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Abstract
Battery powered asset trackers with a long device autonomy are a deep-rooted ambition for localisation
solutions in retail, logistics and healthcare. This leaves a limited energy budget available for sensing,
computing and communicating on the mobile sensor node. In this paper, we explore the attainable
precision and accuracy in hybrid radio-acoustic, indoor 3D positioning for such energy-constrained
devices. A state-of-the-art low-power ultrasonic-RF ranging technique is extended into a 3D indoor
positioning system. The system is evaluated in a real-life measurement setup including over 30 000
measurements. 2D advanced positioning estimation algorithms are adapted for the 3D application, and
an in-depth comparison is performed. Positioning in favourable conditions shows that the Euclidean
distance error can be narrowed down to 0.0102m. A road map with improvements on the hardware,
algorithms and energy consumption is proposed to obtain this centimetre accuracy in the non-ideal
situations. All data and algorithms are shared in open source, encouraging ongoing research to test and
improve their innovative positioning methods.

Keywords
Acoustic Sensors, Indoor Positioning, Low-Power Electronics, Ultrasonic Localisation

1. Introduction

Positioning solutions in retail, logistics and healthcare aim for low-power asset tracking, as
neglecting the power consumption results in a limited battery lifetime, higher maintenance
and hardware costs. In the context of these emerging applications, the constrained energy
budget should not counter the need for precise and accurate positioning. The approach for 3D
positioning in this paper comes from this application-driven perspective and tries to answer
the following question: what accuracy can be obtained with energy-constrained sensor nodes?
Active ultrasonics is considered an attractive solution. Thanks to the relatively low propagation
speed of sound, centimetre accurate positioning can be achieved without high-speed and energy
consuming processing. The low system complexity and emerging microelectromechanical
systems (MEMS) microphone technology enable the design of dedicated low-power and low-
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cost acoustic sensor nodes. The first series of mature, ultrasound positioning systems were
presented as early as the year 2000. The leading-edge systems were the Active Bat system [1, 2],
measuring the Time of Flight (ToF) of narrowband ultrasonic pulses and radio signals, and the
Cricket system, [3, 4], using the Time Difference of Arrival between a simultaneous transmitted
ultrasonic and RF signals. Although the narrowband ultrasonic pulses allow for simple architec-
tures, they make the system highly receptive to in-band noise. Consequently, broadband signals
were introduced shortly after [5, 6]. Through pulse compression, the effective bandwidth of
the ultrasonic signals is increased, allowing the precision of the ranging measurement to be
improved [7]. Pulse compression based on the cross-correlation of linear chirps has been widely
adopted in the domain of ultrasound indoor positioning [8, 9, 10, 11]. In more recent work,
dedicated hardware to perform the positioning is eliminated by using smartphones [12, 13], as
they are equipped with both a microphone and a speaker capable of receiving and producing
acoustic signals that even go above the auditory range. Other sensors can be used on these
devices, i.e. gyroscopes and accelerometers, enabling sensor fusion [14, 15], countering the high
susceptibility of pure, acoustic ranging systems to room and environmental characteristics such
as reverberation, Doppler shift and temperature. In this work, we progress the state-of-the-art
of 3D hybrid RF-acoustic positioning through three main contributions:

1. We extend the ultra-low hybrid RF-acoustic ranging strategy previously proposed in [11]
and [16] into a 3D positioning system, targeting high precision and reliable localisation
of energy-constrained devices. The accuracy and precision are experimentally validated
in an acoustically challenging environment. An extensive data set with over 30 000
measurements is made publicly available.

2. 2D advanced position estimation algorithms are adapted for 3D scenarios and compared
based on the obtained real-life measurement data [17].

3. We provide a road map with technical advancements to further improve accuracy and
reliability of energy-constrained indoor positioning systems.

A short introduction to the system architecture, ranging method and measurement setup is
presented in the next section. Section 3 explores the measurement results and describes the
used positioning methods. Next, a comparison between these algorithms is performed, to be
finalised with a road map towards centimetre accuracy and a conclusion.

