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Abstract  
This paper describes understandable neurodynamic models where the brainwaves of 
individuals and teams are analyzed in real-time, and measures are reported in terms of the 
frequency, magnitude and duration of uncertainty.   These neurodynamic measures are causal 
intermediates between low level neural processes and the organizations that we recognize as 
being important for teamwork.  They, are also ones that track closely with the hesitations and 
pauses we associate with uncertainty. Temporal and spatial brain region models reveal the 
brain regions, and possible causes of uncertainty. Machines can be trained to recognize the 
levels and the time-courses of the temporally and spatially defined uncertainty states, enabling 
them to support teams as active modelers, dynamic shapers and possibly oracles of future team 
behavior. 
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1. Introduction 

According to Sottilare and Hoehn [1] the process for identifying the states of teams and team 
members, and using them to select the appropriate adaptive instruction, generally consists of: 
Identifying behavioral markers to measure teamwork; Developing methods to automatically recognize 
unique behavioral markers; Associating behavioral markers with a unique teamwork state; and. 
Selecting and delivering an appropriate intervention based on the team member / team state. 

Designing and implementing such systems becomes complicated with single-trial, ill- defined tasks.  
What actually is a learner model under these conditions and how can team and team member states be 
best defined and identified?   

Conceptualizing and delivering this next generation of capabilities is challenging in that the 
dynamics of learning, retention and coordination during simulation training, or even making estimates 
of when that learning might be occurring, are poorly understood. Sometimes, the best that can be said 
is that learning likely occurred during the simulation, and perhaps more so during the debriefing. At the 
neuronal level however, it is increasingly apparent that learning is driven by unexpected events, i.e. 
those that cause uncertainty [2].  

Uncertainty is a fundamental property of neural computation that we use to estimate the (perceived) 
state of our world. The brain draws from this uncertainty to access memories (the past) to imagine future 
possibilities and the actions needed to give the best outcomes, outcomes that might be orders of 
magnitude away in the future. 

Humans maintain low levels of uncertainty by operating in familiar environments and situations 
where well-rehearsed sequences of cognition can be exploited. As a result, we think and act in terms of 
chunks of several seconds up to a minute, which help streamline the moment to moment activities [3.4]. 
To the extent that the planning and execution of these routines meet the immediate task requirements, 
the future will be predictable, and we avoid surprise.  
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Occasionally, unfamiliar environments or unexpected events increase our uncertainty about what to 
do next. When this happens the brain switches from exploiting past experiences to exploring new 
approaches [5, 6, 7]. In professional settings this exploratory uncertainty and the pauses and hesitations 
that it generates are often early indicators of deteriorating performance [8]. 

Currently it is difficult to predict how long uncertainty will last. The ability to rapidly and 
quantitatively measure uncertainty would have implications for educational and training efforts by 
supporting in-progress corrections, generating forecasts about future disruptions, or by using identified 
periods of uncertainty to target reflective discussions about past actions. The measures might also help 
target windows that are the most optimum for providing adaptive instruction. 

The following sections outline a framework for developing increasingly understandable 
neurodynamic models that analyze the brainwaves of individuals and teams in real-time, and report the 
frequency, magnitude, and duration of neural correlates of uncertainty. These neurodynamic measures 
and models quantitatively scale from neurons to teams providing reports about performance levels and 
training gaps to stakeholders across the simulation community. 

2. Modeling the Neurodynamics of Teams and Team Members 

The challenge in developing performance-based evaluations using neural measures is not with the 
EEG measures themselves. Since the discovery of brainwaves, many measures have been developed 
using EEG, i.e. the frequency, amplitude (power), phase, complexity, scalp topology, ERPs, etc. An 
equally large number of methods have been developed for collecting, pre-processing and modeling the 
measures in real-time [9, 10, 11]. 

The challenge of broad-scale neural modeling has been that bottom up analytic approaches rapidly 
become complicated as most low-level neural processes are not in themselves directly causal to team 
performance but instead are the result of everyday cognitive activities that support seeing, listening, 
decision making, etc. It is when these activities are transiently amplified or modified by the context, 
that they assume greater importance for understanding teamwork. 

