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Abstract—Calculating event log measures (also known as fea-
tures, metrics, and characteristics) is a common task required by
many process mining applications. Process mining research stud-
ies and industrial applications often need to generate measures
depending on their requirements. This has resulted in a plethora
of event log measures being (re-)invented and (re-)implemented
on different platforms. Fig4PM is an attempt toward building a
standard, comprehensive, and reusable library for calculating
event log measures. The current version of this open-source
program offers 73 distinct control-flow measures either directly
extracted from the literature (48 measures) or derived from the
existing measures (25 measures). Eventually, our objective is
to build a standard public Python library to facilitate feature
generation in process mining applications.

I. INTRODUCTION

Process mining projects typically start with extracting data
from a process-aware information system and transforming
them into an event log [1]. These event logs serve as input
for virtually all process mining applications. In order to
characterize the event logs and assess the specific differences
(and similarities) among the traces, process analysts often
employ event log measures, i.e., , “numeric representations of
raw data” [2]. These measures can provide a priori insights
about a log, which can then be used to draw conclusions
about their properties. Typically, a measure is calculated at
trace level and then aggregated to represent the event log
characteristics. For example, calculating the length of each
trace helps building the average trace length at event log level.

A wide range of process mining applications utilize such
measures. We conducted a literature review to collect the
studies that considered implementing new measures based on
an event log’s control-flow and found 21 scientific papers1

ranging from 2001 to 2020. Interestingly, we noticed a certain
level of overlap among these studies, i.e., different studies do
not refer to fully-distinct and exclusive measures. According to
the results of our literature review, many approaches require
implementing measures, including (but not limited to) data
preprocessing [3], data quality [4], predictive process mining
[5], approaches that use deep learning techniques [6], business
process simulation [7], process complexity analysis [8], and
trace clustering [9].

To avoid the repeated (re-)invention and (re-)implemented
of the same event log measures on different platforms, we

1Material is available at https://doi.org/10.6084/m9.figshare.14912313.v2.

introduce the Fig4PM library.2 It provides researchers and
practitioners with a basic library to access previously im-
plemented event log measures and is specifically set out to
be a starting point for ongoing development efforts. Prospec-
tive users may contribute to this project by developing new
measures, improving the existing functions, add more data
connectors, and improve its overall performance3.

II. MEASURES

In Fig4PM, we distinguish two types of measures based on
the underlying data structure. Linear measures perceive a trace
as an array, matrix, or sequence of letters (a string), whereas
non-linear measures perceive a trace as a directed graph, i.e.,
nodes represent activities while sequences determine edges [9].

A. Measures Derived From Linear Structures

Table I lists the measures derived from linear structures that
were identified in the literature. For each measure, we list its
abbreviation, description, and literature source. The measures
are separated into groups based on their literature source and
intended purpose.

The first two groups provide a brief overview of the log
size and variability. The large third group measures struc-
turedness and variance, i.e., risk of producing a Spaghetti
model [13]. To quantify these properties, we can measure
reoccurring behavior in terms of self-loops and repetitions as
well as the number of start and end events which concern
variability in initialization or termination. As more elaborate
measures for structuredness, we measure the number of distinct
traces per 100 traces (tcpht), absolute trace coverage (tco)
and the relative trace coverage (rtco). The lower tcpht, the
more structured the underlying event log. tco represents the
minimum number of distinct traces required to cover 80% of
all traces in the log hence, evaluating the variants’ frequencies.
Relating tco to ntc yields the relative trace coverage, which
is better suited for comparison across different (sub-)logs.

The fourth group consists of several measures based on
density, similarity (diversity), and complexity. The fifth group
measures event log entropy using 3 different methods.

2Code is available at https://github.com/f-zand/fig4pm.
3Demo video available at https://bit.ly/3iTt5MR.
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TABLE I
LITERATURE-BASED MEASURES - LINEAR STRUCTURE

Abbreviation Measure
ne Total number of events [10]–[12]
nec Total number of event classes [10]–[12]
nt Total number of traces [10]–[12]
ntc Total number of trace classes [10], [11]
atl Average trace length [13], [14]
mitl Minimum trace length [13], [14]
matl Maximum trace length [13], [14]
ats Avg. trace size (level of detail) [11], [12], [15]
nsec Number of distinct start events [10], [13]
ntec Number of distinct end events [10], [13]
ntsl Abs. # traces with a self-loop [13]
ntr Abs. # traces with a repetition [13]

rnsec Rel.# distinct start events [13]
rntec Rel. # distinct end events [13]
rntsl Rel. # traces with a self-loop [13]
rntr Rel. # traces with a repetition [13]
anslt Avg. # self-loops per trace [13]
manslt Max. # self-loops per trace [13]
asslt Avg. size of self-loops per trace [13]
masslt Max. size of self-loops per trace [13]
tcpht # distinct traces per hundred traces [13]
tco Absolute trace coverage [13]
rtco Relative trace coverage [13]
edn Event density [11], [15]
thr Traces heterogeneity rate [11]
tsr Trace similarity rate [11]
cf Complexity factor [11]
std Simple trace diversity [15]
atd Advanced trace diversity [15]
tentr Trace entropy [16]
prentr Prefix entropy [16]
abentr All-block entropy [16]

B. Measures Derived From Non-Linear Structure

Table II lists the literature-based measures derived from
non-linear structures. In comparison to the linear measures,
their number is rather limited. Many measures from the
literature require post-discovery knowledge which is out of
scope for this study. The remaining measures mainly focus on
the directly-follows-graph (DFG) of the event log, quantifying
the relationship between its nodes N and edges A.

TABLE II
LITERATURE-BASED MEASURES - NON-LINEAR STRUCTURE

Abbreviation Measure
N Number of nodes / vertices
A Number of arcs / edges

gcnc Coefficient of network connectivity [17], [18]
gand Average node degree [17]
gmnd Maximum node degree [17]
gdn Density [17]
gst Structure [12]
gcn Cyclomatic number [18]
gdm Graph diameter [17]
gcv Number of cut vertices [14]

gsepr Separability ratio [17]
gseqr Sequentiality ratio [17]
gcy Cyclicity [17]
gaf Affinity [12]
gspc Simple path complexity [19]

C. Self-Developed Measures

Inspired by the initial set of measures, we created 25
new measures to improve comprehensiveness and cover more
topics. Linear structure includes measures focusing on fre-
quency, connectedness, trace length, trace profile, and spatial
proximity. Non-linear structure measures include measures
based on modularity, cut-vertices, and activity labeling. In the
additional material to this work, we provide a summary of the
literature review and a list of all measures plus their respective
formulas.
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