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Abstract
A reliable underground navigation system for task forces in emergency scenarios increases safety and ef-
fectiveness. Since smoke, explosions or disturbed power supply complicate the operations below ground,
the correct visualization of the task forces’ positions has become a key element in obtaining a success-
ful outcome. A foot-mounted inertial navigation system provides an autonomous way to navigate in
Global Navigation Satellite Systems (GNSS)-denied environments. The additional use of maps and ab-
solute positioning methods (Wi-Fi Round Trip Time (RTT), Ultra-Wideband (UWB), ...) represent one
way to build a robust navigation system for emergency operations underground. This study proposes
a sensor fusion concept to combine a foot-mounted inertial navigation system (INS) with distance mea-
surements and map information. However, the main emphasis in this paper is on the implementation of
a foot-mounted INS. Therefore, a Zero-Velocity-Aided Error-State (Extended) Kalman Filter is utilized.
The filter is based on the mechanization equation that expresses the position in the earth-fixed frame,
the velocity in the local-level frame and the attitude in the body frame. The performance analysis of
the foot-mounted INS as a single system showed that a stable position solution over several hundred
meters could be achieved.
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1. Introduction

A reliable navigation system (accurate and robust) is an important safety requirement for emer-
gency response personnel and forces. Underground navigation, such as in tunnels, represents a
big challenge since Global Navigation Satellite Systems (GNSS) do not offer enough signal quality
to obtain a positioning solution. Furthermore, in emergencies/disasters, the underground envi-
ronment can be dominated by no/poor lighting or smoke. Such environmental conditions can
endanger the success of the rescue operation. Accurate positioning of the emergency/military
team would increase the safety of everyone involved and concerned. Real-time visualization
of positions would also facilitate the operational control management for the command post
and make it more effective [1, 2]. The key to a reliable navigation system is the choice of the
appropriate sensors.
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1.1. State-Of-The-Art

One possible sensor is an Inertial Measurement Unit (IMU). An IMU is a common sensor for
autonomous positioning techniques [3] and is well suited for indoor positioning purposes.
However, IMUs show drift behaviors. The position solution drifts away from the correct one
as time passes [4]. One way to bound the drift is to introduce Zero-Velocity Updates (ZUPT)
during standstill periods. An IMU mounted on the foot of a human being, for example, enables
such utilization in the form of a Zero-Velocity-Aided Inertial Navigation System (INS) (cf. Open-
Shoe [5]). A Zero-Velocity-Aided INS offers the correct processing of complex movements, such
as backward/lateral walks or crawling, which are conventional movements of task forces. In
addition to the ZUPTs, dual foot-mounted IMUs (one IMU on each foot) can help to mitigate
symmetrical modeling errors, such as the systematic heading drift [6, 4].

The fusion of multiple sensors makes a navigation system more robust and reliable. Studies
from [7, 8], for example, used dual foot-mounted inertial sensors and Ultra-Wideband (UWB)
ranging devices for robust cooperative localization. Yang et al. [9] proposed a particle-filter-based
prediction approach to fuse a dual foot-mounted INS with map information. The authors of [10]
developed a tightly coupled indoor positioning system based on pedestrian dead reckoning and
Wi-Fi Round Trip Time (RTT). All studies showed promising results.

1.2. Sensor Fusion Concept

In this project, an INS, distance measuring techniques (Wi-Fi RTT or UWB) and map information
are fused to obtain a reliable underground navigation system for task forces in GNSS-denied
environments. A possible concept for an underground navigation system is illustrated in Figure 1.
The basic idea is to integrate the foot-mounted IMUs into a Bayesian filtering framework [11].
Thus, a dual foot-mounted INS will be developed that provides a robust estimation of, among
others, (step-wise) position changes. The use of IMUs on both feet can significantly reduce the
systematic heading drift as proposed in [4, 12]. The INS will be realized as a conventional strap-
down combined with a Zero-Velocity-Aided Error-State (Extended) Kalman Filter (EKF). The
EKF standard approach is chosen since it is computationally inexpensive and shows a relatively
low complexity in contrast to, for example, a particle filter. Since the IMUs generally operate at
a relatively high sampling rate, the estimated position changes are integrated step-wise to the
particle filter, where the main sensor fusion takes place at a lower sampling rate.

The particle filter provides an easy integration of nonlinear observations such as map infor-
mation (probability maps) [11]. Maps of tunnel structures are used as artificial sensors. For
instance, the lateral position error can be bounded by the tunnel cross-section. The absolute
position information is derived from distance measurements (Wi-Fi RTT or UWB) to known
anchors. In case that at least three distance measurements are available, trilateration delivers
an absolute position. If not, the distance measurements are used to re-weight the particles [13].
The position estimates of the task forces will be visualized in a virtual reality environment.

