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FEFFuL: a Few-Examples Fitness Function Learner
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Abstract

This paper presents FEFFuL, an architecture used to estimate the fitness value of a generated artifact in any Evolution Strategy
(ES) system that would otherwise require human evaluation, i.e.: Interactive Evolutionary Computation (IEC) systems. By
learning directly human preferences, the FEFFuL network aims to reduce user’s fatigue to a minimum while also adapting
to new emergent artifacts. We apply here FEFFuL in the context of evaluating generated structures in the popular game

Minecraft.
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1. Introduction

In Evolutionary Computation (EC) and Evolution Strate-
gies (ES), a global optimization problem is tackled by
taking inspiration from biologic evolution: an initial pop-
ulation of solutions is evolved by selection and mutation,
producing new solutions with higher values of the task’s
objective function. In this context, a particular solution
is referred to as an individual, while its value of the ob-
jective function is its fitness. Genetic Algorithms (GA) are
a family of algorithms in EC in which individuals are en-
coded by their genotype, which contains the information
to reconstruct the actual solution, called phenotype[1, 2].
The genotypes are mutated and combined in different
ways to produce the next generation of solutions.

There are several domains in which a fitness function
is unknown or very hard to compute, e.g. visual [3, 4, 5, 6]
or musical [7, 8] appeal. In Interactive Evolutionary Com-
putation (IEC), this problem is overcome by using manual
human evaluation to compute the fitnesses of individu-
als in each generation. One of the main issues of IEC is
user fatigue, which greatly limits the amount of human
evaluations available; this usually poses bounds both
on the number of possible generations and the number
of individuals that can be evaluated at each generation.
To mitigate this problem the interactions are often care-
fully designed so as to minimize psychological fatigue
[9]. Function approximators (e.g. neural networks) are
also often used to learn the preferences of the human
experimenter [9, 7], so that this information can be used
in subsequent runs of the GA and reduce the amount of
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interaction needed.

In our experiment, we tackle the generation of inter-
esting structures in the popular videogame Minecraft.
Minecraft is a sandbox construction videogame set in
a voxel-based environment with various basic building
blocks, such as wood, stone, glass, water, etc. The ma-
jor advantage of Minecraft over most Artificial Life (AL-
ife) domains is that surprisingly complex and functional
structures (e.g. moving robots, word processors, etc.) can
all be built from the same basic building blocks, which
aligns well with the few chemical building blocks that
produce complex biological systems [10, 11, 12].

User fatigue is a major challenge in IEC, and since the
human fatigue threshold cannot be improved, the avail-
able evaluations must be exploited as much as possible.
Our approach to this issue builds on the techniques men-
tioned above, by alternating human evaluation and the
training of a fitness estimator model in a single run of
the genetic algorithm. This approach allows to use few
human interactions while still perfoming a high number
of generations. Moreover, since the fitness estimator is
re-aligned with human preferences almost periodically, it
can also adapt to artifacts only seen in later generations.
As a convenient side-effect, more than one human (pos-
sibly with slightly different preferences) can contribute
to a single run, which demonstrates how this approach
can be extended from IEC to Collaborative Interactive
Evolution (CIE) [13]. Unlike previous approaches such
as [14] our approach leverages data collected through
the evolution process to further reduce user fatigue even
when in an IEC setting.

2. Related work

In this section we give a technical overview of our appli-
cation of FEFFuL to the Minecraft environment.
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2.1. Artifacts generation

An artifact is a structure with precise width, height and
depth. These values are user defined. The artifact is the
phenotype of a genome. Each genome uniquely encodes
information used to generate the artifact. We use the Neu-
roEvolution of Augmenting Topologies (NEAT) [15] to
control how these genomes evolve over the generations.
Each genome is part of a population of fixed size and,
thanks to the NEAT algorithm, is mutated to increase
the complexity of the resulting artifact. In fact, NEAT en-
sures an ever-increasing complexification of the artifacts
and, thanks to speciation and the use of elitism, it also
ensures a lasting diversification of phenotypes (diver-
sity here is measured as genomic distance). Additionally
we set a low stagnation level to ensure low-performing
genomes (i.e.: genomes that generate uninstering arti-
facts for the user) are pruned away and leave space in
the population for more interesting genomes. During
evolution each genome is mutated and new genomes are
created by combining two random parent genomes. Since
genomes with high fitness are more likely to reproduce
and pass on their properties to their offsprings, we ensure
that the entire population slowly converges to diverse,
high-fitness solutions.

The genomes are used to encode a Compositional Pat-
tern Producing Networks (CPPNs) [16]. Such a network
is composed of blocks of elementary activation func-
tions connected together by weighted connections. The
genomes encode the structure, weights and biases of the
network. Mutations during evolution consist in adding or
removing connections or blocks, perturbing the weights
and biases values and changing the activation functions.
The CPPNs thus directly map from genotype to pheno-
type without local interaction and are applicable on a
infinite-sized input space (a typical application is, for
instance, 2D image generation from pixel coordinates).
Due to their architecture, CPPNs create patterned out-
puts and can develop pure symmetry and symmetry with
variation, which in turn make for appealing artifacts.

