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Abstract
Ubiquitous connectivity among objects is the already expected future of the Internet of Things ages we
are living today. Technologies are competing fiercely to fulfill this goal. Still, none of them has been
proven as the one-size-fits-all solution for any application scenarios. Indoor Positioning System, and
Direction Finding problems, represent an interesting playground for Internet of Things technologies. In
this challenge, one of the major stakeholders is Bluetooth: initially conceived as a short-range solution
for Personal Area Networks, it has now evolved to version 5, which natively supports both Angle of
Departure and Angle of Arrival techniques. In this work, a Connection-Oriented Real-Time Locating
System is realized to deeply investigate the newly added features of Bluetooth, thanks to a dedicated
framework that evaluates gathered data and their reliability. A thorough experimental campaign has
been carried out in both indoor and outdoor conditions, with interesting results. Overall, the main
outcome is that the Angle of Arrival is not sufficient to solve Direction Finding problems and a more
precise estimation of both directions and distances requires other quality indexes. In particular, the
Received Signal Strength Indicator is proposed to be used in conjunction with the Angle of Arrival as
part of the measurement framework.
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1. Introduction

Indoor Positioning Systems (IPSs) are a hot research topic in the Internet of Things (IoT) domain,
attracting an ever-increasing interest from both academia and industry. This is motivated by
their wide applicability in several application domains [1], [2], [3]. In this context, sub-meter
precision is widely considered as the most recommended enhancement today [4]. Among
the many proposals in scientific literature, IPSs have been developed around Wi-Fi networks,
with fingerprinting technique, which is still advised in many cases. The problem of indoor
positioning and localization has not been uniquely solved over time: several studies proposed
an estimation base on hybrid technologies, i.e., Wi-Fi and Bluetooth combined, others focused
on radio signals filtering and post-processing [1][2][3][5][6][7][8][9]. Some proposed Direction
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Finding (DF) methods are based on the employment of Received Signal Strength Indicator (RSSI),
which is also filtered to increase precision in many cases.

The Bluetooth Special Interest Group (SIG)1 recently released the updated specifications for
Bluetooth Low Energy (BLE), for both the Core Specifications [10] and topology enhancements,
i.e., Bluetooth Mesh2. When combining these features together, those major advancements can
bring Bluetooth technology to a brand new stage. In fact, positioning, tracking and, more in
general, DF problems can be dealt with relying on angular information. In particular, Angle
of Arrival (AoA) and Angle of Departure (AoD) techniques are attracting attention today
[11, 12, 13, 14, 15, 16, 17]. This challenging, non-linear, estimation problem aims at solving
localization problems as it can determine the source position based on the propagation direction
of an incident radio frequency wave when it reaches a receiving antenna array. Despite the
interesting contributions proposed so far, the employability of DF and AoA in the context
of Bluetooth-base networks still need to be further investigated to consolidate a reliable and
accurate usability methodology.
The present contribution proposes a framework for evaluating errors in DF systems based

on the recently added AoA functionality. The envisioned solution starts from a Connection-
Oriented Real-Time Locating System (RTLS) that has been experimentally evaluated to prove
its reliability, in both indoor and outdoor scenarios. Once gathered, both angular and RSSI
information have been processed with Machine Learning (ML) algorithms to evaluate errors,
either systemic or not. Overall, the conducted experimental campaign demonstrated that it is
possible to obtain the AoA and use it in DF problems with a precision level that appears to be
hardware-dependent. Nevertheless, in indoor conditions physical effects, such as multipath
and/or fading are relevant, with respect to indoor scenarios; therefore, a more precise estimation
of both directions and distances could be reached using other quality indexes. In particular, the
RSSI could be parts of the measurement framework since this is likely to be used in conjunction
with AoA measurements.

The work is organized as follows: Section 2 introduces the related works and the reference
technological background. Section 3, instead, describes the proposed approach, with a focus
on the RTLS architectures. With Section 4, the experimental evaluation is discussed in detail,
together with the main findings. Finally, Section 5 concludes the work and draws future work
possibilities.

