
Exploring Task Execution Patterns in Event Graphs
Eva L. Klijn, Felix Mannhardt, Dirk Fahland

Eindhoven University of Technology, The Netherlands
{e.l.klijn, f.mannhardt, d.fahland}@tue.nl

Abstract—Classical process mining aims to capture the be-
havior of a process based on a single dimension: the sequence of
activities grouped by process cases. This viewpoint fails to capture
how individual actors are organizing their work across multiple
cases. We present a tool that uses the graph database Neo4j to
model actor behavior over different cases as an event graph.
We then use Neo4j queries to detect task execution patterns
in the graph describing how multiple actors collaborate across
multiple cases. Exploring and visualizing these patterns enables
the data driven analysis of tasks, routines, and habits as studied
in organizations research.

I. INTRODUCTION

Process mining focuses on improving processes by analyz-
ing event data. Classically, recorded events are grouped in an
event log under the viewpoint of one (or more) case identifiers
and ordered by time. The resulting event log describes which
tasks were performed in which process execution viz. case.
Process discovery identifies behavioral patterns and informa-
tion along each case and aggregates them into a process model
describing the control-flow perspective [1] of a process, which
can consist of multiple data objects or entities [2].

Each task is performed by an actor (or resource) working
on the case, which is studied under the resource-perspective
of the process [1]. An actor moving from one task in a case
to a task in another case introduces behavior along the re-
source perspective and dependencies between tasks of different
cases. In [3] we showed that the control-flow and resource-
perspective can be studied together as an event graph [2] where
each event is part of two paths, a case path and a resource path,
modeling event dependencies over two behavioral dimensions.
One or more case and resource paths synchronizing form a task
execution pattern which describes work habits of an actor or
routines, i.e., how one or more actors collaborate over multiple
cases.

In this paper, we present a command-line tool for analyzing
such task execution patterns as described in [3]. The tool is
realized in Python 3.7 and publicly available1. It connects to
a Neo4j (neo4j.com) database instance to execute queries (1)
for constructing an event graph over the case and resource
dimension from a classical event log; (2) for detecting various
forms of task execution patterns in the event graph and
aggregating them to high-level events which can be queried,
visualized, and explored using Neo4j. A screencast2 and a
detailed instruction manual1 explain usage of the tool.

1https://github.com/multi-dimensional-process-mining/event-graph-task-p
attern-detection

2https://vimeo.com/630382325

II. TASK EXECUTION PATTERN DETECTION

The configurable end-to-end workflow is implemented in
main.py and shown in Fig.1.

A. Input & Parameters

The input is a classical event log in CSV format. The CSV
file must contain columns for the event classifier, timestamp,
case identifier and resource identifier. The columns and details
on the used CSV format need to be provided as parameters,
e.g., its filename, column keys, column separator and the
timestamp format used. We assume a Neo4j database has
already been set up and the credentials are provided as
parameters. The graph labels assigned for the entities and
relationships can be customized if wanted.

B. Event Graph Creation

The tool creates the event graph in three steps:
1. Preprocessing. Preprocess the event data (PreprocessSe-

lector.py) to make it suitable to import to a Neo4j Database
instance by standardizing the name and formatting of the event
classifier and timestamp column.

2. Initial Graph Creation. Invoke Cypher queries to con-
struct an event graph (EventGraphConstructor.py) by limiting
the original event graph construction approach [2] to the
resource and case entities. In the resulting event graph, each
event is an Event node that is part of two paths of directly-
follows edges: the path of all events correlated to the same
case entity, and the path of all events correlated to the same
resource entity. For event data over multiple case entities,
a user can also choose to construct a custom event graph
following the original approach [2] and may then skip step
1 and 2.

3. High Level Event Construction. Detect task execution
patterns in the event graph and materialize them in the graph
as “high-level event” nodes (HighLevelEventConstructor.py).
For the most basic pattern type, we query for sub-graphs of
event nodes that are all part of the same case path and the same
resource path (i.e., the resource works on the case over one or
more consecutive events); sub-graphs of other pattern types [3]
are found through variations of this query. For each found sub-
graph, we create a new HLEvent node linked to the events in
the sub-graph. We lift the directly-follows edges from Event
nodes to HLEvent nodes. This allows to query for larger task
execution patterns as patterns of HLEvent nodes along case
and resource directly-follows edges, see [3] for details.
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Fig. 1. Design of the toolkit (1) taking event data (CSV) and a set of parameters as input, (2) creating a Neo4j event graph and (3) providing subgraph
visualizations of task execution pattern instances as output.

C. Event Graph Exploration

Once the graph and HLEvents are constructed, the tool
prompts the user to explore the graph for (1) task patterns
of a particular type or (2) patterns occurring in a subset cases.

1. Exploring task execution patterns. In [3], several task
pattern types have been identified and assigned numbers from
1 to 16. GraphExplorer.explore patterns() prompts the user to
specify which pattern type they wish to explore, e.g., type 4
in Fig. 2. It then returns a list of all distinct task execution
patterns of this type ordered by frequency. The user can select
a specific task pattern to explore further, which will return a
list of all instances (sub-graphs) of that particular task pattern.
The user can select to visualize a specific instance of the
pattern, which is shown in a separate window as a PDF. Fig. 1
(top-right) shows an example of a task execution instance that
shows pattern 8’, i.e., an actor performing the same sequence
of steps for a number of cases one after the other. Other
patterns such as resource interruptions (pattern 2, see [3]) and
case interruptions (pattern 3, see [3]) can also be explored.

2. Exploring subsets of process executions. GraphEx-
plorer.explore cases() lets the user specify the case identifiers
for which they want to explore task execution patterns. The
resulting subgraph of those process executions and task pat-
terns is then output in a separate window in PDF as shown at
the bottom right part of Fig. 1.

III. MATURITY & PERFORMANCE

The tool was successfully evaluated in [3], where it was
used on two real-life event data sets (BPIC’14 and BPIC’17).
These experiments were run on an Intel i7 CPU @ 2.2GHz
machine with 32GB RAM. For the larger of the two data
sets (BPIC’17, 237MB), the tool was able to construct all
graph related constructs in ∼ 140 seconds and return lists
of executions and instances of all pattern types in under 4
seconds. The subgraph visualizations are generally retrieved
in under 2 seconds, but we have also seen various instances
that take almost 60 seconds. The tool’s performance on this
aspect highly depends on the complexity of the subgraph to be
visualized. The preprocessing scripts and label settings for the

Fig. 2. Example of the CLI and PDF output for exploring task execution
pattern 4 in the BPIC’17 data (for sake of space, only a condensed version
of the intermediate output is shown).

graph output are easily adaptable. We provide example scripts
for BPIC’14 and BPIC’17.

IV. CONCLUSION

We developed an open-source command-line tool for explor-
ing task execution patterns in event graphs. In [3], we have
shown that the exploration of specific execution patterns that
include the behavioral dimensions of both cases and resources,
can reveal a complex interplay of cases and actors engaging in
recurrent patterns of work, i.e., routines and habits. This makes
our tool applicable in any process mining use case where
resource information is recorded. Future work is to extend the
subgraph visualization feature for all task execution patterns
introduced in [3]. Still, we covered a core set of patterns that
occur in public datasets. Furthermore, we plan to build an
interactive and graphical user interface to enable a seamless
interaction with the tool.
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