In our experiment, we use the NEAT Python [17] li-
brary and the PyTorch-NEAT" to integrate both the NEAT
evolutionary algorithm and the CPPNs architecture. The
inputs to the networks are the scaled X, Y and Z coor-
dinates (€ [0, 1]) of the artifact and the outputs are the
block type and rotation (both values are output € [0, 1]
and later scaled to the admissible values).

The artifact generation process can be formally ex-
pressed as follows: given a population P at the genera-
tion g of genomes G's, we first define the CPPN network
that the genome encodes as

CPPN¢ = dec(P%)

'The PyTorch-NEAT library is available at https://github.com/
uber-research/PyTorch-NEAT/
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where dec is the decoding function. The artifact genera-
tion is then simply

o= CPPNe(i)

where i € R® and 0 € R? are, respectively, the inputs
and the outputs of the network, both constrained in the
real-valued interval [0, 1]. In order to show the artifact
as a structure to the user, o is then transformed. By
assigning to b the number of admissible blocks and to r
the number of admissible block rotations, we have that

o1 =|o1x(b+1)]

02 = o2 x (r+1)]

The user has to choose the admissible blocks and val-
ues by modifying a configuration file. The resulting arti-
facts are then evaluated in the Minecraft game using the
EvoCraft [10] interface.

2.2. Artifacts evaluation

The generated artifacts undergo an user defined Mini-
mum Criterion (MC) step at each generation before eval-
uation. This step removes artifacts that don’t satisfy this
minimum requirement. Only a predefined number of
artifacts sampled randomly from the artifacts that pass
the MC step are then presented to the user for direct
evaluation. In our experiment, the MC consisted in re-
moving artifacts that didn’t contain enough air blocks
and enough solid blocks (both values were expressed
as minimum percentages). The number of maximum
artifacts that could be presented to the user was set to
24.

The user is then tasked to evaluate the generated ar-
tifacts. This is done by looking at the structures on the
Minecraft client applet and choosing the most interesting
ones. During manual (human) evaluation the program
accepts a list of indexes that correspond to the selected ar-
tifacts. Since the mapping from genomes to artifactsis 1:1,
we can assign the fitness value to the correct correspond-
ing genome that generated the artifact. The possible
fitness values are 1 for the genomes the user is interested
in and O for the others. We note that we automatically
assign a fitness value of 0 to all the genomes that didn’t
pass the MC step to discourage their traits to appear
again later in the generations, as these are not interest-
ing to the user. This ensures that only the phenotypically
interesting genomes survive throughout the evolution
process.

During human evaluation we save the artifacts and
their fitness in a memory buffer. Once the buffer is at ca-
pacity, the FEFFul network can be trained in a supervised
fashion to directly estimate the user preferences given
the artifacts. The network itself is rather simple: a 3D
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Convolution maps the artifact to a sequence of feature
maps that are later flattened and passed through multiple
residual blocks that in the end output a value € [0, 1]
that represent how likely the human would have marked
the artifact as interesting. A graphical overview of the
FEFFuL network can be found in 1.

Figure 1: Architecture of the FEFFuL network

Due to the nature of the task, it is expected that the
buffer would be unbalanced: it is more likely that there
would be more examples of discarded artifacts than ac-
cepted artifacts. For this reason, we balance the dataset
before training the network. We do this by both over-
sampling accepted artifacts and then downsampling dis-
carded artifacts. The former is accomplished by augment-
ing artifacts by rotation: we rotate the structure along
the Y'-axis by 90. We can do this since the artifact must
be interesting regardless of the orientation. The latter
is instead accomplished by removing discarded artifacts
from the dataset until a good ratio of accepted artifacts
and discarded artifacts is reached.

The output value of the FEFFuL module is directly as-
signed as fitness value to the corresponding genome. This
gives an additional significance to the fitness value: it not

also the FEFFuL network has to reflect this behavior. We
solved this problem with two simple corrections to the
network’s behavior. First, we note that the buffer is con-
stantly updated only with user’s selected artifacts and fit-
nesses, effectively making it a constantly-updated dataset
we can train the network from. The corrections are the
following:

1. We first use the network to evaluate the artifacts
for a given number of generations at a time. This
value is increased as the evolution process goes
on, thus leveraging the network more and more
as time goes on.

2. We enforce fine-tuning of the network after the
aforementioned number of generations. We do
this by prompting the user to evaluate the cur-
rent generation, collect the preferences in the
buffer and finetuning the network on the updated
dataset. At this point of the process there could be
some disalignment between user preferences and
network estimates. This would be harmful to the
entire experiment as it would diverge the search.
We solve this by activating the network only if
its accuracy over unseen artifacts is higher than a
given threshold. Otherwise the user is prompted
again until the network can be activated.