2. Set-up

2.1. From Indoor Ranging to 3D Indoor Positioning

This study adopts the hybrid ranging system that is described in [11, 16] and depicted in Fig. 1.
Distances between the two entity types, a fixed beacon and a mobile sensor node, are calculated
as follows:

1. A beacon sends out an ultrasonic audio chirp and RF wake-up signal.
2. Triggered by the RF signal, all mobile sensor nodes wake up simultaneous and sample

audio for a limited amount of time (𝜏𝑟𝑥).
3. The collected audio data are transmitted back to the beacon for further processing.
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Figure 1: 2D representation of indoor positioning system setup. Beacons periodically transmit ultrasonic
chirps. All ultra low-power nodes are woken up and synchronised on basis of the RF signal.

The ranging information is thus comprised in the received audio signal and depends on the
distance to the beacon. At the sensor node, high frequency, bit based sampling eliminates the
usage of a power hungry ADC and limits the amount of data that needs to be transmitted
over the energy consuming RF connection. Distances are calculated by using binary template
cross correlation, based on the matching procedure of Sokal [18] and by performing a peak-
seeking procedure on the correlated data. The accuracy of this ranging method depends on
the used chirp frequency bandwidth (Δ𝑓), the mobile sensor node wake-up time (𝜏𝑟𝑥) and the
binary sampling frequency (𝑓𝑠,𝑏). At the mobile sensor nodes, acoustic acquisition, amplification,
binary sampling, packet handling and RF-communication are all done with 90.62 µJ. In this
paper, we extend the aforementioned ranging method into a 3D positioning system and evaluate
the performance in a challenging real-life environment. Note that this method differs from
typical propagation delay or round-trip time measurements in respectively synchronised and
unsynchronised systems. It calculates the distance out of the pulse compression data instead of
using an internal timer. Nevertheless, it provides the necessary ranges to perform true-range
multilateration algorithms. It is generally known that at least four ranges are necessary for
3D-indoor positioning [19], leading to a setup expansion with a minimum of four beacons. A
Time Division Multiple Access (TDMA) scheme is chosen to obtain the corresponding distances,
as this prevents acoustic signal collision efficiently at the cost of a lower positioning update rate.
With this, the main objective of this paper is to find a positioning method with the smallest
mean 3D Euclidean distance at all test positions in the acoustically harsh set-up.



Table 1
Average RT60 values of the Techtile room.

Frequency (Hz) 125 250 500 1000 2000 4000 8000

RT60 (s) 0.76 0.91 0.93 0.93 0.82 0.66 0.51

Uncertainty (%) 12.5 8.1 5.7 4.0 3.0 2.4 1.9

Figure 2: Techtile test environment, a 8 x 6 x 2.4m wooden room.

2.2. 3D Measurement Set-Up

All experiments are performed in the Techtile test environment [20] depicted in Fig. 2. This
8 x 6 x 2.4m room, comprising 140 modular wooden tiles, represents a real-life, acoustically
harsh environment, with high reverberation time (Table 1). Four acoustic beacons are spread
across the test bed, with three of them close to the outer edges of the room, maximising the
spatial resolution on all three axes. Each beacon consists of an ultrasonic speaker (Kemo L010)
directed to the centre of the room and an off-the-shelf amplifier with a frequency range over
45 kHz. These four beacons are connected to a multi-channel DAC [21], where the chirp signals
are generated and TDMA beacon selection is performed. The sensor node consists of a single
MEMS microphone with distinctive amplifier and band filter combined with a sub-GHz wireless
MCU launchpad [22]. A central computer connected to another launchpad handles the received
binary sampled audio chirps and calculates the measured distances.
Measurements are performed on 150 fixed positions. Three layers with an uniform planar array
of 50 points on fixed heights are created. On each position at least 50 distances are measured to
each of the four beacons, resulting in a total of over 30 000 ranging measurements. These time
expanded ranging measurement are necessary to average out errors introduced by the dynamic
Techtile environment.
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Figure 3: Mean absolute distance error heat maps for ranging to different beacons at a height of 1.407m.