2. Related works and Reference Background

This Section discusses related works. Afterward, it presents the newly added features in BLE.
Lastly, it introduces AoA as a methodology.

2.1. Indoor Positioning Solutions

Indoor positioning and/or localization is a challenging task that has been dealt with by many
contributions so far [2] [5] [6] [7] [9] [11] [12] [13] [14] [15] [18]. From a technological point

1https://www.bluetooth.com/
2https://www.bluetooth.com/learn-about-bluetooth/recent-enhancements/mesh/



of view, many communication technologies and protocol stacks have been proposed, spanning
from IEEE 802.11 (namely, Wi-Fi), to IEEE 802.15.x. Among the many, one of the most used
in practice BLE [2], which envisions beacons periodically broadcasting peculiar radio signals,
used to advertise and/or carry out several operations.

Regardless of the involved technology, the localization process consists of two phases: signal
measurement and position calculation [18]. Within the first phase, some properties of the signal
are detected by the receiver. When the Bluetooth is involved, there are several possibilities.
For example, by studying the RSSI it is possible to estimate the distances of the transmitters.
Afterward, these values are used to calculate the position of the receiver [5, 6]. RSSI is also
widely used in the finger printing approach [7].

[8] proposes a real-time monitoring system in the context of healthcare that focuses on
elderly people. In particular, it aims at developing a cyber-physical system that combines both
Wi-Fi and Bluetooth technologies. The system is composed by several devices replacing light
bulbs, and monitoring the RSSI coming from the personal device of the person moving inside
the area of interest. The localization task is accomplished with interesting precision values,
since RSSI values are elaborated using dedicated Kalman filter solutions.

In [9], instead, BLE is investigated in a challenging setup composed by a single hub, carrying
out advertising tasks, and several tags to be sensed. Given the high number of communicating
devices, collisions becomes a major concern and a severe performance drop in communication
is observed. Such a drawback is mitigated by a large use of re-transmission.

[11] leverages the Bluetooth 5.1 Core Specifications to investigate the positioning capabilities.
In particular, the proposal evaluates the accuracy of a positioning system based on the AoA, to
prove its reliability. Nevertheless, the system is composed by a limited number of antennas,
working at the same time. Many contributions are also investigating the Time of Arrival (ToA)
and the AoA methods to evaluate the time and the angle of the incident signal, respectively. [13]
evaluates the AoA at the receiver’s side, using the received signal instead of phase components.
The choice is motivated by the fact that the synchronization of a synthetic antenna array is
assumed to be hardly reachable. The discussed results have interesting precision values, which
are obtained at the cost of a long data processing and elaboration time.

When comparing ToA and AoA, the second does not require clock synchronization between
the target and the base stations. The target’s position can be estimated using the known
positions of the two anchors. Hence, the AoA can be obtained with simple geometric rules.
When multiple antenna elements are involved, the AoA can be obtained through different
techniques. The first is Switched Beam System (SBS), which uses a fixed number of elements
of elements at the same time. Here, each beam covers a certain area. All the gathered signals
are compared to find the maximum signal strength. The second, instead, is Adaptive Array
System (AAS), which selectively increases the gain of an antenna element in the array in case
the target is identified. Among the AAS based solutions, the subspace techniques based on the
concept of orthogonality of the signal subspace to subspace noise. The most widely studied
method in this group is MUltiple SIgnal Classification (MUSIC) [14]. An example of signal
processing through the MUSIC algorithm can be found in [15]. In [16], an estimation of the
angle of the BLE signal is given, based on the phase difference between the I/Q samples received
from different elements embedded in an AAS. To decrease the sensitivity of the AoA localization
to multipath effects, Non-Line of Sight (NLoS), fluctuations of the received signal and phase and



frequency shifts, Nonlinear Least Square (NLS) curve fitting, Kalman Filter (KF), and gaussing
filter is used on raw I/Q samples.
In [17], instead, a combined signal processing and ML tool is proposed for AoA estimation.

