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Abstract  
The paper is devoted to the issues of knowledge representation about a plurality of processes of 
various intensities that arise unexpectedly and evolve simultaneously in complex dynamical systems in 
a wide range of domains. A knowledge representation model based on events that are referenced to 
certain time intervals and spatial areas is proposed. Since some information about events is inaccurate 
or blurred, the uncertainty of the observed information about the evolving processes is represented 
using gray numbers and soft sets. Events are connected in an abstract network, where arcs express 
possible transitions from one event to another. Within the network, transitions between events are 
driven by impulses and correspond to transitions of a dynamic system from state to state. The energy 
accumulated in the nodes is considered to generate impulses, which express the achievement of a 
certain threshold by the energy. The proposed abstract event network can be used to model the 
evolution of dynamic systems that can be expressed by events that occurred inside the system but 
driven by impacts from the outside (environmental effects). Such evolution is considered in a wide 
range of rates, from the slowest processes associated with climate change to the most rapid processes 
associated with the effects of natural forces of a destructive nature. Connections between nodes 
allow representing sequential and parallel streams of events concerning cascade and triggering 
effects, which makes it possible to study complex interactions between separate processes within a 
complex system of a random structure.  

Keywords  1 
knowledge representation model, dynamic system evolution, energy-driven abstract event network, 
uncertainty model, temporal and spatial referencing  

1. Introduction 
There are many domains of technical, socio-technical, or socio-economical nature that evolve in 
space and time within the natural environment. Usually, they can be represented by complex 
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dynamic systems containing multitudes of interacting dynamic objects. Due to such interactions, 
a plurality of processes of various intensity arises unexpectedly and evolve simultaneously 
within dynamic systems [1]. Typically, these processes are transient, non-linear, and non-
stationary. The dynamic objects have specific states at specific times, which are represented by 
certain points within the state space of the dynamic system, so their behavior is usually 
represented by their trajectories within this space. Clearly, if their trajectories touch or intersect 
each other (and even in the case of some proximity of the trajectories within the state space), 
most often these objects are exposed to a variety of dangers, threats, and risks. 

Some processes such as climatic changes proceed very slowly, others, on the contrary, very 
quickly, so they can be dangerous and cause deaths, injuries, and huge damage [2]. Since the 
processes, which evolve and interact within complex dynamic systems, are principally 
stochastic, the dynamic system has a random structure and is difficult to control. The evolution 
of the dynamic systems is mainly driven by the impacts of humans and nature [3]. The 
manifestation of such evolution can be ex-pressed by events that occurred inside the dynamic 
system but associated with im-pacts from the outside (environmental effects). Due to the wide 
dispersion of a plural-ity of the evolving processes over space and time, events should be 
properly referenced within space and time. 

At the same time, people must be concerned about the prevention or elimination of dangerous 
events to minimize losses, so there is a need to ensure the safety of the dynamic system [4]. To 
make the dynamic system safe, people need first to observe the system itself and the 
environment. Although there are a lot of technical means of observation (i. e. sensor networks, 
unmanned vehicles, etc.), all of them are based on sensors, which usually provide ambiguous, 
imprecise, incomplete, inconsistent, and doubtful information. Such a wide range of 
uncertainties distorts observations and introduces unpredictability of the states of the dynamic 
objects and the dynamic system as a whole. Naturally, this requires the development of special 
safety-enabled methods to overcome uncertainty both in the spatial and temporal aspects [5]. 

Second, since a human cannot directly control the flow of processes within the complex 
dynamic system, he must be able to make decisions, the implementation of which allows him to 
change the flow of processes indirectly. Thus, people need to use decision support systems [6]. 
However, due to the above-mentioned reasons, decision support is a complex and non-trivial 
task. 

The spatial aspects of the dynamic system can be typically expressed by a geo-graphic 
information system (GIS), which contains a spatial model and outlines an area of interest (AOI) 
critical for decision making. Thus, the events distributed over the AOI can be properly referred 
to spatially, but their references are usually limited by measurement inaccuracy.  