3. Measurements, Processing, and Interpretation

3.1. Ranging in a challenging environment

To understand the potential positioning inaccuracies and single out advanced positioning
algorithms, we first explore the ranging measurements. A helpful data visualisation technique
for errors between the actual and measured distance is a heat map, displaying the error range’s
magnitude in a 2D projection of the room. Fig. 3 displays four such heat maps, one for each
beacon, showing the Mean Absolute Error (MAE) of 50 positions on a fixed height (1.4m). The
speaker position and orientation are illustrated by a symbol. A couple of observations can be
made. Firstly, the error increases with the distance. This can be attributed to signal attenuation
and can be easily described by the inverse square law. In this system lower signal-to-noise
ratios are detrimental for the zero-crossing based, binary template cross correlation. Secondly,
larger errors can be found closer to the edge of the room. A potential hypothesis can be found
in the high reverberation time of the room. And thirdly, in all four heat maps, a directional
speaker pattern can be noticed. To clarify the latter two, a more elaborate statistical analysis
and extra measurements are performed.
Table 2 gives more insight in the accuracy and precision of the distance measurements between
a single beacon and a sensor node close to a wall. To measure the influence of reverberation,
two sets of 140 ranging measurements were conducted on the same position, one with and
another without acoustic absorbers added on the nearest wall. The mean (𝜇), difference between
minimum and maximum value (range), median (P50), P95 and standard deviation (𝜎) values are
all spectacularly improved when absorbers are added, cancelling out reflections and decreasing
the reverberation locally. In this case, the low median and mean distance error values result in
a high accuracy whilst the standard deviation of only 5.2 cm and range of 22.8 cm reveal a small
error variation with low outliers and thus a high precision. To evaluate the influence of the
speaker, a far-field, 2D speaker directivity measurement was performed. The normalised polar
plot with an angular resolution of 1° for a sine wave of 25 kHz can be found in Fig. 4. A half
power beam width of 40° confirms the directionality hypothesis.
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Figure 4: Polar plot of the normalised XY directionality of the Kemo L010 @25 kHz in non-anechoic
chamber.

These ranging results are promising, with centimetre-accuracy given favourable circumstances.
Yet it will be interesting how well the 3D positioning algorithms perform for mobile sensor
nodes close to walls or out of the main acoustic lobes.

Table 2
Influence of acoustic absorbers on the absolute distance error for a sensor node close to a wall.

𝜇 (m) Range (m) P50 (m) P95 (m) 𝜎 (m)

Absorber 0.083 0.228 0.087 0.179 0.052

No absorber 0.958 1.965 0.971 1.938 0.894

3.2. Indoor Positioning and estimate optimisation algorithms

Range-based positioning optimisation is intrinsically finding a position estimate with the
smallest error term fitting all the distance measurements. This is often achieved by solving a set
of nonlinear equations in a least square sense. A fair simulation-based comparison of different
iterative and closed-form nonlinear algorithms for 2D positioning can be found in [23]. We have
adapted these algorithms for a 3D environment and extended the simulations with experimental
data from ranging measurements. This section gives an overview of the implemented algorithms
accompanied with a short explanation. For a full derivation and description we refer to the
original papers. Notations are the same in all algorithms with:

• 𝑠𝑖 is the position vector of beacon i containing its x, y and z coordinates
• 𝑁 is the number of beacons (4)
• 𝑟𝑖 is the ranging measurement to beacon i
• ̂𝑝 is the position estimate



The pseudocode of the algorithms can be found in Appendix A. The Python implementation of
the distance measurement, positioning algorithms and the data sets can be found in [17].

3.2.1. Simple Intersection

Classical multilateration interpret the measured ranges as circles centred around the beacon.
The combination of several of these circular ‘lines of positions’ (LOPs), generate an intersection.
The latter is considered to represent the best estimate for the position of the mobile sensor
node. However, this geometrical approach is susceptible to noise. As errors are introduced, the
circular LOPs do not intersect in a specific point, but create an area with potential estimates.
In [24], linear LOPs are created by drawing a straight line through the intersecting points of
two ranging circles. The intersection of these newly generated lines indicates the position
estimation. The advantage of this method is that it is still possible to generate linear LOPs when,
due to errors, two or more circles do not intersect. The Moore-Penrose inverse, least squares
estimate can be used to find an algorithmic rather than a geometric solution with a minimum
number of linear LOPs of 𝑁 − 1.

3.2.2. Bancroft

Bancroft [25] uses an algebraic, non-iterative technique to solve the GPS equations that is
computationally efficient and numerically stable. In contrast to iterative techniques, higher
order terms of the Taylor series expansions are not discarded, resulting in a better performance
when beacons are poorly arranged. Although there is a lot of similarity with the Simple
Intersection method, the Moore-Penrose inverse is not used for minimising the difference
between the exact position and measurement residual, but as a projection operator in the
n-dimensional space of these residuals.