Specifically, trained regression models using data collected by multiple antennas are used
to estimate the AoA. Training is based on a real-world measurements in indoor conditions
with a Bluetooth 5 system. The proposed approach for AoA estimation uses regression, for
instance, Neural Networks (NN), Gaussian process and Regression Trees (RT), and provides
an improvement of at least 20% over the basic approach of the traditional multiple signal
classification algorithm.
In [19], a ML-based fast AoA recognition framework is proposed for vehicular communica-

tions. The regression models Support Vector Machine (SVM) trained by the measured data in
actual vehicular scenarios are used to solve non-linear mapping problem from array output
space to AoA space.

Despite the interesting contribution proposed so far, the employability of DF and AoA in the
context of Bluetooth-based networks still needs to be further investigated.

2.2. The Bluetooth Technology

Bluetooth is a promising communication technology specifically designed to provide wire-
less connectivity for IoT devices in multiple smart domains. The most relevant, yet peculiar,
functionalities that the Bluetooth leverages are low energy footprint and short range coverage
capabilities [20].

In the context of the IoT application domains, the BLE is a major advancement in the standard.
In fact, it enables interoperable short-range wireless communication with low-power radio
frequency primitives. The Bluetooth 5.0 Core Specifications [10], released and maintained by
the Bluetooth SIG, may be considered as a major leap for the communication protocol, especially
in the context of IoT applications [1, 2, 3, 4]. It is worth noting that the main modifications
were introduced at the Physical (PHY) layer, where a better robustness to interference is now
granted. In particular, among the newly added modulation schemes, i.e., LE 1M uncoded, LE
1M coded, and LE 2M uncoded. The latter allows a 2 Msym/s datarate with a 2 MHz bandwidth
for each channel. Moreover, the three possibilities also differ because of the employment of
a coding scheme, to increase sensitivity. Another interesting feature is the high duty cycle
non-connectible advertising, which contributes to an increased speed in certain advertising
events.
A second interesting modification is the LE Long Range, a new coding scheme that extends

the transmission range. At the same time, Bluetooth 5.0 adopts Forward Error Correction (FEC).
The choice is motivated by the fact that this approach trades off the data rate for higher data
sensitivity, since it uses several symbols to represent one bit so that original data can be
recovered.

The third main contribution is the LE Advertising Extensions, which first introduces beacon-
based service, by means of an extended advertising capacity. The goal is reached by increasing
the number of channels for advertising operations to 37, with the original 3 channels considered
as the primary choice, and the others as secondary.

Bluetooth is now characterized by several Protocol Data Units (PDUs), specifically extended



for advertising purposes, so that broadcasting can be improved. Specifically, new PDUs allow
two Bluetooth devices to exchange data, still they no longer need to be paired. This implies a
greater reliability and efficiency when receiving Bluetooth beacons. Moreover, Connectionless
advertising is now enabled [20].
In Bluetooth 5.1, the Core Specifications have been modified to introduce DF features that

can be used to track/find a target in a reference area by estimating the angle formed by the
tracker and the target [20] by leveraging AoA and/or AoD methods. The problem of DF with
Bluetooth can be solved thanks to a source of constant signal to which IQ sampling can be
applied. This solution assumes an antenna array with multiple elements that can be switched
as needed. To fully support this message exchange, the packet structure at LE PHY layer has
been modified. Figure 1 details the structure of the Bluetooth packet, thus highlighting the
presence of a preamble, an access address, a PDU, and the Cyclic Redundancy Check (CRC).
The structure of the PDU has been modified as well to include an additional frame, namely the
Constant Tone Extension (CTE). It is noted that the size of the advertising message has been
increased from 31 B to 254 B.