The temporal aspects are more complicated due to their stochastic nature and simultaneous 
impacts. Moreover, it is very difficult to refer to events temporally be-cause of the different rates 
of their occurrence. Unlike spatial references, which usual-ly are vague or blur due to the 
sensors’ imprecision, temporal references are inaccurate and can be primarily represented by 
time intervals. 

Since decision-makers usually operate under the conditions of high responsibility and a lack 
of time, the decision support system must work in real-time. Thus, considering the above 
reasons, the most topical and important issue for today is the development of GIS-based real-
time decision-support systems (DSS) aimed at danger and risk assessment for the considered 
class of complex dynamic systems. 

Unfortunately, today there is a lack of knowledge representation models and methods that 
would be operable in real-time and take into account a wide range of measurement uncertainties 



in data captured by sensors during the observation of the dynamic system. Thus, the research of 
knowledge representation methods based on events and adequate uncertainty models that allow 
describing dynamic systems by spatially and temporally referred trajectories is a topic of our 
interest. The problem addressed in this paper relates to the representation of knowledge about 
dynamic system evolution using abstract event networks from the point of view of developing 
real-time DSS. 

2. Recent Works 
Representation of uncertain knowledge about events that occur simultaneously and jointly has 
been studied in many fields of knowledge. A wide range of models of knowledge representation 
about events has been proposed in the field of natural language processing [7]. Mainly, such 
models are focused on event-to-event relations and processing of events to discover their causal 
relationships and detect anomalies within language structures [8]. 

In existing risk assessment decision support systems, the most frequently observed 
information is represented by event streams, which describe sequences of time-referred events 
[9]. Mainly, the event stream model is a subject of study in event sequence analysis, which 
focuses on the time gaps between events and their order in the sequence [10]. Another trend is 
the use of knowledge structures based on events as certain building blocks to build and update 
situation models [11]. Thus, a most used definition of an event has been proposed in the 
literature as “a segment of time at a given location that is conceived by an observer to have a 
beginning and an end” [12].  

The above-mentioned approaches are mainly semantic based, so they use strict definitions of 
events, time, and space and take little into account the uncertainty of the information, based on 
which the events must be determined [13]. 

Many non-semantic methods have been proposed including Causal events, Force Dynamics, 
Stochastic Context-Free Grammars [14] that represent complex event structures based on 
hierarchical definitions, which are hard for decision-maker interpretation and do not meet the 
requirements for real-time DSSs.  

In general, considering the nature of the events, we emphasize two main approaches to 
represent events - probabilistic and non-probabilistic. The first one includes such methods as 
Hidden Markov Models, dynamic Bayesian networks, Monte Carlo sampling, Variance 
propagation, etc. [15]. The second one includes methods mainly based on fuzzy sets and 
possibility theory [16]. Obviously, a lack of sufficient statistical data for probabilistic approach 
as well as a lack of well-known possibility degrees or membership functions for non-
probabilistic approach complicates their efficient use and leads to high computational 
complexity. Detailed overviews of such approaches concerning a considered class of DSSs have 
been presented in [17].  

The event tree approach enables the modeling of a sequence of events, which constitute the 
structures of any level of complexity adapted to various uncertainty models (probabilistic, fuzzy, 
rough, etc.) [18]. Despite the flexibility of this approach and its potential for evolution, the 
existing event tree models refer events to time only, so there is a lack of spatial localization of 
events. A method for representing hierarchical structures of events referred both to time and 
space and equipped with a complex uncertainty model has been proposed in [19]. However, the 
computational complexity of the proposed method is significant, which complicates its use in 
real-time DSSs. 



Thus, we conclude that existing event-based knowledge representation models can be weakly 
applied to DSSs of the considered class. We need not only to refer events to a certain time and 
spatial locations but also use a relatively simple but effective model for the representation of 
uncertainty that could satisfy both the requirements for the representation of incomplete and 
inaccurate information obtained from the observation of a dynamic system and requirements to 
efficiency that makes a model suitable for real-time GIS-based DSS. 