1.3. Novelty

The use of absolute positioning methods require a preinstalled infrastructure. However, during
emergency scenarios below ground such infrastructure is not available or, even if they are, they



Figure 1: Preliminary system architecture for the positioning system.

could be damaged. The idea in this project is to built the needed infrastructure during operating
time, in other words, to install dynamically the Wi-Fi/UWB access points. The approximate
coordinates of the access points are derived from the INS and the map information and stored in
the corresponding database (Figure 1). Once the access points are installed, all available sensors
(IMU, Wi-Fi RTT/UWB, map) are fused to obtain the task force’s positions and also to update
the positions of the access points. The determination of the start position is still an open topic.

However, the main focus is put on the implementation and performance analysis of a “single”
foot-mounted INS. In future studies, an approach to fuse the data of a dual foot-mounted INS
will be developed as well as the concrete integration into the particle filter.

2. Test Setup

For the foot-mounted PDR system, the XSens Dot [14], produced by XSens, is utilized as IMU. The
XSens Dot is composed of triaxial micro-electro-mechanical systems (MEMS) accelerometers,
triaxial MEMS gyroscopes and triaxial MEMS magnetometers. It is a wearable sensor and
features wireless data transmission based on Bluetooth 5.0. The acceleration and angular data
are sensed internally at a high-frequency rate (800 Hz). Due to limitations of the Bluetooth’s
channel bandwidth, the data is finally provided in real-time at 60 Hz using an intern strap-down
integration by XSens [14]. The data is recorded using a smartphone and the “Xsens Dot” App,
which is available in the App Store as well as in the Play Store. Furthermore, multiple sensors
can be time-synchronized with each other [14]. For the test setup, two IMUs are mounted onto
the left and the right foot, respectively, as seen in Figure 2a.

3. Coordinate Systems

The raw measurements (accelerations, angular rates, magnetic field strength) refer to the sensor
frame (s-frame). The s-frame on Xsens Dot [14] is displayed in Figure 2b. The body frame
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Figure 2: Test Setup and Sensor Orientation.

(b-frame) here is defined so that the y-axis points in the forward direction, the x-axis to the right
and the z-axis is orthogonal to them and points upwards [15]. Thus, a right-handed system
is completed (Figure 2b). The local-level frame (l-frame) is expressed in terms of east north
up (ENU). The Earth-Centered Earth-Fixed Frame (ECEF) is denoted as e-frame. The WGS 84
ellipsoid is used [16].

4. IMU-Signal Processing

The sensors are calibrated according to [17]. The IMU calibration was done just for investigation
purposes, whether the in-factory calibration is satisfactory or not. To get an first impression,
the focus was put on biases only. The highest obtained biases were 0.12 m/s2 and 0.45 ∘/s
for the accelerometer and gyroscope, respectively. However, since the gyroscope biases can
vary strongly between different measurement sets, it is recommended to estimate them from
stationary phases during each set [17]. The magnetometer is calibrated using the Magnetic
Field Mapper provided by XSens. Furthermore, the measurements need to be transformed from
the s-frame into the b-frame. This is accomplished by performing a simple 90-degree rotation
around the 𝑧-axis (𝑧 = 𝑧𝑏 = 𝑧𝑠) (cf. Figure 2b).

The following subsection presents the used approach for the foot-mounted Zero-Velocity-
Aided INS. The measured accelerations (specific forces) and the measured angular rates are
denoted as 𝑓 𝑏 and 𝜔𝑏

𝑖𝑏, respectively. Both refer to the b-frame.

4.1. INS Mechanization

The used mechanization equation is expressed as a set of three first-order differential equa-
tions [3, 15, 18]:
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where x𝑒 represents the position in the e-frame in terms of Cartesian coordinates (𝑥𝑒, 𝑦𝑒, 𝑧𝑒),
v𝑙 is the velocity vector (𝑣𝑒, 𝑣𝑛, 𝑣𝑢) in the l-frame and R𝑙

𝑏 is the transformation matrix from
the b-frame to the l-frame, respectively. This rotation matrix is described in terms by the
attitude parameters roll (𝑟), pitch (𝑝) and yaw (𝑦). The parametrization of the rotation matrix
is done using quaternions [15, 19]. R𝑒