Packet Format

PDU Format

1-2 Bytes 4 Bytes

2 Bytes 37 Bytes (max) 2 Bytes 37 Bytes (max)

6 Bytes 31 Bytes (max)

1 Byte

Inside Packet

Preamble Access Address PDU

2+(0 - Max) Bytes 3 Bytes

CRC

Header Payload Payload

AdvData

AdvDataExtended HeaderExtended Header Length + AdvMode

0-63 Bytes 254 Bytes (Max) 

CTE

Header

Header

Figure 1: Advertising packet structure with CTE information.

2.3. A focus on the AoA

The AoA technique is based on radio signals propagation and detection. It devotes attention
to the time taken by the signal to propagate and reach multiple sensing elements, which are
configured as an array. In fact, measuring the AoA needs a mobile device that transmits to
a receiving station that uses directional antennas. The performance of this system highly
depends on the accuracy of the antennas used to measure angles. Further, changing scattering
characteristics andmultipath signals may sensibly hinder the performance of the AoA navigation
technique. One way to reduce the influence of scattering and the multipath-related issues, is to
elevate the antenna to a certain height, so that it is not located on the ground.
There are two different approaches to DF: Trilateration and Triangulation. The former is

characterized by a know distance between a reference node and the target. Here, the RSSI is



widely employed. In the latter, instead, the distance between the target node and the reference
one is not known in advance, and the focus is on direction. AoA is a technique that can be
used to measure the angle between the receiver and the transmitter. It is worth specifying
that multiple AoA nodes can be used in direct combination to perform triangulation tasks.
This is of upmost importance since using one AoA-capable device (i.e., a device with multiple
antenna elements), can only evaluate one angle instead of a position. Hence, a RTLS becomes
mandatory.

3. The proposed Approach

This Section proposes a detailed explanation of the RTLS involved in the test.

3.1. Real-Time Locating System

According to the Bluetooth 5 Core Specification [10], DF can use both AoA and AoD to create an
RTLS system. The latter, in turn, may be configured as a Connectionless or Connection-Oriented
solution3. An RTLS can be defined as a system capable of determining the position of a target
within a given physical area. The physical area is normally defined through deployment of
reference/locator nodes. The system can operate in real-time or near real-time conditions. The
nodes involved in an RTLS are: the Central node, the Peripheral device, the Passive and the
Central Processing node.

The Connection-Oriented AoA setup includes: a transmitter, who sends the CTE over periodic
advertisement packets, and the receiver, that is synchronized with the advertiser and receives
the CTE packets. This setup also includes a RTLS Central node running a full BLE-Stack and
acting as a Central device. Its role is to scan and connect to any RTLS Peripheral. On top of
this procedure, the RTLS Central node will be in charge of sharing the connection parameters,
such as the access address, the Central sleep clock accuracy, and the CRC init. Once these
information have been shared, the configuration of the Peripheral nodes will be completed,
so they will be able to send the AoA packets. It is worth noting that the RTLS Peripheral
device is the one to be located, which implies that it will be in charge of advertising and getting
connected with the RTLS Central node. Hence, the information related to the AoA will be
embedded in the CTE field of the message. The RTLS Passive node does not actively participate
in the communication between the devices and executes a reduced set of instructions. Once the
connection between the RTLS Central node and the Peripheral one is established, the Passive
node receives packets containing the CTE information and samples both the In-phase and
Quadrature (IQ) components. The whole system is monitored by a Central Processing Node,
which is responsible for controlling the embedded RTLS nodes by sending commands and
processing events. Figure 2 graphically represents the main building block of the envisioned
RTLS.
In the Connection-less RTLS, instead, the Central node is configured to act as an observer

device. Therefore, it scans for the RTLS Peripheral and synchronizes to it. The latter is, in turn,
3It is worth noting that in typical use cases, the AoD is used in Connectionless communication, whereas the

AoA is involved in Connection-Oriented setups. The main difference between the configurations will be reflected in
the Bluetooth profiles.
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Figure 2: RTLS architecture.

periodically advertising. Once synchronized, the RTLS Central receives the CTE packets and
samples the IQ components. The RTLS Peripheral device is, once again, the device to be located
and it acts as a broadcaster device. In this setup, the Central Processing node is responsible for
monitoring and controlling the RTLS nodes.