3. Uncertainty Models 
Last years, researchers have directed sufficient efforts towards improving the above-mentioned 
issues. The classical approach [20] is that a behavior of a dynamic system can be represented by 
high-dimensional nonlinear equations, which describe complex processes arising within the 
considered space and time. However, such continuous modeling of dynamic systems contradicts 
a lack of data of required quality and accuracy caused by uncertainty and imprecision of sensor 
data as well as its discontinuous measurements. Furthermore, systems of high-dimensional 
equations cannot be solved in a reasonable time due to a significant computational complexity 
[21]. The statistical approaches [22] also cannot provide justified assessments primarily be-cause 
of a lack of reliable statistics and weak observability of a dynamic system. 

Since the use of the continuous space, time, and correspondent models of the dynamic system 
leads to a huge computational complexity, it is advisable to discretize time and space (e.g. AOI) 
[23] for better compatibility with discrete measurements provided by sensors and to speed up the 
calculations. At the same time, the use of a discrete model reduces the accuracy and credibility 
of assessments [24]. Therefore, based on the domain features, it is necessary to choose such a 
sampling discrete that provide both the sufficient performance of assessments and the required 
accuracy of its results. 

The main question is how to manage uncertainties. The most commonly used approach to 
take into account uncertainties is probabilistic, which represents different aspects of uncertainty 
in terms of chances [25]. However, typically there are few repeated occurrences of events under 
the same conditions, especially considering their spatial and temporal references. Thus, the 
probabilistic approach deals only with stochastically stable data and represents uncertainty 
inadequately [26].  

In this regard, various non-probabilistic methods of uncertainty modeling have been 
developed such as fuzzy, rough, vague, soft, grey sets, etc.  

Obviously, real data cannot be represented as crisp and well-determined. Instead, sensors 
provide data that can be not clearly known, undetermined, problematic, varying, vague, can have 
many interpretations but not certain information, and, of course, can be no reliable [27]. 
Discretization of space and time will also lead to various sampling errors, delays in time, 
outdated data, etc. [28]. 

Thus, there are a lot of types of uncertainties that should be modeled and processed within 
event-based knowledge representation about complex dynamic systems. Let us consider the 
available tools for modeling uncertainty. 

Zadeh introduced the concept of the fuzzy set [29] that has been used in a wide range of 
various fields and proposes a convenient tool to represent vague data. Its drawbacks are that 
fuzzy sets are computationally hard, and their membership functions are subjective and can be 
difficult to found [30]. 

The long-term study of many researchers has led to the emergence of dozens of fuzzy 
extensions and additions both in theoretical and practical areas [31], however, they do not allow 



to overcome the above disadvantages, and further increase the computational complexity, which 
hinders their use. 

Pawlak introduced the concept of rough sets [32] as a mathematical tool to deal with 
imprecise or noisy data based on equivalence (e.g., indiscernibility) relation, that fits well to 
discrete-valued and nominal data. Rough sets are easy to understand, suitable for inconsistent 
data, and do not need any additional information about data. Their drawbacks are a problem with 
dirty or noisy data, depending on complete information, and a lack of membership values. In 
general, in many fields of application, the rough set algorithms are much more efficient than 
fuzzy. 

Clearly, fuzzy sets and rough sets provide models for two different types of uncertainties. 
Fuzzy sets can be represented by their membership values, but rough sets can be approximated 
through partitions. Fuzzy sets highlight the vagueness of information while rough sets focus on 
incomplete information. Therefore, fuzzy sets mainly represent subjective uncertainties while 
rough sets represent objective uncertainties.  

Grey sets and grey numbers have been proposed by Deng Julong [33]. A grey number is a 
number, whose exact value is not known but its interval is known. In general, the grey number 
introduces a certain set of values and represents only one number, which is not clearly identified 
among the elements of the set. It can be reduced to a white number or black number, the first one 
is an exact or crisp value while the second is a number, whose exact value or value’s interval is 
not known. Thus, grey numbers can be an adequate model in the case when the exact value is not 
completely known. 

