same car. To tackle this complexity, a re-
duction to a single entry for each car in a given day is
performed in such a way to get a single point for each pair
of (VID, First Ping) (First Ping is then dropped
at the end of the preprocessing phase). However, to not
lose any important information, some fields have been
added to record what is implicit in the original dataset
while VID, TotalTime, env and Service are kept
the same. Since start and end are removed, TotalTime_OFF
has been added to record the total time in which the
car has been disconnected from the network. Moreover,
n_disconnections is added to remember the number
of sessions in a single day for the given car. The final
attribute added is C_v_off_time, namely the coefficient
of variation of the down-times between each session, an
index of dispersion.
The coefficient is defined as:

𝐶𝑣(𝑥) =
𝜎(𝑥)

𝜇(𝑥)
(1)

where 𝑥 is a set of data, 𝜎 is the standard deviation of
𝑥 and 𝜇 is the mean. Practically, an higher 𝐶𝑣 means that
the data are unbalanced, implying a big difference across
each element in the set. For example,𝐶𝑣(10, 10, 10, 10, 10) =
0meaning no dispersion in the data, while𝐶𝑣(35, 5, 5, 2, 3) =
1.4, evidencing a set of data more scattered around the
mean.
The meaning given to the coefficient of variation can
vary based on the needs: in some cases it’s better to have
short disconnections than a long one since it could be
easier to deduct missing locations or missing data, prefer-
ring therefore lower 𝐶𝑣s. Contrary to the last sentence,

55



Roberto Aureli et al. CEUR Workshop Proceedings 53–59

a 𝐶𝑣 near 0 could also represent a set of long disconnec-
tion times followed by small ones: this value alone is not
enough to get an idea of how a link is performing since
it doesn’t contain information regarding the quantities
in the set, only a normalized index of dispersion.
After the preprocessing, the dataset has been reduced
from 573064 entries to 99386. As for the training process,
the autoencoder is trained over TotalTime, TotalTime_OFF,
C_v_off_time and n_disconnections normalized be-
tween 0 and 1. This choice is justified by the fact that the
remaining variables are categorical one hence completely
arbitrarily values used only for an identification purpose.

4.3. Model architecture and Training
The simplicity of the reduced dataset permits the use
of a fully connected network. An hidden layer (for each
network) is enough to capture the dimensionality, ending
in a bidimensional bottleneck. The nonlinearity is intro-
duced by a ReLU function and a Sigmoid [12] at the out-
put of the two networks. To ease the training process and
evade possible loacal-minima situations, a dropout layer
is used in order to randomly drop to 0 the weights of the
network with a probability of 25%. The associated loss
is an L1-distance defined as 𝑑(𝑥, 𝑦) =

∑︀𝑚
𝑖=1 |𝑥𝑖 − 𝑦𝑖|,

where 𝑥 and 𝑦 are vectors of length 𝑚.
The training process is supervisioned by an early stop-
ping mechanism, keeping the best model before reach-
ing a situation of overfit. The performances are tracked
by computing the loss over a set of unseen samples,
extracted with a proportion of 30% from the original
dataset.

Figure 2: Autoencoder’s layers and dimensions

4.4. Training results
As mentioned before, after the training the loss distribu-
tion must be analyzed. The histogram in Figure 4 shows
a decreasing trend before 0.10 after a plateau that drops
at 0.25, followed by some sparse samples. The quality of
the training is confirmed by the peak of the loss distribu-
tion near 0, evidencing an overall low loss.
By an empirical choice, the threshold is defined at 0.10,

Figure 3: Training profile of the autoencoder’s losses: there
isn’t a significant overfit in the last part.

where 1803 anomalies are found, the 1.84% of the whole
dataset.

Figure 4: Histogram showing the distribution of the loss over
all the dataset. Logarithmic scale on the y-axis.

5. Results
The following results are extracted from the dataset after
the classification process mentioned before: each sample
is expanded with the associated previously removed cat-
egorical variables, in order to contextualize the results in
the dataset domain.
Each analysis starts from the comparison of the distribu-
tion in each class: anomalous and non-anomalous data.
In each plot, the blue distribution represents the whole
dataset distribution (labels on the left y-axis) while the
orange one shows the anomalies (labels on the right y-
axis).
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5.1. Time anomalies
As expected, the notion of anomaly in a connection to
network domain is in direct correlation with the duration
of the down-time.

Figure 5: Distribution of the Total Time,

Figure 5 shows a blue peak of the distribution over the
maximum value admissible (i.e 86400 seconds in a day),
followed by a peak in the same position of the anomalies.
The interesting part of the plot is where the anomalies
are distributed more than the dataset itself, hence in the
lower values of the x-axis. As expected, an important
number of entries with a low total connection time is
classified as anomaly.
Symmetrically, the plot of the down-time represents a
similar situation:

Figure 6: Distribution of the Total Time of disconnection

Also in this case, there is an important anomalies’ peak
near the dataset distribution followed by many samples
on the right part of the x-axis. An anomalous entry is
also described by an high disconnection time.

To better see the motivation of the overlapping peaks, a
new type of plot can be introduced:

Figure 7: Scattered representation of each entry with
TotalTime and TotalTime_OFF as coordinates for each
point. Non-anomalous points in blue, anomalous points in
red.

