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Abstract  
Nowadays, information security has become an integral part of risky digital operations in cyberspace. 
To solve such problems associated with risky operations, the use of hash functions occupies one of the 
key places among information security technologies in modern cryptography. After all, these crypto-
resistant functions process critical data of limited length while creating a small, fixed-size digital code 
called a hash or digest. The classic use of risk-dependent crypto functions is to check the integrity of the 
processed data, as well as authentication schemes for user messages. However, as the volume of risk-
dependent processed critical data grows, the criterion of hash function throughput comes to the fore. 
Thus, SHA (Secure Hash Algorithm 3) is the latest member of the Secure Hash Algorithm family of 
standards, released by NIST on August 5, 2015. Although SHA-3 belongs to the same series of standards, 
it is internally different from the MD5-like structure of SHA-1 and SHA-2. The Secure Hash Algorithm is 
considered one of the first generally accepted hashing standards and, according to the currently 
published literature, is considered the fastest implementation of the SHA-512 (SHA-3 variant) 
cryptographic algorithm, providing acceptable bandwidth for protecting risk-dependent critical data. 
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1. Introduction 
The use of cryptographic hash functions to protect risk dependent critical data, are related to the 
usual hash functions, which have additional properties, at the same time usual hash functions do 
not necessarily have them. These functions convert the final input of an information data stream 
to protect risk-dependent critical information into a small output of a fixed size, sometimes called 
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a summation. A good hash function has foreground image resistance, second foreground image 
resistance, and strong collision resistance. Resistance to the forward image means that it is 
computationally impossible to find any input that yields a digest equal to the predefined output. 
Second-image robustness means that it should be computationally infeasible to find any second 
input that has the same output as any given input. Anti-collision means that it is computationally 
infeasible to find two different input hashes with the same output. 

Hash functions can be divided into two categories: keyed and hunkered. Hash functions with a 
key are used in message authentication schemes. Such functions accept not only the hashed data, 
but also a second parameter, called a key. The hashing algorithm uses the actual data and the 
provided key to create the hash. 

A function without a key is usually used to check the integrity of the data. The raw data is 
passed through the function and a summary of the results is stored. Later, a copy of the data is 
hashed and the two hashes are compared. If they are the same, the original data and the copy are 
the same for all intents and purposes. However, if they are different, the integrity of the copy 
cannot be trusted because the data could have been altered due to transmission errors or, even 
worse, by an external source for malicious purposes. A more detailed description and analysis of 
the hash function can be found in [1]. 

Thus hash functions require more and more computational resources. And because of the 
iterative nature of such functions, implementations of these algorithms cannot use computational 
techniques such as parallel processing to significantly improve performance. General-purpose 
processors are poorly suited to efficiently perform the basic operations required for a given hashing 
algorithm. Hence, hardware implementations of such algorithms are being developed to improve 
performance. 

As new hash functions emerge, there must also be a way to compare them for authenticity. In 
such comparisons it is crucial to distinguish between software and hardware implementations of 
hash functions. Software implementations running on general-purpose processors are used for 
many authentication protocols as well as for independent computing applications. Hardware 
implementations created using dedicated circuits are typically used for devices that are impractical 
or impossible to implement with software, such as embedded systems or high-speed network 
devices. Runtime and memory usage are two critical metrics to consider when comparing software 
implementations of hash functions. Thus, the lower the runtime and memory usage, the more 
advantageous the hash function is. In hardware, runtime and total area are two important metrics 
to consider. For this type of implementation, runtime can usually be reduced by increasing the 
total area. This area can be calculated based on the physical size occupied by the final 
implementation and the number of logic gates used to build it. A hardware implementation can be 
used to achieve faster execution times than software can provide. Hardware devices such as 
FPGAs can provide the highly optimized operations needed for hashing algorithms. Therefore, 
such implementations are usually orders of magnitude better than software implementations. 

