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There are many information systems in the world, used by
many organizations to build things and help people. In process
mining [1], models of organizations at work are automatically
constructed and analyzed. By describing large amounts of data
quickly, process mining accelerates understanding of what an
organizations does, and how it may improve. For example,
a medical doctor may note which common hospital intake
tasks are bottlenecks, or an auditor may see evidence that
certain regulatory checks are carried out as expected. These
processes may be explicitly defined by the organization, as
in an insurance claim process, or implicit, as in a hospital
emergency room.

The successes of process mining to date have largely been
with control-flow models. In a control-flow model, causality is
represented, but probability is not. Stochastic process models
are potentially more powerful tools for some types of organiza-
tional analysis and optimization where frequency and variation
are key, because one way of understanding organizations is to
look at the patterns of what they repeatedly do, and what they
treat as exceptional. Stochastic models may also be used in
prediction and performance. This project then investigates:

How can processes in organizations be understood using
stochastic models mined from organizational data?

The relatively small body of existing work on this topic
is reviewed with research sub-questions and methods in Sec-
tions I-III. This project extends and applies this existing work
while contributing novel techniques and analysis for the con-
struction and use of these models on real-world event data. The
process models notations used are Generalized Stochastic Petri
Nets (GSPNs) [2] and closely related extensions. Section I
summarizes already conducted research into stochastic process
discovery, while Sections II and III relate to ongoing and
planned research into quality dimensions and concept drift.

I. DISCOVERING STOCHASTIC MODELS (RQ1)

RQ1 How may stochastic process models be discovered
automatically?

This project work investigated composition of existing
control-flow discovery techniques with new weight estima-
tion [3] and direct stochastic process discovery [4] techniques.
Direct Process Discovery algorithms output stochastic mod-
els without an intermediate control-flow discovery step. The
techniques for generating stochastic models are not themselves
necessarily stochastic: they may also include analytic methods.

RQ1.1 How may control-flow discovery techniques be lever-
aged for stochastic process model discovery?

A stochastic process discovery framework was developed
in the investigation of this question [3]. In it, a control flow
discovery algorithm is first used to discover a Petri net [1,
p60], and the result is combined with a weight estimation
step to produce a GSPN [2]. Six estimators fitting the frame-
work were implemented, and evaluated experimentally against
stochastic conformance measures, using established discovery
algorithms and real-life public event logs1. The framework is a
generalization of existing stochastic discovery techniques that
compose control-flow discovery with a pipelined stochastic
estimation step [5], [6]. It is also a specialization, in that
it produces GSPNs with immediate transitions, rather than
GDT SPNs [5].

Stochastic quality measures of Entropy Recall and Preci-
sion [7] and Earth-Movers’ Distance [8] were used for the
evaluation, together with real-life logs from BPI challenges
and a variety of discovery algorithms. Estimation techniques
found were of comparable quality, were applicable to a broader
range of event logs, and were generally faster than GDT SPN
discovery [5].

RQ1.2 How may stochastic models be discovered directly
from event logs?

Techniques based on a computing pipeline of control-flow
model discovery followed by some inference of stochastic
data have some inherent design limitations. The control-flow-
only nature of the initially discovered model may introduce a
representational bias toward the structures of that output for-
malism. The multiple passes through the log is also awkward,
and perhaps inefficient. Accordingly, this project introduced
the novel Toothpaste miner framework, a set of direct dis-
covery algorithms where control-flow and stochastic aspects
are discovered in concert, through a process of reduction and
abstraction, in polynomial time [4]. To do this, it introduces
an intermediate abstraction targeted at stochastic process dis-
covery, the Probabilistic Process Tree (PPT). The algorithms
start with a trace model and reduce it to a target model using
formally defined rules, “squeezing” trace information into a
usable form. A prototype was implemented2 and evaluated
empirically against existing techniques with promising results.

A PPT is an extension of Process Trees that includes
relative probabilities in the form of node weights, and is
related formally to GSPNs. Toothpaste miner is inspired by
region-based miners for control-flow models [9], [10] and the
ALERGIA [11] algorithm.

1Java code and data at https://github.com/adamburkegh/spd we
2Haskell code and data at https://github.com/adamburkegh/toothpaste
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II. QUALITY DIMENSIONS (RQ2)

RQ2 What quality dimensions are empirically observable in
stochastic process models and logs?

The quality of process models is often quantified with
conformance measures, and those measures related to four
standard control-flow quality dimensions [1, p188]. Recent
research into stochastic process measures suggests both con-
nections and challenges to these quality dimensions. For
example, entropy measures have been related to both precision
and recall (fitness) [7], but Earth-Movers Distance does not
obviously align with an existing dimension [12]. Challenges
range from needing to translate the technical definition of e.g.,
fitness, to a stochastic context, to differences in how adjacent
fields theorize the role of simplicity and generalization.

At least one empirical and quantitative study compares pro-
cess measures and dimensions for control-flow models [13].
Factor analysis showed Fitness and Precision as observable,
orthogonal dimensions. Simplicity was excluded, and there
was insufficient evidence to support a Generalization dimen-
sion. For stochastic process models, this suggests experimental
investigation of how models may be distinguished can inform
and foster new formalized measures, and understand relations
between them. Process mining data is ultimately derived from
real-world social activity, and that will narrow the vast space
of candidate formalisms.

This research, which is ongoing, investigates empirically
identifiable orthogonal quality dimensions for stochastic pro-
cess models. The experiment design uses a dataset of stochas-
tic process models for real-life processes, collected and evalu-
ated against a set of computationally cheap measures, termed
exploration measures. Exploration measures are based on ex-
isting control-flow and stochastic model measures and around
fifteen measures are being considered. Existing stochastic
conformance measures [7], [8] are considered evaluation mea-
sures. The dataset for the experiment comprises thousands
of stochastic models, including randomly generated models
and those from existing discovery algorithms. Evaluation mea-
sures will be used for a subset of discovered models where
conformance measure tools were expected to terminate. The
subset excludes random models and discovered models which
perform poorly using exploration measures. Undermeasured
phenomena and possible quality dimensions will be proposed
based on a statistical analysis of the results.

III. LONG-RUN PROCESS DRIFT (RQ3)

RQ3 How can we precisely describe the history of change
in an organizations processes?

A model describes a system. When the system changes, and
an automatically discovered model needs to detect that, this
problem is called concept drift [1, p320]. In process mining,
the computational discovery and analysis of organizational
process models, this becomes process drift [14]. Recent work
on stochastic modelling for concept drift [15] suggests stochas-
tic models can be a productively describe these phenomena.

The significant existing literature on concept drift in pro-
cesses is focused on moments of drift, or anomaly detection.

Building on this foundation, the evolution of organizational
processes can itself be analysed computationally, yielding
models of process change. This long-run process drift can be
described with second-order process models [14].

This prospective research concerns novel algorithms, tech-
niques and newly developed software for describing and un-
derstanding long-run process drift. The underlying formalisms
are expected to be based on GSPNs and Reconfigurable Petri
nets [16]. Models of long-run process drift will be constructed
using a combination of stochastic process discovery and
adapted concept drift detection techniques. The techniques
will be evaluated experimentally against real-world event logs
and stochastic quality measures. Initial exploration for suitable
event log data is underway. Automatic techniques can make it
easier to understand the history of change in a process, what
is routine, and what is exceptional, and thereby make better
organizations over time.
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