𝑙 describes the transformation from the l-frame to the
e-frame [3, 15]. Note that the position is expressed in the e-frame, since the visualization tool
requires WGS84 coordinates as an input. The (normal) gravity vector in the l-frame is denoted as
ḡ𝑙 =
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There are dependencies to the geodetic position (𝜙, ℎ), the current velocity, the Earth’s
rotation 𝜔𝑒 and the two radii of curvature (𝑅𝑁 and 𝑅𝑀 ). However, the Coriolis part for a
pedestrian is relatively small and could be neglected. Future studies will show whether the
consideration of the Coriolis term leads to a noticeable model improvement. The quantity Ω𝑏

𝑖𝑙

is composed, according to [15], of:

Ω𝑏
𝑖𝑙 = Ω𝑏

𝑖𝑒 +Ω𝑏
𝑒𝑙, (4)

where Ω𝑏
𝑖𝑒 describes the Earth’s rotation in the b-frame and Ω𝑏

𝑒𝑙 expresses the rate of the
orientation change between the e- and l-frame expressed in the b-frame. The term Ω𝑏

𝑖𝑏 is a
skew-symmetric matrix containing the gyroscope measurements.

The position, velocity and attitude (PVA) are obtained by integrating Equation 1 over the
interval ∆𝑡 = 1/60 s. Each estimation of the time epoch 𝑡𝑘 is based on the previous PVA
solution at 𝑡𝑘−1 and the currently measured accelerations f 𝑏(𝑡𝑘) and angular rates 𝜔𝑏

𝑖𝑏(𝑡𝑘). The
position/velocity term is obtained by adding the linear integrated velocity/acceleration term
to the previous position/velocity solution. The quaternion q is updated via the closed-form
solution shown in [15]. However, more detailed information can be found in [15, 3, 20, 18].



Figure 3: Illustration of Zero-Velocity-Aided INS.

4.2. Zero-Velocity-Aided INS

Equation 1 provides a PVA computation based on the integration of accelerations and angular
rates obtained from the IMU and the previous PVA solution. Due to that, sensor errors and
measurement noise are accumulated and result in a rapid error growth (drift). However, those
effects can be bounded by introducing so-called Zero-Velocity Updates (ZUPT). In this study,
the ZUPTs are implemented in form of an Error-State (Extended) Kalman Filter (ESKF). Since
the IMUs are mounted onto the shoes, the stance phases of a person are well sensed. During
the stance phases, the sensor should output zero velocity. However, this is typically not the
case. The zero-velocity is introduced as pseudo-observation in the ESKF [1]. In the case of a
zero-velocity event, the estimated velocity from the strap-down algorithm is compared with
zero. The estimated error is used to correct the error states. The Zero-Velocity-Aided INS is
schematically illustrated in Figure 3.

The system state 𝛿𝑥 consists of the position errors 𝛿𝑥𝑒 = [𝛿𝑥𝑒, 𝛿𝑦𝑒, 𝛿𝑧𝑒]𝑇 , the velocity errors
𝛿𝑣𝑙 = [𝛿𝑣𝑒, 𝛿𝑣𝑛, 𝛿𝑣𝑢]

𝑇 and the attitude errors 𝛿𝜓 = [𝛿𝑝, 𝛿𝑟, 𝛿𝑦]𝑇 . Sensor errors like biases are
not taken into account, since the velocity errors are assumed to be zero-mean, affected by white
noise and independent [6]. That typically cannot be fulfilled in a foot-mounted Zero-Velocity-
Aided INS [6]. However, the gyroscope error is estimated during prolonged standing. Moreover,
it is planned that the final solution includes two foot-mounted IMUs. Using two IMUs have the
advantage that symmetrical errors can be eliminated [6] as demonstrated in[4, 12, 9].

The state-space model [15, 4, 20] is shown in Formulas 5 to 7.

𝛿�̇�𝑘+1 = 𝐹𝑘𝛿𝑥𝑘 +𝐺𝑘𝑤⎡⎣ 𝛿�̇�𝑒

𝛿�̇�𝑙

𝛿�̇�

⎤⎦
𝑘+1

=

⎡⎣ 0 𝐹0,1 0
0 0 𝐹1,2

0 𝐹2,1 0

⎤⎦
𝑘

⎡⎣ 𝛿𝑥𝑒

𝛿𝑣𝑙

𝛿𝜓

⎤⎦
𝑘

+

⎡⎣ 0 0
𝑅𝑙

𝑏 0
0 𝑅𝑙

𝑏

⎤⎦
𝑘

𝑤
(5)



where

𝐹0,1 = 𝑅
𝑙
𝑒, 𝐹1,2 =

⎡⎣ 0 𝑓𝑢 −𝑓𝑛
−𝑓𝑢 0 𝑓𝑒
𝑓𝑛 −𝑓𝑒 0

⎤⎦ , 𝐹2,1 =

⎡⎢⎣ 0 1
𝑅𝑀+ℎ 0

− 1
𝑅𝑁+ℎ 0 0

− tan𝜙
𝑅𝑁+ℎ 0 0

⎤⎥⎦ . (6)