In this plot each entry is scattered on a plane, represent-
ing TotalTime on the x-axis and TotalTime_OFF on
the y-axis. An ideal entry has the maximum TotalTime
and the minimum TotalTime_OFF, posing itself on the
rightmost lower corner of the plot.
The yellow star represents the center of mass of the non-
anomalous distribution (in blue), very near to the ideal
point, while the green star represents the center of mass
of the anomalies distribution. There are ∼ 80𝑘 blue
points while only ∼ 2𝑘 red ones, evidencing a big differ-
ence in the concentration.
It’s worth nothing to say that a different threshold would
have moved the frontier of the two clusters up or down.
The reason of the overlapping peaks lies in the fact that
a big number of anomalies is in the vertical line over the
maximum of TotalTime (i.e. 𝑥 = 86400) and on the
horizontal line over the minimum TotalTime_OFF (i.e.
𝑦 = 0), meaning that one variable is in a good range
while the other one not. The worst anomalies are the
ones lying near the center of the plot, containing a dis-
crepancy in both the variables.

5.2. Number of disconnections
A counterintuitive results is shown in the next plots

In the left plot there aren’t any notable results, the two
distributions appear the same. The number of disconnec-
tions is evenly distributed over each entry in the dataset
and in the anomalies.
When computing the distribution over the average dis-
connection time for each car, the histograms show an
important difference: the peak of the anomalies is lower
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than the peak of the dataset, meaning that the anomalous
entries have a lower number of disconnections. However
this could cause some confusion since a larger number
is expected when talking about this type of variable but
analyzing the results paired with the ones obtained in the
previous subsection, the lower number of disconnections
reveal a longer down-time. This result is confirmed by
the following plot where the anomalies distribution is
slightly translated to the right, meaning a less uniform
number of disconnections that can be caused by a longer
disconnection time followed by a set of short times.

5.3. Categorical analysis
A final analysis can be made on the categorical variables,
answering the practical question: "Are there bad cars or
bad clients?".
Following the previous analysis, it’s possible to retrieve
an overview on the presence of a single car in the anoma-
lies by plotting the distribution of the VIDs. In Figure
11 (left), the anomalies are concentrated in the first part
of the x-axis, showing a peak near 0. A set of car that
appear only less than 10.0% in the dataset is responsible
of the ∼ 30.0% of the anomalies. A zoomed version of
the same plot can be seen on Figure 11 (right), where
only the cars with a VID less than 2000 are showed.
In a practical way, this result can help focusing more on
the subset of car that is more present in the anomalies,
helping saving time on the analysis.
From this result it’s possible to derive the conclusion
on the final result, the client analysis. In Figure 10 the
biggest percentage of anomalies is covered by the client
number 1. The duality on the results can show that the
most of the first 2000 cars are assigned to the first client,
notion that may help with the understanding of the fail-
ures.

5.4. Reproducibility
The method explained here is implemented in PyTorch
[13].

Figure 8: Plot of the distributions of the number of discon-
nections (left), plot of the average number of disconnections
for each car (right)

Figure 9: Plot of the distribution of the average coefficient
of variation for each car.

Figure 10: Plot of the distribution of the clients id.

All the results mentioned are perfectly reproducible by
utilizing the same saved model (i.e. same architecture
with same weights loaded in) and the same threshold. The
only stochastic variable in the model is the dropout layer
that must be deactivated before the evaluation. An useful
thing is that the threshold is not an hyperparameter of

Figure 11: Plot of the distributions of the VIDs(left), plot of
the distributions of the VIDs showed on the first 2000 vehicles
(right).
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the network, meaning that it can be changed, accord-
ing to the needs of the user, after the training phase. A
variation on the anomalies threshold could completely
alter the result by including more or less entries in the
anomalous set, creating a more severe (or less) detection
system.
Finally, every evaluation can be made in real-time (af-
ter the training), with times that can vary according to
the hardware and the architecture used. On an NVIDIA
MX150, the evaluation over all the dataset takes approxi-
mately 20 seconds.

It’s possible that the model needs a retraining if the
distributions in the dataset changes in an unexpected
way (e.g. logging temperatures can require a retraining
between summer and winter if the entries are not enough
for each season).

6. Conclusions
The method presented in this paper has shown the ability
to perform a classification of an unlabelled dataset. It’s a
fast way to identify outliers in datasets or in a real-time
data feed (after a first training over a big enough dataset
composed by recorded logs).
Its flexibility can be a great incentive to its utilization,
being tied only to the use of an autoencoder, architecture
that can be expanded and customized at each eventuality.
Moreover, the fact that the threshold must be imposed
after the training can be exploited to increase or decrease
the severity of the system in real-time, following changes
in the needs of the user.
However, the manual choice of a loss threshold could
be an element of imprecision, looking at the fact that a
slightly alteration could extremely change the samples
considered as anomalous. Another downside could be
the needing of a big enough dataset, since with a little
one there could be difficulties in learning the right distri-
bution. However, this is a common problem among all
the autoencoder applications.
Finally, the system is sensible to the dataset’s dimensions,
requiring an adequate normalization that must be applied
also to real-time samples.
In conclusion, as future work the method can be ex-
panded to automatically detect the threshold, removing
the manual component that could completely change the
outcome of the process.
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