3.2.3. Beck

Instead of a range-based least squares (R-LS) minimisation, a squared-range-based least squares
method (SR-LS or least quartic) can be used to find a position estimate [26]. An exact, optimal
solution can be found by using a bisection algorithm to find a single root of a univariate strictly
monotonous function. This method shows a better mean squared position error in comparison
with the R-LS method.

3.2.4. Chueng

An alternative way to compute the SR-LS estimate is presented in [27]. For a 3-dimensional
space, all roots of a seven root equation are calculated by rewriting it in a seventh degree
polynomial. In contrast with the original paper, the absolute of the roots are taken instead
of eliminating complex roots. The root closest to zero is used to compute the estimate of the
globally optimal constrained weighted least squares.



3.2.5. Gauss-Newton

Also known as Weighted Iterative Least Squares (WILS) is a straightforward method using only
algebraic operations, in the form of a Jacobian matrix or the derivative of the measurement
equation, to find an estimation. The disadvantages of this method are the need for prior
information in the form of a initial positioning guess and the fact that it is computationally
harder. Sirola [23] suggests the simple intersection method as a starting point for the position
estimation. When used in time series, the algorithm extends naturally to a Kalman filter.

3.3. Empirical Comparison

To compare the different 3D position estimation algorithms, we have generated the Cumulative
Density Function (CDF) of the mean Euclidean error distance of 50 measurement in each of
the 150 positions for the different methods, as plotted in Fig. 5. At first glance, it is clear that
implementing more advanced estimation algorithms greatly improves the position estimation.
When taking a closer look, we can divide the plots into three groups. The first one is the Chueng
method, showing the steepest incline and outperforming all the other algorithms. With half
the measurements below a distance of 0.73m and 95% just above the 1.54m, it demonstrates to
be accurate even with erroneous ranging measurements. The three methods belonging to the
second group are Bancroft, Beck and Gauss-Newton. They have a similar curvature and a P90
value below 3.5m, with the Gauss Newton method having a single outlier at 69.8m. The last
curve consists of the basic intersection method, with a low accuracy and high susceptibility to
noise (P90 of 10.34m).
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Figure 5: Cumulative density functions of the mean Euclidean distance error over 50 measurements at
the 150 different positions.

To investigate the influence of the ranging error on the precision, the position estimates of
the two best performing position estimation techniques are plotted in Fig. 6. Two scenario’s
are depicted, with the yellow dot representing the actual position. The sensor node position in
the first scenario is closer to the wall, with larger average distance measurement errors to two



beacons: 0.923m and 0.626m to respectively Beacon 1 in the upper left corner, and Beacon 4,
centrally at the far right. The second sensor node position is more centred, and has a maximum
mean ranging error below 5 cm. The Chueng algorithm behaves similarly in both scenarios:
forming a dense cloud in the neighbourhood of the actual position. The mean Euclidean distance
error is 0.490m for the first scenario and 0.554m for the second. This indicates a lower accuracy,
while at the same time having a high precision for both scenarios, hence the dense cloud. The
Bancroft forms a more scattered arrangement, performing worse on both accuracy and precision.
Even with precise distance measurements, the estimates spread out in the z-direction, where
the beacon range resolution is lowest.

Position 8 Room Setup Speaker Actual Position
Range Bancroft Chueng

(a)

Position 34 Room Setup Speaker Actual Position
Range Bancroft Chueng

(b)

Figure 6: Position estimations of the Chueng and Bancroft method on two positions.

4. The road towards centimetre accuracy

In themost favourable conditions, the Euclidean distance is 0.0102m, indicating that the intended
accuracy can be achieved. Undeniable, there is still a road to go to reach this centimetre accuracy
in non-ideal conditions, and the error to be bridged is at least an order of magnitude. For more
consistent exact location estimates of energy-constraint nodes, we propose the following
promising upgrades:

• Hardware and system based improvements. To prevent signal attenuation due to
speaker directivity, the system could be extended on a hardware level by adding extra
speakers to the beacons. Care should be taken in the design, as constructive interference
and spatial aliasing occur at higher frequencies when multiple speakers are used, resulting
in non-uniform and, again, directional sound pressure fields [28]. Beacon placement
should be optimised as well, potentially increasing the number of beacons. Even with
precise ranging measurements, positioning errors are largest in the z-dimension of the
room. The resolution on this axis can be increased by placing a beacon in the ceiling
or embed it in the floor. When such beacons are added to the system, adaptive beacon
selection algorithms could be implemented to minimise the amount of active anchors and
increase the position reliability.