3.2. Investigation directions

The Connection-Oriented RTLS experimental setup (see Figure 3) has been evaluated to verify
its reliability. The experimental campaign has been designed in order to verify the reliability of

135𝑜 −45𝑜

45𝑜

Figure 3: Expected AoA values.

the measured values in Line of Sight (LoS) conditions, and, in particular:

• The stability of the measured AoA in fixed positions at variable angular positions.
• The variation of the measured AoA when the angular position of the Beacon changes.



In addition, measured signals were further investigated to:

• Compare the measured average AoA with the expected ones4.
• Develop a newmodel that calculates the real angle starting from the surveyed data present,
and assess its reliability.

According to the documentation, the expected performance level does not provide high accuracy
at the edges of the field of view, whereas it is expected to be more precise for the angles that
are in front of the antenna array. Figure 4 presents the proposed evaluation framework.

RTLS
Peripheral Node

RTLS

Statistical 
Parameters
Evaluation

Initial
Supervised
ML solution

Model training

Error on 
real Angle

X_training Y_training

Data Angle

Data Angle

X_test Y_test

Data Angle

Data Angle

Training set

Test set

Trained
Supervised
ML solution

Figure 4: High-Level representation of the proposed Framework for AoA evaluation and error calculation.

4. Experimental Evaluation

In this Section, the conducted experimental campaign is described together with the main
findings. The evaluation was carried out with the specific aim of testing DF solutions in real-
world scenarios and operating conditions. The experimental campaign has been carried out in
both indoor and outdoor scenarios to prove if there’s any difference between the two operating
conditions. The choice is motivated by the fact that outdoor scenarios may suffer less from
multipath and/or fading phenomena, occasionally caused by walls, roofs, and physical obstacles,
when compared to indoor ones. In a nutshell, the outdoor scenario was a parking lot of a public
street with no cars moving around in a 5 meters radius around the master node. The indoor
scenario was an open space room, free of furniture, of about 30𝑚2 inside a house. To provide
a fair playground for comparison, in the experimental campaign both the AoA and the RSSI
values have been measured at fixed positions.

To this aim, an RTLS has been setup using a Lauchpad CC26X2R1, together with the AoA
Boostpack. The system includes one Master device, one Slave, i.e., the element to be detected,
and a Passive device that is equipped with an antenna array of three elements. Figure 5
summarises the main component of the involved testbed together with their deployment. It is
also useful to clarify that the AoA measurements are related to an Azimuth angle. In particular,

4Angle of Arrival Boostpack - https://www.ti.com/tool/BOOSTXL-AOA
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Figure 5: Graphical representation of the involved testbed.

in the first part of the experimental campaign, measurements have been carried out to gather
the aforementioned information over a total span of 180 degrees at a fixed pace of 20. The
expected result of the experiment is the characterization of the values that the antenna array can
effectively measure in a 2-dimensional plan. In the second part of the experimental campaign,
instead, the slave device has beenmademoving over a semicircle centered in the Passive antenna,
i.e., the center is located in the middle of the antenna array, with a radius of 1 meter. The test has
been repeated over different patters with increased radius values of 2 and 3 m. The experiments
have been repeated in both indoor and outdoor conditions for the sake of completeness.

4.1. Parameter Settings

Before going to the results, it is worth clarifying the whole parameters settings for the experi-
mental campaign. In particular, in Table 1 it is clarified: (i) the distance between the Slave and
the Passive antenna, (ii) the angles between the active array and the direction of origin of the
signal, (iii) the environment in which the test took place, (iv) the Beacon inter-sending time, (v)
the array enabled on Passive antenna, and, for the second part of the experimental campaign,
(vi) the total length of a single test.