2. Model analysis of cryptographic algorithms for hash functions 
compression of critical messages 

There is no paper discussing the hardware implementation of the Phash algorithm, but many papers 
discussing the hardware implementation of SHA-512 have been published and Whirlpool 
algorithm. The proposed cryptographic models are generally used for the process of obtaining the 
maximum throughput of critical message compression by hashing functions. These 
implementations are usually aimed at high throughput or efficient resource utilization [1, 3, 4, 7]. 



Often, it is impossible to know a priori which design choice for a given component will be the best 
choice to achieve a particular design goal. Whenever possible, several descriptions and 
implementations of specific components are provided. After implementing and executing an 
algorithm using different components, it is possible to comment on the quality of a given 
implementation, as it is related to achieving high throughput or low total area. 

This publication contains information about currently available and existing hardware 
implementations of SHA-512. Including descriptions and analysis of each implementation [2, 5, 
6]. These publications describe the message expansion and compression steps in some detail. Most 
of the implementations reviewed acknowledge the existence of a key fill phase, but do not include 
details. Similarly, the hash update phase is partially mentioned, but its implementation is not 
always correctly described. One of the reasons, in our opinion, for omitting the details of the fill 
phase and the hash update phase is the hypothesis that the practical implementation of these phases 
will not have a significant negative impact on the overall performance characteristic of the hash 
function algorithm. 

Simple Hash Function Implementation 
Some of the first released hardware implementations of SHA-512 are described in scientific 

publications [8, 9, 11, 13, 17]. In [19], the implementation of SHR(x) and ROTR(x) operations, used 
in the extension and compression phase of the algorithm message processing, is discussed in detail. 
Thus, a block of ROM (Read Only Memory) is used to store the constant variable Kt required for 
the message compression phase. Several 64-bit adders and simple combinatorial circuits are used 
to calculate these values, which are necessary for the algorithm. Using the 64-bit adder with five 
inputs which is involved to calculate the time value T1, and the 64-bit adder with two inputs which 
is involved to calculate the total time value T2. On this basis the functions Ch(x, y, z) and Maj(x, y, z) 
are realized by simple combinational circuits. 

A more detailed description of the SHA-512 implementation is given in [10, 14]. The 
construction of the disclosure phase of the message hash function is shown in Figure 1. 

Figure 1: Model design of message expansion stage iteration 

So the advantage of the considered implementation is the reuse of memory registers. A simple 
implementation requires would require eighty 64-bit registers to store all the necessary critical 
data generated during the message expansion phase, but because of resource sharing only 16 such 
registers and a multiplexer are needed. From the considered scheme we see that each of the sixteen 
registers has a width of 64 bits, and the multiplexer is used to determine the time of loading the 
first block of critical data in the register of the computing system. Thus the data output Wi from 
the leftmost register of the circuit algorithm is used as input to the compression stage of the 
generated message. As soon as the first block of critical data is loaded into all registers, the 
multiplexer immediately returns the result of the specified calculation of the hash function in the 
leftmost register. The considered design of the hash function algorithm at the message 
compression stage in [1] is shown in Figure 2. Based on this scheme, the eight 64-bit registers 
represent the intermediate values of the message hash, which will be used in the update phase after 



the 80 iterative cycle of the compression phase [12, 15, 18]. For a more simplified understanding 
of the proposed algorithm, the details of the implementation of the computational operations 
SHR(x) and ROTR(x) are omitted. On this basis, we used two two-port Block RAMs to store the Kt 
constants used in this iterative stage. Block RAMs are on-chip memory components which can be 

instantiated and addressed like regular memory modules. The details of the adders used in this 
implementation are also omitted in this publication.  