Molodtsov introduced the concept of the soft sets [34] as a relatively new approach to model 
both uncertainties and vagueness, which is free from the difficulties of existing methods. Soft set 
membership can be determined through a certain parametrization given by real numbers, 
functions, mappings, and others, even words or sentences. Thus, a membership function problem 
cannot arise in the soft sets. They are a convenient and easy tool for model both objective and 
subjective uncertainty, their main advantage is that they are free from the inadequacy of 
parameterization tool. The drawback is that the soft set does not assign any membership values. 
Soft sets are rarely used independently, but often become the basis for complex models for 
representing uncertainty. 

Obviously, in the real world, objective uncertainty and subjective uncertainty may exist at the 
same time. Accordingly, researchers try to build complex models that consider different types of 
uncertainty at once either by extending existing models or by combining them. Often, the 
uncertainty models presented above are related and complementary to each other. Moreover, 
they can also be reduced to one another [35]. This makes it possible to combine them, obtaining 
complex models of uncertainty. 

The most effective uncertainty models are soft and gray. In this work, we propose to use gray 
numbers to represent the values of the observed parameters of the dynamic system as well as soft 
sets to represent events concerning their classes, temporal and spatial locations that make them 
applicable to the analysis of dynamic processes.  

Let us consider a model of a dynamic process at two levels: at the micro level considering 
individual spatial elements, and at the macro-level considering spatial areas of a larger or smaller 
scale. 



4. Micro-Model of Dynamic Processes 

4.1. Cells and their states 
Consider an AOI as a two-dimensional Euclidean space discretized uniformly by a metrical grid 
D . Using the spatial discrete δ , the grid D outlines the two-dimensional array { }

, 0

N

xy x y
D d

=
=  of 

square cells xyd  of size δ δ× , where x  and y  are the array indices corresponding to the 
coordinate axes. Suppose a certain cell xyd D∈  is an object of consideration that represents a 
minimal homogeneous area within the AOI. 

Let us imagine that a certain non-empty set of parameters { } 1

m
i i

A a
=

=  can be obtained as a 
result of the observation and associated with the cell xyd D∈ . Let 

iaV  be a domain of each ia A∈ , 

i ia A aV V∈= ∪ , and f  be a value function :f A D V× →  that returns a value of a certain parameter for 
the cell xyd D∈ .  

If the values of some parameters ia A∈  are unchanged over time, such parameters belong to a 
subset SA  of static parameters, SA A⊆ . In this way, if the values of certain parameters are 
varying over time, such parameters constitute a subset DA  of dynamic parameters, DA A⊆ . There 
can also be such parameters whose values change over time, but slow enough (e.g., 
environmental parameters), they constitute a subset EA  of slowly changing parameters. 
Obviously, S D EA A A A= ∪ ∪ . 

Each cell xyd D∈  can be associated with a certain subset ( ),xyA d t A⊆  of parameters’ values at 
a certain time t ; some of them can be imprecise while others can be unobservable at the time t . 
It should also be noted that some of the parameters cannot be directly measured or estimated, so 
they require to use of indirect methods. 

Let us consider a state ( ),xyS d t  of the cell xyd  at the time t  such that ( ) ( ){ } 1
,

z
xy m m

S d t a t
=

= , 

( ) ( ),m xya t A d t∀ ∈ , and a state function : D A Sυ × → , which returns the state of the cell xyd  diagnosed 
at the time t  based on the observed subset of the cell’s parameters. 

Let { }
1

q

j j
C c

=
=  be a set of cell’s statuses and ϑ  be a status function : SD A Cϑ × → . Thus, we can 

correlate a cell with a particular status based on information about the values of a certain subset 
of its static parameters. For example, a cell can have a status of “water”, “soil”, “sand”, or 
“rocky” based on the value of the observed parameter "ground". Obviously, the meaning of the 
cell’s status can vary but it should be based on a selected set of static parameters. Similarly, the 
state of the cell can be defined with respect to the different points of view. 