4.2. Indoor and Outdoor Characterization

When thinking about indoor localization and DF, one of the most relevant difference in the
operating scenario is the difference between outdoor and indoor conditions. The outdoor
propagation of radio frequencies is generally less problematic in terms of multipath and many
other physical phenomenon. In this experimental campaign it was mandatory to verify the
reliability of the selected technological tools in terms of the quality of the measurements that



Parameter Values
Fixed Distance 1 m, 2 m, 3 m
Fixed Angle 𝑘 ⋅ 20° with 𝑘 ∈ [0, 9]
Scenario Indoor, Outdoor
Sampling period 100 ms
Active array Array 1
Test duration 1 minute, 2 minute

Table 1
Parameter settings 2.

can be conducted.
The main results of the experimental campaign that has been carried out are summarized

hereby. Figure 6 proposes the AoA measurements in outdoor condition. These first tests were
conducted to verify the effective Field of View (FoV) of the antenna array. It was of upmost
importance to verify if there was any spread between the actual angular position and the
measured one. Further, the measured AoA had to be compared with the expected actual angular
position, which was known in advance. What clearly emerged is that, as long as the distance
between the slave and the passive antenna increases, the spread among the expected AoA and
the measured ones increases as well. Moreover, it can be noticed that with shorter values of
distance between the slave and the passive antenna, the spread between the measured values and
the actual angular positions lowers. In particular, when moving from an angular position of 40°
to a 140°, the measured AoA seems able to track the angular variation in a quite straightforward
way. With angular values that are either lower than 40° or higher than 140°, the antenna array
shows severe limitations and an increasing variability of the measured values. This suggests
that, in outdoor conditions, distance matters and it can be concluded that the closer the object
is, the better this technique works.
As for Figure 7, the trend seems to be quite the opposite. In fact, in indoor conditions, it is

noted that, with increasing values of the distance between the slave and the passive antenna,
the reliability of the measured AoA increases. In particular, it seems to follow a more reliable
trend. This can be motivated by the fact that indoor propagation may be severely hindered by
multipath and/or fading phenomena, as well as shading, occurring because of physical objects
and obstacles that may have non-negligible effects on radio frequency signals propagation.
It is worth specifying that the RSSI values measured have been omitted. Their trends were

prettymuch constant, with slight variations depending on the statistical fluctuation this indicator
is always subject to. Moreover, slight differences between the measured RSSI values could be
noted when moving from 1 m to 2 and 3 m, with a general decreasing trend as the distance
increased. As an example, Figure 8 shows the RSSI values measured in the indoor environment
at a fixed distance of 3 meters.

4.3. Movements Tracking

Given the assessed reliability of the tool, it was worth verifying if a moving object could be
tracked over time. Hence, in this second part of the experimental campaign, the slave has been
made moving around a half-circumference of radius 1 m and 2 m. The tests have been repeated
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(b) At 2 m distance.
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(c) At 3 m distance.

Figure 6: Outdoor AoA measurements.

in both indoor and outdoor conditions. As a preliminary assessment, the measured AoA should
not differ much from the previously reported values and it is reasonable to assume that an
overall linear trend can be observed when moving from 0 to 180°.
What clearly emerges from Figures 9 and 10 is that, in outdoor conditions, lower distances

lead to more precise tracking activities. In indoor scenarios, instead, when the distance between
the slave and the passive antenna increases, the measurements become more precise and a
clearer trend emerges, depicting the movement of the slave.

Also in these case, the RSSI has shown a pretty constant trend because the distance between
the devices is not changing. Hence, the graphs are omitted.

4.4. Getting Data out of Data

After a detailed evaluation of the experimental data, it could be noted that: (i) there’s a non-
uniform, non linear, relationship between the real angle and the measured one, and (ii) the
relationship depends on the operating conditions, e.g., the outdoor/indoor scenario, and the
distance. Therefore, gathered information required further investigations. For instance, given
the variability of the measured AoA and RSSI, a relationship was investigated between their
first and second order statistical moments, i.e., the means and standard deviations, respectively,
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(a) At 1 m distance.
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(b) At 2 m distance.
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(c) At 3 m distance.