• Improve, combine or implement new positioning algorithms. The chosen optimi-
sation algorithms can be considered as safe and credible. They are an excellent way to test



the feasibility of the system at the cost of accuracy and precision. We strongly believe that
progress can be made if this research is extended with more recent positioning methods.
Advanced position estimation techniques could be combined. Algorithms like non-linear
least square estimation and Gauss-Newton require an initial positioning guess. In this
paper, the poorly performing simple intersection method is used as a starting point as
suggested by [23]. Future research could explore the Chueng algorithm as a starting point
or investigate the potential accuracy gain of time-series Kalman filters.

• Reduce the distance measurement error. Current processing uses the index of max-
imum correlation peak for the distance calculations. [11] shows that interference of
higher frequencies can cause correlation peaks larger than the actual distance correlation
maximum. Peak prominence and window functions can help selecting the correct local
maximum and reduce the ranging error drastically.

• Tackle the position update rate and mobile node energy consumption. Current
TDMA implementation gives a positioning update every 4 seconds with an energy con-
sumption of 362.45 µJ. Increasing the ranging frequency solves the positioning update
rate as long as multi-user interference is prevented. To lower the energy consumption,
a better solution would be to simultaneously transmit the acoustic signals. In [29, 30]
a Chirp Spread Spectrum (CSS) transmission scheme is introduced, enabling multi-user
communication. A more in-depth study should validate the bit based sampling for this
latter method.

5. Conclusion

In the present study, we extended a state-of-the-art RF-acoustic ranging strategy into a low-
power, 3D positioning system. Four existing advanced 2D position estimation algorithms
have been adapted to operate in 3D. Their performance has been assessed and compared
based on the actual distance measurement data in an acoustically challenging environment.
With these constrains, a median Euclidean distance error below 0.75m was obtained. The
current TDMA implementation results in a sensor node consumption of only 362.45 µJ for
a single position estimate. In further research we aim to improve the energy consumption
and positioning accuracy by adapting the infrastructure, combining or implementing (new)
optimisation algorithms and researching multiple access methods. The data of over 30 000
ranging measurements and applied position estimation algorithms are shared openly [17],
encouraging ongoing research to test and improve their innovative positioning methods.
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A. Algorithms

Algorithm 1 Simple Intersection

𝐴 = [
2𝑠𝑇1
⋮

2𝑠𝑇4
] , 𝑏 = [

‖𝑠1‖
2 − 𝑟21
⋮

‖𝑠4‖
2 − 𝑟24

]

𝐷 = [ −1 𝐼𝑁−1 ]

with 𝐼𝑁−1 the identity matrix gives:

̂𝑝 = (𝐴𝑇𝐷𝑇𝐷𝐴)
−1

𝐴𝑇𝐷𝑇𝐷𝑏

Algorithm 2 Bancroft

𝐴 = [
2𝑠𝑇1
⋮

2𝑠𝑇4
] , 𝑏 = [

‖𝑠1‖
2 − 𝑟21
⋮

‖𝑠4‖
2 − 𝑟24

]

𝑣 = (𝐴𝑇𝐴)
−1

𝐴𝑇1
𝑤 = (𝐴𝑇𝐴)

−1
𝐴𝑇𝑏

find the roots of:
‖𝑣‖2𝑡2 + (2𝑣𝑇𝑤 − 1) 𝑡 + ‖𝑤‖2 = 0,

and from the two position candidates:

̂𝑝𝑖 = 𝑣𝑡𝑖 + 𝑤, 𝑖 = 1, 2

pick the one with the smallest residual as the final estimate.

Algorithm 3 Beck

𝐴 = [
2𝑠𝑇1 −1
⋮

2𝑠𝑇4 −1
] , 𝑏 = [

‖𝑠1‖
2 − 𝑟21
⋮

‖𝑠4‖
2 − 𝑟24

]

𝑃 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

, 𝑞 =
⎡
⎢
⎢
⎢
⎣

0
0
0
−1
2

⎤
⎥
⎥
⎥
⎦

Use a bisection method to obtain a solution for

𝜙(𝜆) = ̂𝑧(𝜆)𝑇𝑃 ̂𝑧(𝜆) + 2𝑞𝑇 ̂𝑧(𝜆)

in the declining interval [−1/𝜆1, ∞], where

𝜆1 = max (eig (𝐴𝑇𝐴)
− 1

2 𝑃 (𝐴𝑇𝐴)
− 1

2 )



and
̂𝑧(𝜆) = (𝐴𝑇𝐴 + 𝜆𝑃)

−1
(𝐴𝑇𝑏 − 𝜆𝑞)

The estimate ̂𝑝 is given by the first 3 elements of ̂𝑧.