Let { } 1

n
k k

W w
=

=  be a set of state classes. Suppose each state class kw W∈  contains a finite set of 

micro-states, { } 1

f
k kl l

w w
=

= , which constitute an ordered sequence of transitions 1,...k kfw w   , where 

1kw  is an initial micro-state and kfw  is a final micro-state. Concerning the dynamic process, we 
assume that the dynamic process covers the cell when the last being in the micro-state 1kw  and 
ends within the cell when the cell enters the state kfw . Obviously, each micro-state klw  can be 
defined as a certain subset of the cell’s state at the time t  determined by a specific subset of 
parameters { } 1

u
kl klm m

A a A
=

= ⊆ .  



Fig. 1 shows the example of two classes of states, namely “moisture” and “burning”, defined 
by sequences of micro-states 1w  and 2w  . Some microstates can be observed simultaneously, for 
example, the cell can be defined by micro-states "dry" and "pre-ignited" at the same time. 
However, micro-states "wet" and "pre-ignited" cannot coexist. Another peculiarity of the 
proposed micro-model is that micro-states of a certain class are not always compatible with 
every possible cell status. For example, the cell statuses "water" or "rocky" is not compatible 
with the state class "moistening" for obvious reason. Clearly, we need to define a state class 
function : D A Wω × →  that returns a micro-state of the cell based on the values of its parameters 
that belong to klA . 

We assume that each transition of the cell xyd  from one micro-state klw  to another micro-state 

kmw  is a micro-event : kl kmw w→  (Fig. 2).  
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Figure 1: Representation of micro-states of the cell  
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Figure 2: Example of direct and reverse transition of a cell from one micro-state to another 

Thus, the dynamic process can be modeled by sequences of dynamic changes of micro-states of 
cells covered by the process spatially. During the process, cells pass through a sequence of 
micro-states. Obviously, some transitions from one micro-state to another in the context of a 
certain state class can entail transitions within other state classes. Moreover, the transitions of 
micro-states of one cell can spread to neighboring cells, which makes it possible to simulate the 
propagation of the dynamic processes within AOI. 

4.2. Propagation of the Dynamic Processes 
We assume that all changes in the micro-states of cells, as well as all conditions for the 
propagation of a dynamic process between cells, are associated with the transfer of certain 
contingent energy. 

Suppose that each class of states has its class of energy. Energy can be generated because of 
changes in the values of the cell parameters and accumulated in the specific energy storage 
inside the cell.  

There are a set I  of energy transfer channels to transfer energy between cells as shown in 
Fig. 3. Eight channels { }, ,0 , ,0 0, , 0, ,, , , , , , ,I I I I I I I I I+ + + + − − + − − − − + ∈  reflect the relative position of cells in 
space and therefore are denoted relative to the considered cell. 

These channels can be unidirectional or bidirectional. 
Since the propagation of the process is usually influenced by a significant number of factors 

of a stochastic nature located outside the system under consideration, it is necessary to have a 
specific tool for modeling such effects. Many dynamic systems are influenced by such external 
processes associated with the environment. For example, the speed and direction of propagation 
of a forest fire are most influenced by the speed and direction of the wind. Clearly, the wind is a 
separate dynamic process observable by dynamic parameters, which should be taken into 
account in the model.   

xyd  ( 1)x yd +  ( 1)x yd −  

( 1)x yd +  ( 1)( 1)x yd + +  ( 1)( 1)x yd − +  

( 1)x yd −  ( 1)( 1)x yd + −  ( 1)( 1)x yd − −  

,I− +  0,I +  ,I+ +  

,0I−  

,I− −  ,I+ −  0,I −  

,0I+  

 
Figure 3: Channels for energy transfer between cells 

Thus, it is proposed to use a matrix Ω  of coefficients of energy transfer through channels, where 
each coefficient can slow down or accelerate the process of energy transfer, so the speed of the 
dynamic process propagation can change accordingly. 



The matrix Ω  can be defined as  

 
, ,0 ,

,0 ,0

, 0, ,

0
α α α
α α
α α α

+ − + + +

− +

− − − + −

 
 Ω =  
  

, 

where each coefficient ,α∗ ∗  corresponds to a certain energy transfer channel ,I∗ ∗  and takes values 
in the range [ ]1,1− . Direct determination of the values of the coefficient matrix Ω  is beyond the 
scope of this paper, but its source is obviously the observations. 