The system noise is denoted as 𝑤 and assumed to be white with the covariance matrix
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where 𝜎𝑓 and 𝜎𝜔 are the variances of the measurement noise of the specific force and the
angular rates. Equation 8 shows the corresponding observation model [15]:
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where 𝜂 refers to the observation noise. The observation noise is assumed to be normally
distributed with zero-mean. The corresponding covariance matrix 𝑅 = 𝜎2

𝑣𝐼 contains the
variances of the measurement noise 𝜎𝑣 .

To improve the performance of the proposed Zero-Velocity-Aided INS, prolonged standing is
treated differently. Therefore, a modified stand-still mechanization is implemented according
to [21]. This approach freezes the position as well as the heading under particular standstill
conditions.

4.3. Zero-Velocity Detection

To detect zero-velocity events, the stance hypothesis optimal estimation (SHOE) detector [22, 1]
it utilized (Formula 9). This zero-velocity detector is based on a fixed threshold and well suited
for uniform motions. From the IMU output (accelerations 𝑓 𝑏, angular rates 𝜔𝑏

𝑖𝑏) over a moving
window of dimension 𝑁 , the SHOE detector generates a test statistic 𝑇𝑘 that decides if the
pedestrian is moving or standing still. The test statistic is the average of the combination of the
Euclidean norm of the acceleration data corrected by the (local) gravity term 𝛾 (𝜙, ℎ) and the
Euclidean norm of the angular rates. The terms 𝑓 𝑏

𝑛 ∈ R3 and 𝜔𝑏
𝑖𝑏𝑛

∈ R3 represent the single
acceleration and angular rate vectors within the window. The acceleration and angular rate
terms are weighed on basis of their signal quality (𝜎𝑓𝑍𝑈𝑃𝑇

and 𝜎𝜔𝑍𝑈𝑃𝑇 ). The vector 𝑓 𝑏 contains
the mean values of each axis over 𝑁 samples. The hypothesis that the IMU is stationary is
accepted if 𝑇𝑘 is below a pre-defined threshold 𝛼.
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(9)



4.4. Attitude Alignment

The initial sensor orientation can be determined when the system is stationary. The accelerom-
eter measurements are used to compute the initial values for roll and pitch, which are then used
to level the system [15]. The initialization of yaw is based on the magnetic heading [23]. Thus,
the first 2 seconds of a stationary measurement phase from the accelerometer and magnetometer
data is averaged and used for the computation of the initial attitude values. Roll and pitch are
computed according to the Formulas 10 and 11 [15].

𝑝0 = tan−1

(︃
𝑓𝑦√︀

𝑓2
𝑥 + 𝑓2

𝑧

)︃
(10)

𝑟0 = tan−1

(︂
−𝑓𝑥
𝑓𝑧

)︂
(11)

The heading (yaw) is initialized using the magnetic heading. The magnetic heading 𝑦𝑚 is
computed using the normalized magnetic data (�̄�𝑥, �̄�𝑦 , �̄�𝑧) [23]:

𝑦𝑚0 = arctan

(︂
�̄�𝑥 cos 𝑟 + �̄�𝑧 sin 𝑟

�̄�𝑦 cos 𝑝+ �̄�𝑥 sin 𝑟 sin 𝑝− �̄�𝑧 cos 𝑟 sin 𝑝

)︂
. (12)

However, the magnetic heading 𝑦𝑚 deviates from the true heading 𝑦. To improve the heading,
the magnetic variation, which is currently about 4∘ 28’ (positive to east) for Graz (Austria) [24],
is taken into account.

5. Results

The results refer to the foot-mounted INS as a single system. Therefore, two areas in Graz
(Austria) are chosen as test environments. The initial position is deviated from GNSS-data (if
available) or manually set. The threshold for the zero-velocity detection was manually adapted
for the different trails.