Algorithm 4 Chueng

𝐴 = [
𝑠𝑇1 −0.5
⋮
𝑠𝑇4 −0.5

] , 𝑏 = 212 [
‖𝑠1‖

2 − 𝑟21
⋮

‖𝑠4‖
2 − 𝑟24

]

𝐵 = [
𝑟1

⋱
𝑟4

] , Ψ = 𝐵(𝐵𝑇𝐼𝑁)

𝑃 =
⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤
⎥
⎥
⎥
⎦

, 𝑞 =
⎡
⎢
⎢
⎢
⎣

0
0
0
−1

⎤
⎥
⎥
⎥
⎦

Compute 𝑈 and Λ from the eigenvalue decomposition

(𝐴𝑇Ψ−1𝐴)
−1

𝑃 = 𝑈Λ𝑈−1

= 𝑈
⎡
⎢
⎢
⎢
⎣

𝛾1
𝛾2

𝛾3
0

⎤
⎥
⎥
⎥
⎦

𝑈−1

with 𝛾𝑖 the eigenvalues of the matrix (𝐴𝑇Ψ−1𝐴)
−1

𝑃, and

𝑐 = 2𝑈 𝑇𝑞

𝑔 = 2𝑈−1 (𝐴𝑇Ψ−1𝐴)
−1

𝑞

𝑒 = (Ψ−1𝐴𝑈)𝑇 𝑏

𝑓 = 𝑈−1 (𝐴𝑇Ψ−1𝐴)
−1

𝐴𝑇Ψ−1𝑏,

Find the absolute of the complex root 𝜆∗ closest to zero of the following seven-root equation

0 =𝑐4𝑓4 −
𝜆
2
𝑐4𝑔4 +

3
∑
𝑖=1

𝑐𝑖𝑓𝑖
1 + 𝜆𝛾𝑖

− 𝜆
2

3
∑
𝑖=1

𝑐𝑖𝑔𝑖
1 + 𝜆𝛾𝑖

+
3
∑
𝑖=1

𝑒𝑖𝑓𝑖𝛾𝑖
(1 + 𝜆𝛾𝑖)

2 − 𝜆
2

3
∑
𝑖=1

(𝑒𝑖𝑔𝑖 + 𝑐𝑖𝑓𝑖) 𝛾𝑖
(1 + 𝜆𝛾𝑖)

2

+ 𝜆2

4

3
∑
𝑖=1

𝑐𝑖𝑔𝑖𝛾𝑖
(1 + 𝜆𝛾𝑖)

2 .



and compute the estimate of the constrained weighted least squares

̂𝑧 = (𝐴𝑇Ψ−1𝐴 + 𝜆∗𝑃)
−1

(𝐴𝑇Ψ−1𝑏 − 𝜆∗

2
𝑞)

with the first three elements of ̂𝑧 as the position estimate ̂𝑝.

Algorithm 5 Gauss-Newton

1: Calculate an initial guess 𝑝0, a stopping tolerance 𝛿 and an iteration upper limit 𝑘𝑚𝑎𝑥. As a
starting point, the simple intersection method is chosen. Set 𝑘 = 0.

2: Compute the Jacobian Matrix:

𝐽𝑘(𝑝) =
⎡
⎢
⎢
⎢
⎣

𝑠1−𝑝
‖𝑠1−𝑝‖

𝑇

⋮
𝑠4−𝑝
‖𝑠4−𝑝‖

𝑇

⎤
⎥
⎥
⎥
⎦

3: Set 𝑝𝑘+1 = 𝑝𝑘 + Δ𝑝𝑘, where Δ𝑝𝑘 the least square solution is of:

(Σ−
1
2 (ℎ (𝑝𝑘) − 𝑟)) Δ𝑝𝑘 = −(Σ−

1
2 𝐽𝑘)

4: If stopping condition ‖Δ𝑝𝑘‖ < 𝛿 is not satisfied and 𝑘 ≤ 𝑘max, increment 𝑘 and repeat from
Step 2.
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