4.3. Micro-Events 
In this work, each micro-event is referenced in space and time. The impulse paradigm is used to 
model micro-events, which are considered as the direct effects of the change of values of specific 
observable parameters.  

A unique descriptor jy  can be defined as a tuple: 

 , , ,j j j j jy a λ δ= ∆ , (1) 

where ja  is a certain parameter, j kla A∈ , j∆  is an absolute change of the value ja , jλ  is a 
susceptibility for the attribute ja , and jδ  is a threshold value.  

Due to the inaccuracy of observations, the estimated values of parameters are mainly 
inaccurate. This requires adequate representation. To ensure correct representation, we can 
define intervals that contain the confidence degrees from the minimum to the maximum possible 
value. Since such intervals can be narrowed during further observations, we propose to represent 
the value of the observed parameter as a gray number. Moreover, it is also necessary to represent 
the threshold value as a gray number to achieve a trigger effect, which is often observed in real 
natural systems.  

Thus, the value j∆  can be described as the interval ,j j j
± − + ∆ = ∆ ∆   that represents a grey number 

and jδ  can be “grayed” in the same way. The descriptor jy  also turns gray and is denoted by jy . 
An integral descriptor y  can be defined as a tuple: 

 { }
1

m

j j j
y yβ

=
= ⋅  , (2) 

where jβ  is a certain coefficient for each corresponding descriptor jy . It represents the direct 
effect of the simultaneous change of several parameters’ values within the exposed cell. 

Consider a micro-event as a consequence of the transition of a cell’s micro-state of a certain 
class, which can be generated as an energy impulse ε  based on y .  

The impulse generation scheme is shown in Fig. 4.  
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Figure 4: The impulse generation schemes 

It considers the fact that the change in the values of the parameters is influenced by the impulses 
received through the channels from the neighboring cells. The correlator (Fig. 4) accumulates 
inputs and ensures that the control stimulus is found, and the impulse generator produces an 
energy impulse of an amount kε  that depends on the magnitude of the control stimulus ι . The 
descriptors’ values are compared with a threshold value. The result of the descriptors’ triggering 
helps us to determine whether an event will occur. 

Thus, let us describe the micro-event k  as a couple 
 , , , ,j xy k km kt d w w ε  , (3) 
where jt  is a time reference of  , xyd  is a spatial reference of   within AOI, kmw  is a new 

xyd  micro-state of state class kw , and kε  is an amount of generated energy of class k that 
represents an event magnitude. 

5. Macro-Model of Dynamic Processes 
At the higher level, the grid D  can be divided into disjoint objects, which describe the 
homogeneous areas of the AOI in terms of their parameters’ values.  

Suppose klA A⊆  is a non-empty finite subset of parameters. Let us define an klA -

indiscernibility relation on the grid D , ( ) ( ) ( ){ }, , , ,klA
D xy mn j kl xy j mn jR d d D D a A f d a f d a= ∈ × ∀ ∈ = . Using 

this relation, we can describe homogeneous spatial areas, which are uniform concerning the 
values of the parameters belonging to the subset klA , represented by the approximating set of 
cells, and denoted by h . All cells that belong to the spatial area h  are klA -indiscernible.  

Each spatial area cannot overlap or cover one another, but they can be adjacent or adjoin to 
one another. They have such features as continuity and connectivity (spatial concentration of the 
underlying cells).  

Let H  be a set of spatial areas, { }1,... kH h h= . To represent a plurality of spatial areas that have 
not the property of the continuity, but describe a set of separate areas spatially distributed on the 



set D , we can also use a certain lmA -indiscernibility relation defined over H , 
( ) ( ){ }, ,  , ,  , , , ,lmA

H l q m n m l n q k lm m k n kR h h H d d D d h d h a A f d a f d a= ∀ ∈ ∀ ∈ ∃ ∈ ∈ ∀ ∈ = . Obviously, all areas 
belonging to jA

HR  are lmA -indiscernible.  