Methods have been developed for estimating the neurodynamic correlates of uncertainty that are 
based on the information (not power or phase per se) in EEG rhythms [12-15]. The measure, 
Neurodynamic Information (NI), temporally bridges the gap between low level neural processes 
associated with everyday activities, and the organizations that we recognize as being important for 
teamwork.  It is also a measure that tracks closely with the hesitations and pauses associated with 
uncertainty [8, 14, 16]. 

Detecting structure in data streams involves first deconstructing continuous data into discrete 
symbols and this requires deciding the number of partitions. Some EEG rhythms, like alpha waves 
(~10Hz), show either enhancing or suppressive neurodynamic properties depending on whether they 
are at a high or low power state [17] and so at its simplest, EEG amplitudes of a team member could be 
assigned any three symbols such that the states are easy to visualize and understand. In our studies 
activated states are assigned ‘3’, deactivated states are assigned ‘-1’ and neutral states are assigned ‘1’.  
The result is a data stream of 3’s 1’s and -1’s.  

The temporal structure (not power) can be estimated each second in this data stream by measuring 
the mix of the three symbols in a 60s segment that is updated each second as it slides over the data. If 
only one symbol was expressed in this 60s segment the entropy would be 0 bits; if there was an equal 
mix of the three symbols then the entropy would be 1.59 bits which is the maximum. So the fewer the 
symbols expressed in a window of 60s the more neurodynamically was the team member and the lower 
the entropy. Since it could be confusing having lower entropy mean higher organizations, the data plots 
are made more intuitive by calculating the Neurodynamic Information (NI) which is the bits of 
information when entropy values are subtracted from the maximum entropy for the number of unique 
symbols (Fig. 1A). So an entropy value of 1.0 would have a NI level of 1.585 minus 1.0 or .59 bits.  As 
shown in Figure 1 B & C, dividing the signal into 6 or 12 states does not change the shape of the NI 
profile, just the level of information reported. 
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Figure 1: The EEG data stream of a member of an anesthesiology team member was divided into (A) 
three states, (B) six states, or (C) twelve states. The bar charts show the profiles of the EEG states 
while the solid lines trace the Neurodynamic Information. 

 
A general, and perhaps more important point from this figure is that symbolically analyzing the 

structure of EEG amplitude creates a quantitative, and bounded scale of EEG organizations. It means 
that the neurodynamic information of any team of two persons who are performing any task where the 
EEG is separated into three levels will have NI levels between 0 and 3.17 bits, and for each team member 
the NI levels will lie between 0 and 1.585. These are values that can be quantitatively compared with 
other team performances, and can be aggregated for a class of trainees, or used to compare one training 
protocol to another. It means that the neurodynamic organization of one brain region can be directly 
compared with that of another brain region or across the frequencies of the 1-40 Hz EEG spectrum. 
Similar reasoning applies if the neurodynamic organization of a team is compared in the simulation 
scenario vs the debriefing, or across a critical healthcare event like intubation.  

Neurodynamic information also contributes properties not always possessed by the amplitude or 
phase of brainwaves alone. For instance, neurodynamic information has been shown to link with the 
organization of team activities [12], or speech [18], or submarine navigation team expertise [19], or 
healthcare team expertise [14]. 

The emerging picture is that as simulations (and real-world events) evolve, the neurodynamic 
information accumulates and the bits accumulated are a function of the frequency, magnitude, and 
duration of periods of uncertainty. This feature applies to healthcare, military and pre-college teams 
and appears to be a general property of human performance.  

The links between elevated NI and uncertainty were common during short periods (~ 1 min) of 
verbalized uncertainty [13], or during submarine navigation while the data needed to establish the 
submarine’s position was being collected and shared among the navigation team [14]. The links have 
been extended to include medical students, hospital anesthesiologists and operating room staff (i.e. 
circulating nurse, scrub nurse and neurosurgeon etc.) during simulation training when they experienced 
difficulties ventilating a patient or deciding a course of patient management [16].  

While originally elevated NI was described in the context of spoken uncertainty, elevations more 
generally occur during stressful periods whether or not someone was speaking. These associations were 
not unique to simulations as they were also seen in two neurosurgeons and an anesthesiologist during a 
live-patient surgery [20].  