For the first test environment no reference data is available. In this area, three different tracks
are recorded:

• Track A: Walking along a straight street (∼ 1150 m)
• Track B: Walking (∼ 750 m)
• Track C: Mixed-motions like slow/fast walking with forward/backward/lateral move-

ments and jogging (∼ 750 m)

Figure 4a shows Track A that goes along a straight road that is about 270 m long and 4.5 m
wide. The test subject walks along the street 4 times (< 1 km). As it can be seen, in the first
270 meters, the trajectories are approximately aligned with the path walked. Then the solutions
start to drift away. The final horizontal positioning errors (comparison of start- and endpoint)
after over 1 km are about 13 m and 45 m for the left and right trajectory, respectively. The
vertical error is under 1 m in both cases (Figure 4b).
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Figure 4: Track A. Orthophoto RGB Status 2018 (©BEV – 2021).

Figure 5 pictures Tracks B and C. The first few meters show a satisfying positioning solution.
The limitations are visible in Track C. Due to the use of a zero-velocity detector, which is based
on a fixed threshold, irregular motions are not treated in the best way possible.

For the second test environment, a reference path with GNSS-based on real-time kinematic
positioning (RTK) is generated. Therefore, the test subject carried a GNSS antenna during the
recordings. The height component was corrected accordingly. For those tracks, another pair of
sensors was used in comparison to the first measurement campaign. In total, three tracks are
recorded:

• Track D: Walking forward
• Track E: Walking with forward/backward/lateral movements
• Track F: Walking forward combined with stair climbing

Figure 6 shows Track F as example. It pictures the INS trajectories as well as the ellipsoidal
height over time. Between minute 5 and 6 the test subject goes down the steps, turns around, and
goes back up. As time passes, the height drifts away. As it can be seen, the height component of
the right foot performs better than the one of the left foot.

Table 1 lists the average root-mean-square error (ARMSE) of all tracks where reference data
is available. The tests show reasonable results. In general, it is noticeable that the sensor of
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Figure 5: INS trajectories of Track B and C. Orthophoto RGB Status 2018 (©BEV – 2021).

Table 1
Positioning error expressed in terms of average root-mean-square error (ARMSE). Comparison takes
place step-wise only with RTK-fixed solutions.

Track distance [m] horizontal position error [m] vertical position error [m]
left | right left | right

D ∼ 175 1.36 | 1.81 0.67 | 0.13
E ∼ 185 1.60 | 1.70 0.89 | 0.10
F ∼ 565 3.39 | 3.04 2.58 | 1.19

the right foot performs significantly better concerning the height estimation than the sensor
mounted on the left foot.

The vertical accuracy in all tests is pretty good. Previous analysis, according to [25, 26], of
inertial sensor errors based on Allan variance data showed that the gyroscope bias instability of
the z-component is around 6 ∘/hr, whereas the bias instabilities of the x- and y-component vary
from 8 ∘/hr to 12 ∘/hr. So, the gyroscope bias of the z-component shows a more stable behavior
than the biases of the horizontal plane. The accelerometer biases do not differ significantly
(≈30 𝜇g). Although the accelerometer and gyroscope biases result in an unbounded error
growth of the vertical component [3], the drift seems comparatively moderate. However, since
the internal sampling rate of XSens Dots is 800 Hz and is processed into a lower output rate of
60 Hz [14], it is difficult to give a detailed explanation.



(a) INS trajectories.

(b) Ellipsoidal height.

Figure 6: Track F: Walking combined with stair climbing (∼ 565 m). Orthophoto RGB Status 2018
(©BEV – 2021).

6. Conclusion

The proposed navigation system relies on a dynamically built network of Wi-Fi RTT/UWB
anchors. The coordinates of those anchors are derived from the INS and map solution. The
position solutions from the foot-mounted INS as a single system reached satisfactory results
over several hundred meters and that without any external support. Therefore, it should provide
an accurate enough initial position estimate for the Wi-Fi/UWB access points.

The sensors showed different but manageable drift behaviors. A combined INS solution of
the right and left leg could reduce the individual drifts. Studies [4, 12, 9] have shown that a



dual foot-mounted INS is an effective way to reduce systematic drift behavior. However, since
the drift behavior varies between the different sensors, a dual-foot mounted INS could face
limitations as discussed in [27].

The used zero-velocity detector (SHOE detector) is based on a fixed threshold approach. Thus,
only uniform motion are treated well. Mixed motions, such as walking combined with running,
are problematic. As shown in [1], zero-velocity detectors that are based on machine learning
methodologies work well for varying motion types and outperform classical zero-velocity
detectors. Future studies will focus on the improvement of zero-velocity detection so that all
kinds of motion types are correctly processed.

The fusion of the foot-mounted INS with distance measurements and map information within
a particle filter represents a promising approach to obtain a reliable navigation system for
GNSS-denied environments.
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