5.1. Energy transfer 
The accumulation of energy inside the cell cannot continue indefinitely. As soon as the amount 
of energy reaches a certain predetermined level, it "overflows", forming an impulse, which 
should be distributed between the channels under the matrix Ω  of coefficients and transmitted to 
other cells. 

Energy transfer is seen both as a basis of causal relationships between events and as a means 
of organizing them into cascading structures. 

Obviously, energy can be of different types, each of which corresponds to the class of the 
observed event. The class of observed events, in turn, corresponds to the class of state that 
changed and raised the event. Usually, specific events can be driven only by the appropriate type 
of energy.  

When the event of a certain class occurs, the impulse generator must eject some quantum of 
energy of a corresponding class with an appropriate amount. In general, the event model should 
consider the possibility that a quantum of energy contains interrelated portions of energy of 
different classes, which do not just correspond to the event class. The key role in understanding 
the dynamics of the ongoing processes is played by the dynamic parameters of the generated 
impulses. Depending on the impulse duration, its amplitude, the pressure it exerts on the input of 
the event, a different picture of the reaction of one event to the other event that has occurred can 
be observed. 

Thus, the proposed model can transfer different types of energy by short bursts (as impulses) 
or by long potential inputs. The event can be only triggered if a sufficient amount of appropriate 
energy is received, which should be determined by the integral of the received energy over time.  

Consider the portions of energy transfer. Let kε  be an energy portion of class k that 
corresponds to kw . Suppose energy portion kε  can be described as  

 ( )1 2, , ,k k q qε τ= , (4) 

where k is an energy class, τ  is a duration, 1q  is an initial amplitude, and 2q  is a final amplitude 
(Fig. 5). 
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τ  

1q  
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Figure 5: Dynamic parameters for energy transfer impulse 

 



The energy quantum can be represented by a tuple of energy portions: 
 1,... mε εΕ = . (5) 
The released energy can directly impact events sensitive to this type of energy through certain 

connections between them. The proposed model allows us to express not only the direct but also 
indirect effects of events through the energy transfer. 

5.2. Connectors 
Let lϕ  be a connector that connects events j  and k  transferring energy portions 1,...j jmε ε  from 
the first one to the second. Such transfer for each energy portion can be labeled by certain 
confidence represented by a gray number lµ

±  and a certain time lt
± , which is also grayed. The 

connector lϕ  can also have a sensitivity point lσ , which controls the transfer process, if 
necessary. Suppose the impact of a certain energy portion lε  on the connector allows it to block, 
break, or amplify the energy transfer from j  to k  (depending on the type and amount of lε ). 

Thus, the connector lϕ  can be defined as a tuple 

 { } { }1 1,... , , , , , : ,...l j jm j k l l l l lwtϕ ε ε µ σ ε ε± ±=   , (6) 

where j  and k  are events, { }1,...j jmε ε  is a subset of energy portions permitted to transfer 
through lϕ , lµ

±  is a likelihood, lt
±  is the time to receive energy portion, and lσ  is an optional 

sensitivity point with the energy portions { }1,...l lwε ε  permitted to receive.  
Let kψ  be a meta-connector that connects the event j  and the sensitivity point lσ  of a 

certain connector. It allows transferring energy portions of given classes { }1,...f fmε ε  with a certain 
degree of acceleration kχ  as follows:  

 { }1,... , , ,k f fm j l kψ ε ε σ χ=  . (7) 

5.3. Abstract Events 
Suppose an abstract event η  consists of a set of inputs { }1 2, ,...k k kmx x x , each of which is sensitive 
to a class k of energy and receive only the correspondent energy potions kε , a set of outputs 
{ }1,...k kny y , each of which ejects an energy portion pε  of a class p, and a set of accumulators 

{ }1,...k kmπ πΞ = , where each kjπ  accumulates energy portions jε  of a class j through the input kjx .  
Each input kjx  is connected to the accumulator kjπ  with a weight (multiplication factor) kjζ . 