The sources of uncertainty observed parallel those described by Harencarova [21] for paramedics 
and include Recency Bias, Inadequate Understanding of the Situation, Technical Problems including 
equipment failure or a lack of understanding about how to operate the equipment, Inattention to Detail, 
and, Indecision regarding what to do next or choosing among a set of alternatives. The most frequent 
strategies used in response to these sources of uncertainty were trying to reduce the uncertainty and also 
by re-prioritizing actions. 

3. Temporal and Spatial Brain Dynamics of Neurodynamic Information 

Some of these properties are illustrated in this section where the neural signals of an anesthesiologist were 
quantitatively deconstructed across temporal and spatial brain scales and compared with task events during a 
training session.  This session simulated a neurosurgery where after the patient was sedated the team was surprised 
by a rapid, and life-threatening, adverse systemic response to the anesthesia. The neurodynamics of the 
anesthesiologist are shown as she assumed team leadership under this situation. The dynamics began with a rapid 
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NI increase that corresponded with the team recognizing the difficulty and the formulation of an action plan 
(~800s). The large NI peak resulted from the scalp-wide contributions from half of the sensors, several of which 
(i.e. Fz, Pz, and T4) represented the involvement of the Default Mode Network (DMN).  The DMN, has been 
proposed to be a network where prior information that is continuously accumulated over seconds to minutes, is 
melded with arriving extrinsic sensory information [22]. 

 
Figure 2: (A) The NI dynamics are plotted over time at each sensor of the Anesthesiologist. (B) The 
scalp-wide (i.e. averaged across sensors) NI dynamics are plotted along with events simultaneously 
occurring. (C) The elevated NI at the P3 sensor is expanded for one segment (800s-875s) and displayed 
across the 1-40 Hz EEG frequency spectrum; this example could be repeated for any sensor at any 
time if needed. 
 

This temporally extended accumulated information is tied to the context of the stimulus, much like 
when reading a story the current chapter is continually linked with events and characters in the previous 
chapters. In this simulation, an absence of increased NI levels in DMN regions might, in fact, be a cause 
for concern. 

Once the plan was formulated and the execution of the plan began, the NI decreased and the 
neurodynamics shifted from the multi-sensor DMN toward discrete peaks and more localized 
neurodynamic activity. As the patient stabilized the NI returned to near baseline levels.  

The band of NI activity at the P3 sensor during the initial peak was further parsed across the 1-40 
1Hz frequencies. The discrete nature of the peaks was preserved, first in the theta region (~4-5 Hz) and 
then in the beta region (~17 Hz), which may have implications for training machines as described below. 

4. A Machine Learning Perspective of Neurodynamic Uncertainty 

One of the hallmarks of human behavior is that of all the physiologic, mental, and spatial states we 
can be in, we often occupy and return to specific states; these support our routines [23].  Such repetition 
of behavioral states is particularly likely for teams performing tasks with repeating subtasks.  During 
submarine navigation the position of the submarine is estimated every 3 min using multiple navigational 
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aids [12].  The uncertainty associated with this process called ‘Rounds’ was investigated using self-
organizing (SOM) artificial neural networks trained to recognize pattern variations in the NI peaks 
associated with verbalized uncertainty [13, 24]. These networks were trained to recognize sixteen 
uncertainty states with a topology ranging from no uncertainty to high levels of uncertainty. These 
networks represent uncertainty not only by the magnitude of uncertainty, but also by the profiles (Fig. 
3). 

 
Figure 3: Topology of a Self-organizing Map for Uncertainty. The numbers below each exemplar 
indicate the average NI bits for the state across exemplars. The arrows indicate that uncertainty 
decreases from left to right as well as bottom to the top. 

 
Transition maps can be used to identify states of uncertainty, their average and state-specific 

durations, as well as transition probabilities to future states (Fig. 4). The average durations between 
state changes for the four team members was 31.6 ± 40s (Figure 4A). This duration between state 
changes for the scalp-wide NI dynamics was similar to that calculated for frequency-specific duration 
using the Matlab® findpeaks.m function (26.3 ± 14s) or by averaging the durations between individual 
SOM state changes which was 25.4 ± 16s.  