Figure 2: Model design of message compression stage iteration 

A more detailed implementation of the message expansion step diagram is shown in Figure 3. To 
reduce the total number of additions to be performed on the critical path, it is crucial to use the 
algorithm to compute the total Kt + Wt in the previous loop [16, 17, 21]. The Rkw register ensures 
that the quantity is available during the correct iteration. The output of this register is used in the 
intermediate step of message compression. The combination of CSA and CPA is used to minimize 
the mathematical calculations and thus the delay that occurs when adding multiple 64-bit numbers 
to the processing. If you only use cascade CPA, in this case the delay will be even longer. Since 
the LUT Shift A and LUT Shift B blocks in this algorithm scheme are shift registers. They are 
designed using the "shift register mode" CLB slices available in the Virtex FPGA. Thus they are 
designed to significantly reduce the overall footprint while not affecting performance. 

The design model of the message compression stage structure is shown in Figure 3. In this case, 
the multiplexer automatically determines whether the current Kt+0 – Kt+7 values should be used 
additionally. For these calculations, the multiplexer selects a value of zero for addition at all stages, 
except for the last stage of compression of the desired message [20, 22, 24, 26]. The last iteration 
of the model will additionally use the calculated current Kt+0 – Kt+7 value. Thus, the basic operation 
of these multiplexers serves as a key step to update the hash of the message. 



Figure 3: Model design of message expansion stage iteration  

Based on this, the critical path in the compression phase of the proposed message must be further 
transformed into seven complements. P Cs, CSA and CPA, which we use to optimize the 
mathematical delay of this calculation. In this way, the parallel operations counter significantly 
reduces the number of operations added by the model from five to three. Similarly, we use CSA 
and CPA to replace the cascading CPA in order to significantly minimize the computational delay. 
To do this, we need to significantly reduce the total area of the adder. Based on this, in addition to 
using the traditional 64-bit adders for calculations, 16 and 32-bit adders for the necessary additions 
are also involved 

A more advanced implementation model 
Figure 3 shows only a part of the SHA-512 algorithm implementation model. In this case, the 
phase of calculating the required message is doubled. The peculiarity for the realization of this 
algorithm step is that six inputs are involved, from b to d and from f to h, which are fed directly to 
the output, and only two inputs, a and e figure 4, require additional mathematical calculations, 
which directly delay the work of the proposed algorithm. Thus deployment allows us to parallelize 
the process of mathematical calculations by performing two iterations simultaneously. For the 
same reason, the algorithm of the necessary message expansion stage is also subject to the process 
of modification to obtain the next two values of Wt almost simultaneously.  



The design model of the necessary message compression process in two iterations is presented 
in figure 4, and the thickened line shows the critical path of mathematical calculations, which 
create delays in message compression [23]. On this basis we can notice that when message 
compression step is extended then working frequency of the algorithm is reduced approximately 
by half, thus negating the purpose of expansion. On this basis, it should be noted that in order to 
significantly increase the operating frequency of compression of the necessary message, it is 
necessary to perform part of the operations in parallel. The study proposes a quasi-conveyor 
implementation of the SHA-512 mathematical encryption algorithm. For this purpose, a pipeline 
approach is used in the phase of compression of the necessary message, and since it forms the key 
delay on the execution of the algorithm [25]. Then the disclosure phase of the main necessary 
message has been optimized, so as to significantly reduce the delay of a single mathematical 
calculation step. Thus, in order to significantly reduce the delay in the pre-math phase, it is 
necessary to use delay balancing technology [27]. Based on this, CSA and CLA must be used to 
make the necessary critical additions [28]. Analyzing the presented model design scheme figure 3 
we can notice that the section τ is influenced by variables Kt and Wt the section τt-1 is indirectly 
influenced by variables Kt-1 and Wt-1 through τ. 

 

Figure 4: Design two iterations of message compression stage iteration  



Based on the operation of the cryptographic algorithm at the stage of reading the last pair of values 
Kt and Wt it is necessary to carry out three consecutive clock cycles for the final completion of the 
critical message compression stage. Thus, at the first stage of the cryptographic algorithm for 
critical message compression registers are used to transmit new values. Which is used in the 
second step of generating the final values from E to H. And the third step of the execution of the 
cryptographic algorithm performs the generation of values from A to D. Also note that in the third 
step of the algorithm the variables from E to H must not be synchronized in any way. 