Thus, the energy portion jε  received through input kjx  adds the amount of energy 
0

T

kj qζ τ⋅ ∫  of 

type j to the accumulator kjπ . If accumulated kjπ  energy exceeds a threshold value kjβ , a certain 
quantum of energy Ε  should be released and ejected to the connectors. The classes, amplitudes, 
and durations of energy portions released by energy quantum depend on a certain multiplication 
factor kjγ . 



Thus, the abstract event kη  can be represented as 

 , ,k k k kX Yη Ξ , (8) 

where kX  is an input part, ( ) ( ){ }1 1, ,... ,k k k km kmX x xζ ζ= , kY  is an output part, { }1,...k k knY y y= , and kΞ  is 
an accumulation part, ( ) ( ){ }1 1 1, , ,... , ,k k k k km km kmA π β γ π β γ= . The proposed model of the event is 
flexible and dynamic, since the weights kjζ , threshold values kjλ , and factors kjγ  can 
dynamically change in time.  

5.4. Abstract Event Network 
An abstract event network can be represented as a time-ordered event structure 

{ } { } { }1 1 1
, , , ,n w v

k l kk l k
G η τ ν ϕ ψ

= = =
= , where { } 1

n
k k

η
=

 is a set of abstract events, : Tτ η →  is a mapping that 

expresses sequential order of the events, : Hν η →  is a mapping that expresses the spatial 
reference of events, { } 1

w
l l

ϕ
=

 is a set of connectors between events, and { } 1

v
k k

ψ
=

 is a set of meta-
connectors, which connect events and corresponding sensitivity point of the connectors. This 
formalization allows the use of soft sets to represent different sequences of events, based on the 
indiscernibility relation between events by class, spatial position, or time intervals. 

Fig. 6 shows the abstract event network, in which nodes represent events and the arcs 
represent connectors and meta-connectors.  

 



Figure 6: Abstract Event Network 

6. Implementation 
The proposed model has been implemented using Visual C++ based on the double indexed lists 
and approbated on the simulated area. The AOI is the Lower Dnieper Sands (Oleshky Sands) in 
the Kherson region, in Southern Ukraine. The sands are surrounded by very dense artificial 
coniferous forests that prevent the sands from moving during strong winds. Global warming 
leads to the loss of forests in this area. As a result of global warming, we can observe chains of 
cascading effects. Due to warming, the groundwater levels are decreased, which further 
increases fire danger, rapid destruction of forests in large areas, desertification of the territory, 
and the revival of sand movement. Due to warming, forests are also being affected by invasions 
of insects, and also become more prone to forest fires (Fig. 7). 

The results of the conducted simulation show that the proposed model provides enough 
performance to real-time modeling of a wide range of natural processes from climate change to 
forest fires and adequate knowledge representation about cascading events taking into account 
the uncertainty of the observations.  

 
Figure 7: Cascading chains of events in Kherson Region 

7. Conclusion 
The proposed event-based model enables knowledge representation about an observed plurality 
of dynamic processes of various intensities that arise unexpectedly and evolve simultaneously in 
a wide range of domains. It is based on events that are referenced to time intervals and spatial 
areas and take into account the uncertainty of the observed information about the evolving 
processes. Uncertainty is represented by gray numbers and soft sets. Events are connected in an 
abstract network, where arcs represent connectors and meta-connectors that transfer energy by 
impulses to model transitions of a dynamic system from state to state. The proposed abstract 
event network can be used to model the evolution of dynamic systems that can be expressed by 



events that occurred inside the system but driven by impacts from the outside (environmental 
effects). Such evolution is considered in a wide range of rates, from the slowest processes 
associated with climate change to the most rapid processes associated with the effects of natural 
forces of a destructive nature. The proposed model also makes it possible to adequately represent 
sequential, parallel, and cascade chains of events with a trigger effect, information about which 
is incomplete and inaccurate. Future research will be devoted to the study of the coefficient 
matrices and formalization of the process of generating energy quantum. 
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