50 
 

 
Figure 4: SOM-state durations and transitions. (A) Histogram of the durations of all SOM-states. (B) 
Average duration of each SOM-state is shown in black, the standard deviations in gray. (C) Transition 
matrix From a SOM-state (x axis) To the next state (y axis). (D) The minor state transitions were 
visualized by first removing the identity-line SOM-states. The color bar shows the probability of 
transiting to the next state. The identity line separates the transitions that will result in lower 
uncertainty (above the line) or higher uncertainty (below the line).  
 

The durations at each SOM-state were variable both in terms of the average times (Fig. 4B, black 
bars) and standard deviations (Fig. 4B grey bars) with SOM states 1, 5, and 10. These states also 
represented upwards trajectory trends with few indications of an imminent decrease in uncertainty. The 
strong identity line in the transition matrix indicates that most SOM states were temporally persistent 
(Fig. 4C), i.e. once at a state there was a tendency to remain there. 

There were also 510 SOM-state transitions that the team used to move along the identity line i.e. 
From state 6 To state 3 (Fig. 4D). The across-state transition probabilities were not evenly distributed 
across the state space but tended to divide themselves to those above and below the identity diagonal. 
With the topology shown in Fig. 3, those above the line represented transitions to a state of lower 
uncertainty. An example would be SOM state 7 where the most likely transitions led to a state of lower 
uncertainty, SOM states 8, 10 &13. Those below the identity line represent transitions to a higher state 
of uncertainty an example would be states 5 or 10. 

These transition probabilities are meaningful in the sense that they could forecast a major future 
difficulty of the team on a second simulation [24]. 

5. Inserting Machines into the Tutoring Process 

How can the dynamics of NI-related uncertainty be used for tutoring? First, the machine could 
function as a passive provider of post-hoc dynamic information. Training simulations are labor and time 
intensive, especially the after action reviews where much of the learning is thought to occur. The simple 
provision of NI maps like that in Figure 2 to the instructor before debriefing could help target areas for 
focused discussion. Alternatively they could be provided to trainees as supports for self-debriefings or 
discussions.   
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These ideas can be extended to training facilitators.  The time required to achieve competency as a 
debriefing facilitator is variable, requiring the expertise of an experienced mentor. Factors such as 
understanding of key principles, practice opportunities, self-reflection and expert feedback are all 
important. Just as simulation and debriefing have the potential to standardize clinician education, a 
combined analysis of team NI and video, in conjunction with discussion and expert feedback, has the 
potential to standardize the formation of debriefers and decrease time to competency.  

Moving past the level of debriefing, real-time monitoring of individual and team neurodynamics 
will also endow machines with an ability to understand the immediate changing state of human 
uncertainty allowing them to participate as active modelers, dynamic shapers and possibly oracles of 
future human behavior, in essence, providing continual answers to the question ‘How is this team 
doing? [25]. 

In this regard, one of the more powerful advantages of using uncertainty-based artificial intelligence 
(AI) systems for education is that they will remember what a team, or team member struggled with in 
the past. Furthermore they will remember the magnitude and duration of these struggles as well as brain-
locations and frequencies, and whether trainees would be likely to figure it out for themselves or require 
feedback. As performances accumulate and models are expanded and refined, the AI system could use 
its increased understanding of the behaviors of uncertainty to suggest new curricular designs to improve 
training efficiency and effectiveness.  

Lastly, efforts to insert AI systems into organizations often fall short of expectations. Sometimes this 
is due to usability and trust issues, other times from current algorithms not being suited for ill-structured 
problems that are easy for people to perform, but hard for people to describe such as understanding or 
predicting the intent of other complex systems like teams. In education and training, these challenges 
can be compounded by the long-standing tradition of domain silos which can reduce the volume of the 
labeled exemplar data available for deep or reinforcement machine learning, further complicating the 
development of multi-purpose systems. 

The very nature of uncertainty may facilitate acceptance of AI systems built around this construct, 
i.e. make it intelligible [26]. Humans spend much of their lives in states of uncertainty of various 
magnitudes and durations and so are familiar with the concept not only in principle, but also in practice. 
These understandings in conjunction with the bounded and quantitative NI scale (which is sensitive to 
training effects) will make it easier for users to accept recommendations from such transparent AI 
systems as they will better understand the factors considered in the recommendation. 
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