3. Methodology and Results

We first report the experiment settings in order to repro-
duce our results at 1. These are taken from the experiment
configuration file in our repository; we are not going to
report the settings for the NEAT algorithm which can be
found in the neat configuration file in our repository.

Artifact width
Artifact height
Artifact depth
Max number of artifact shown to the user 24

Min percentage of air blocks in an artifact 22%
Min percentage of solid blocks in an artifact  32%

g~ o

only marks the user preference but also the network’s
confidence in its output. Thus, a low-fitness genome
would have been less likely to have been picked by the
user than a high-fitness one. This process is important
during the reproduction step of the NEAT algorithm as

Admissible rotations NORTH, WEST, SOUTH,

EAST, UP, DOWN

AIR, COBBLESTONE, STONE,
STONE_STAIRS STONEBRICK,
QUARTZ_BLOCK

Admissible blocks

it heavily relies on the genome’s fitness to order the pos- ~ RNG seed ) 42

sible parents of new individuals. Buffer capacity 512
Batch size 32
Number of convolution channels 16

2.3. The alignment problem Number of epochs 100
Interval of training 5

Due to the ever-complexification of the genomes thanks
to the NEAT algorithm, both the structures and the user’s
preferences change over time. An artifact that the user
deemed interesting at generation 0 may not be as in-
teresting if found at generation 100. This implies that

Activation threshold on test accuracy 0.5

Table 1
Experiment parameter summary
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We then report the train and test accuracy and loss
evaluated at different generations at 2 and 3 respectively.
We note that, while the training metrics behave as ex-
pected, in the test we can see a rising trend for the loss
metric. The accuracy however remains well over the 80%,
which we consider a good value.
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Figure 2: Train accuracy and loss of the FEFFul network at
different generations
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Figure 3: Test accuracy and loss of the FEFFuL network at
different generations

We ran the experiment for 100 generations. While this
is a rather low number of generations, the aim of this
project was not to evolve structures to a certain level
of user satisfiability but to show that it was possible
to use a NN to approximate user’s preferences, reduce
user fatigue and save time. The metrics prove that we
succeeded in the first part of the task. For what concerns
user fatigue, it is known that a single user can evaluate
around 20 generations worth of artifacts before starting
to feel fatigued [9]. In the entire evolution process only
29 generations worth of artifacts where evaluated by the
user, whereas the remaining 71 were evaluated by the
FEFFuL network. We report a graph that shows which
evaluator was used at each generation at 4.

The time gain over the same amount of generations is
well apparent: we estimated that the human user takes
from 2 to 3 minutes to evaluate a single batch of artifacts,
whereas the FEFFuL network only a few milliseconds. In
fact we noticed that the bottleneck of time consumption
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Figure 4: Overview of the active evaluator per generation

was not the evaluation anymore but the generation of
the new genomes instead.

Figure 5: Artifacts produced on generation 0 (left) and on
generation 100 (right)

Finally, we report a comparison between the artifacts
generated on generation 0 and those generated on gen-
eration 100 at 5. We note how the artifacts are more
complex on generation 100 as well as in line with user’s
preferences during evolution.

4. Conclusions and future work

The results shown in the previous section suggest that
this approach can effectively be used to mitigate the user
fatigue problem in IEC tasks. More specifically, most of
the interactions with the human experimenter are in the
first few generations, where the buffer is not completely
full and the estimator cannot be trained. After the first
alignment, the human evaluations were needed very spo-
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radically, as the estimator maintained good alignment
and usually only needed one generation to adapt to new
artifacts chosen by the user. This also means that after
the initial alignment, the cost to perform more genera-
tions, in terms of user evaluations needed is much lower.
This can get even lower for further generations, even
though this descending trend would be fairly moderate
in our specific implementation.

However, these same results also suggest that a method
is needed to avoid the fitness estimator from overfitting
during the fine-tuning step, perhaps with an adaptive
rule that either produces an optimized “expiration date”
for the model or that dynamically stops the fine-tuning
process when overfitting occurs.

We finally note two possible improvements to the FEF-
FuL network. FEFFuL could use a latent representation of
the phenotypes instead of directly mapping the artifacts
to their fitness values. This could benefit the re-alignment
process if the generalization power of the model over
unseen artifact improves. This comes with the added
benefit of keeping a smaller buffer, thus requiring even
less human evaluation at the beginning of the experi-
ment. Finally The Minimum Criterion could be enforced
only in generations evaluated by the human, so that the
advantage of having a fitness estimator can be exploited
to evaluate the entire population and not just a subset.
This would also ensure that no interesting artifact is dis-
carded a priori during the MC step, allowing a diverse
set of good solutions to remain in the population.
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