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Abstract  
The methods for calculating the failures risks of the high-temperature pressurized pipelines are 
developed as the particulars of the generalized approaches for the risk assessment in stationary 
deterministic systems. It is considered the straight pipe as the necessary required part of pipelines, 
and it is proposed considering it under the internal and external pressures for the given temperature. 
The pipe's failures risks are measured by the gamma-percentile life. It is proposed the mathematical 
model representing the deterministic properties of the high-temperature pressurized pipe needed for 
calculating their failures risks. In this mathematical model it is took into account accumulating the 
irreversible strains and damages in the pipe's during operating due to the high-temperature creep, 
and this mathematical model is represented as the theory of creep initial-boundary-value problem 
and numerical solving of such problems is briefly discussed. It is proposed the general approximation 
of the high-temperature pressurized pipe's life depending on the internal and external operating 
pressures. It is considered the particular example of the high-temperature pressurized pipe made 
from the stainless austenitic steel, and its gamma-percentile life is computed. It is shown that the 
gamma-percentile life is the failures risks quantitative measure which really gives the most fully and 
correct characteristic of the failures risks for the high-temperature pressurized pipes during their 
operating, because the gamma-percentile life of the pipe is very sensitive to the value of required 
probability of operating without the failures. 
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1. Introduction 
Pressurized high-temperature pipelines are used basically in the steam boilers of high-capacity 
thermal power plants to provide the most fuel efficiency [1–3]; besides such pipes are used in 
different manufacturing which the high temperatures are needs like the polyethylene facilities [4] 
for example. It is naturally, the simultaneous existence of the high pressures and the high 
temperatures of the large amounts of chemical active mediums, like for example combusted 
gases and the superheated steam, creates the risks of ruptures of the pipelines with the highly 
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dangerous aftermaths. Due to these circumstances, it is significantly necessary having the 
estimating about operating risks of the high-temperature pressurized pipelines in all stages of 
their life from their designing and manufacturing thru their operating and it requires solving the 
different kind problems [4–9]. So, computing the risk of failures for the high-temperature 
pressurized pipelines is in current interest problem which is needed to provide possibilities of 
developing the power and manufacturing equipment including decreasing the carbon emission 
per unit produced power due to increasing the fuel efficiency by increasing of the working 
parameters needed to intensification of the heat processes. 

2. Related works 
Existing of the high temperatures and the high pressures contribute to activation the complicated 
damaging mechanisms in the structural materials which are leading to fractures and to raptures 
before the expected life time and which are creating the potential risks of the different 
dangerousness during operating of the high-temperature pressurized pipelines. The most of the 
damages under the high temperatures and the mechanical loads are due to the high-temperature 
creep [7, 9, 10–12]. Exactly the creep is the main mechanism of damaging the high-temperature 
pressurized pipelines, although the fatigue [7, 11] or the corrosive processes [9] can have the 
additional significant influencing. Although, the creep phenomena are wide researched in 
general theoretically [13, 14] and in relations to different engineering applications including the 
pipelines [7, 9–12] the conventional approaches for the risk estimation about operating the 
pipelines under the creep are not existed at present, despite a lot of researches like [6, 7] are 
existed. Such problem state is due to the most of researchers like [6, 7] deal with the 
particularities of the problem about risks of failure the structures under the creep conditions 
suitable for the separate tasks. At the same time, the general approaches for the risks assessments 
in the deterministic systems were developed in the previous research [15]. Thus, the purpose of 
this research is in developing the methods for computing the risks of failures of the high-
temperature pressurized pipelines, so that these methods will be the particulars of the general 
approaches previously developed in the research [15]. To realize the formulated above purpose 
the follows objectives will be accomplished: 

• It will be proposed the schematization representing the main typical part of the high-
temperature pressurized pipelines required for calculating their operational failures risks 
according with the generalized approaches [15] 
• It will be proposed the mathematical model representing the deterministic properties of 
the main typical part of the high-temperature pressurized pipelines required for calculating 
their operational failures risks according with the generalized approaches [15]. Besides, the 
numerical analysis using the proposed models will be briefly discussed 
• It will be considered the particular example of the main typical part of the high-
temperature pressurized pipeline made from the stainless austenitic steel, and using the 
generalized approaches [15] the reliability indexes giving the failures risks quantitative 
estimations will be computed as well as their properties will be discussed. 