Thus, for effective delay balancing is used to significantly reduce the critical path of 
mathematical calculations still in the critical message expansion phase, but this method is not quite 
suitable for its use in combination with the unpacking process, so a modified algorithm was 
developed to implement the message expansion phase. Based on this effective deployment of this 
cryptographic model architecture, the values of the variables Wt and Wt+1 are required to execute 
the algorithm in one clock cycle. This usually uses sixteen sixty-four bit registers, and in a 
modifying algorithm, up to eight registers, but this doubles the width to one hundred and twenty-
eight bits. And the first sixty-four-bit word of the new register is used to calculate the variable 
value Wt, and the second sixty-four-bit word is used to calculate the value Wt+1. The 
combinatorial logic of the message expander was copied to calculate the variable values Wt and 
Wt+1 in one loop of the algorithm. To do this, the multiplexer selection of one hundred and twenty-
eight bits instead of sixty-four bits was changed. In this case the outputs of the variable values Wt 
and Wt+1 are fixed, to ensure that they do not affect the critical delay path of the mathematical 
calculations. 

Thus, after the completion of the cryptographic algorithm at the 80th iteration of the critical 
message compression stage, the created hash code must be updated. In the classical version, this 
requires eight 64-bit adders, but we consider a hash modification scheme which uses only two 
adders. Assuming that, most hash variables are only moved to create a new output sequence, and 
hence, there was definitely an interdependency between the hash variables. Thus, using this 
interdependence, only two adders are needed to complete the critical message compression 
cryptographic algorithm to generate six partial results of hash modification iterations, and the other 
two value variables are calculated differently.  

Using these interdependencies, the partial results of the hash modification iterations can also 
be determined. Based on the above, only two adders can also be used to perform the necessary 
number of calculations. 

3. Practical implementation of the proposed hash function 
compression algorithm for critical message compression in risk 
dependent computer systems 

In order to analyze how a cryptographic algorithm of hash function compression of critical 
messages in risk dependent computer systems will behave, a program model was developed, on 
which the testing of Figure 5-8 was carried out.  

Figure 5: File with initial data  



Figure 6: Data file after SHA-512 hash function 

Figure 7: File with decoded data 

Figure 8: Model program hash function compression of critical messages 



In this paper, the informational and technological impact of risk protection requirements in relation 
to critical data for regulation on the software development process has been evaluated. In doing 
so, the main changes in the hashing of information flows to which this process is defined and how 
to be prepared for them are described. It is prepared for the division of the critical risk-dependent 
personal data of the users into ordinary and special categories. 

The way and the reasons for their collection, processing and disclosure are explained. In 
addition, it is necessary to ensure the security of these data, to prevent their leakage outside the 
organization where they are stored. This can cause damage to the data subject and lead to fines of 
considerable magnitude. 

4. Conclusion 

Conducting a critical analysis of the use of cryptographic hash functions to protect risk-dependent 
critical data, as well as to quickly compress critical messages in risk-dependent computer systems, 
we can argue that the use of mathematical algorithms has significant promise for information 
security technologies in modern cryptography. After all, these crypto-resilient functions for 
protecting risk-dependent data process critical information of limited length while creating a small 
digital code of fixed size. Along with classic applications of these crypto-resilient hash functions, 
such as verifying the integrity of the data being processed, and authentication schemes for critical 
user messages. Research has shown that with a significant increase in the amount of critical 
information being processed to protect risk-dependent critical data, the hash function's throughput 
criterion comes to the fore. Therefore, information security research today to protect risk 
dependent critical data has become an integral part of risky digital operations in cyberspace, and 
solving such problems with hash functions occupies one of the key places in modern cryptography. 
Thus, the modification of hash algorithms for protection of risk-dependent critical data, in order 
to increase the throughput is extremely relevant. 
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