Figure 7: Indoor AoA measurements.

and the real angle. Indeed, two different approaches were used to find the relationship between
the data collected during the tests and the real angle at which the slave was. In the former, a
linear relationship has been proposed:

𝜃𝑟𝑒𝑎𝑙 = 135° − 𝐴𝑜𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑. (1)

Thanks to Eq. (1), a disappointing Mean Absolute Error (MAE) of 28° is found. In the latter,
instead, a more sophisticated approach has been proposed, based on ML techniques, to find a
model to derive the real angle from all available data. The description of the proposed approach
has been introduced with Figure 4.

To model the AoA, two different algorithms have been involved, namely Random Forest (RF)
regressor and Support Vector Regression (SVR). Without loss of generality, the approach has
been applied to indoor measurements. It is herein considered that a total of 𝑛 = 4 features are
included: the mean and standard deviation of the AoA, and the mean and standard deviation
of the RSSI. The reference set of training data is (𝑥1, 𝑦1), ..., (𝑥𝑙, 𝑦𝑙); here, each 𝑥𝑖 ∈ 𝑅𝑛 denotes a
sample in the input space and has a corresponding target value 𝑦𝑖 ∈ 𝑅 for 𝑖 ∈ 1, ..., 𝑙, being 𝑙 the
size of the training data. The basic idea of SVR is to map the training data from the input space
into a higher dimensional feature space. To this aim, a closed-form function must be derived
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Figure 8: Indoor RSSI measurements at 3 m distance.

to accurately approximate the values from the involved features. The generic SVR estimating
function is expressed as:

𝑓 (𝑥) = (𝑤Γ(𝑥)) + 𝑏, (2)

where 𝑤 ∈ 𝑅𝑛, 𝑏 ∈ 𝑅, and Γ denote a nonlinear transformation from 𝑅𝑛 to high-dimensional
space.
A RF-based solution, instead, is an ensemble of decision trees and, unlike the SVR, it does

not need to work on normalized data. To improve the reliability of the estimations, k-fold
cross validation technique has been used, with 𝑘 = 10. The whole dataset is composed by 1182
samples. It has been subdivided in a training set (composed by 1063 samples) and a test set
(composed by 119 samples) with a 9/1 ratio.

In Table 2, the performance of the two algorithms are compared. The obtained results
motivate the choice of the RF Regressor. The SVR training has been carried out relying on the
rbf kernel, whereas RF has been configured with 10 estimators and 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 5.

Algorithm Score MAE on test set Elapsed Seconds
RF 0.991 2.423 0.29
SVR 0.980 6.018 0.582

Table 2
Algorithm comparison table.
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Figure 9: Outdoor AoA measurements at different distances with respect to the real angle.
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Figure 10: Indoor AoA measurements at different distances with respect to the real angle.

5. Conclusions

This work proposed a framework that leverages AoA information in the context of IPSs to solve
DF problems. In detail, it discussed a feasible and reliable strategy to deal with the problem
of DF in the context of Bluetooth-based short range communications. To prove the suitability



of the AoA as a quality indicator, a framework has been proposed to investigate thorough
experimental evaluation has been carried out in both outdoor and indoor scenarios.
Overall, the experimental campaign proposed interesting results. Nevertheless, in indoor

conditions, the AoA is not sufficient and a more precise estimation of both directions and
distances could be reached using other quality indicators. In particular, the RSSI could be
parts of the measurement framework since this is likely to be used in conjunction with AoA
measurements. The employment of ML techniques represents a promising, yet preliminary,
result.

Despite the interesting outcomes, in the near future several research directions are envisioned.
First of all, a massive experimental campaign is already on-going, with the aim of retrieving as
much data as possible in several indoor scenarios, such as malls and theaters as well as offices
and domestic environment. Further, the experimental setup will be strengthened with the
introduction of a second antenna array, to improve the reliability of the system. The differences
between Connection-Oriented and Connectionless setups will be experimented and analyzed in
detail. Lastly, privacy-related aspects will be included.
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