It is necessary to note that using the generalized approaches [15] for solving the particular 
problem about computing the risks of failures of the high-temperature pressurized pipelines is 
the principal in this research. 



3. Methodology of calculating the pipelines' operational failures risks 
We will consider here the briefly propositions of the generalized approach [15] for risks 
estimating needed for understanding this research, as well as the pipelines schematizing which is 
suitable for their failures risks calculations. 

3.1. The generalized approach for calculating the risks 
Although, the generalized approaches for risks assessments was discussed in the research [15], it 
is necessary to give their briefly here taking into account the specific of the considered particular 
problem about calculating the failures risks of the high-temperature pressurized pipelines. To 
have the quantitative risks assessments in the researched system it is necessary to consider this 
system's state parameter(s), which can divide the normal and failure states. Such parameter in 
general case can be imagined as the abstract real value so that some of this value is corresponded 
to the normal, but others – to the failure states. Thus, risks assessments can be reduced in general 
to defining the probability of the event that the state parameter(s) having values corresponded to 
the failure states. In the considered particular case of calculating the failures risks of the high-
temperature pressurized pipelines the state parameter dividing the normal and failure states are 
naturally the time t∗  from beginning of operating to the moment of limiting state will occur. The 
failures of the pipelines are cannot be foresaw exactly, so they can be imagined as the probable 
events. Since the life of the pipelines divide theirs normal and failure states, it is suitable to 
represent the life as the random value corresponding with the probable nature of the failure. 
There are a lot of opportunities to represent the quantitative measure of the risk, but the more 
suitable in this research is the gamma-percentile life tγ , which is the operating time during 
whose the limiting state (failure) will not be achieved with the probability value of the gamma in 
percentile. So, the gamma-percentile life can be found by resolving the follows understandable 
relation: 

( )
0

1
100

t

f t dt
γ

∗ ∗ γ
= −∫ , (1) 

where ( )f t∗  is the lifetime's density function. 
Although, the life of the pipeline is considered as the random value, but this value have some 

deterministic properties. Really, it is clearly understood that increasing the operational 
temperature or the pressure will lead to decreasing at least the mean life of the pipelines. It is 
naturally that such deterministic properties of the pipelines have influencing on the probabilistic 
characteristics of theirs life and on the lifetime's density function as the results of this. To 
represent these deterministic properties of the pipelines it is suitable to represent their life as the 
deterministic function of some parameter p  defining the operational conditions: 

( )t t p∗ ∗= . (2) 
The parameter p  in the function (2) can represent the pressure or the temperature or other kind 
parameters which have the most significant influence on of the pipeline life. 

Taking into account existing of the deterministic property (2) of the pipeline's life, the 
random value of this life can be imagined as the consequence of uncertainties of the operating 
conditions those not allow having the exact value of the p  parameter in the function (2). The 
uncertainties of the operating conditions can be imagined as the random value of the parameter 



defining them, and the lifetime's density function needed for estimating the gamma-percentile 
life (1) can be found using the well-known result about density function of the random values 
produced by the given random value function (2): 

( ) ( )( ) dpf t g p t
dt

∗ ∗
∗= , (3) 

where ( )g p  is the density function of the p  value; ( )p t∗  is the inverse function to the function 
(2) 

All this discussed above including the formulas (1)–(3) are just the adaptation of the 
generalized approaches [15] for the considered particular case of calculating the failures risks for 
the pipelines. At the same time, it is possible existence more than one parameters defining the 
operating conditions of the pipelines, but this case was not considered in the research [15]. This 
case has no principal difficulties, because instead the function (2) of one variable we will have 
just the function of several variables: 

( )1 2, , , Nt t p p p∗ ∗=  , (4) 
where 1 2, , , Np p p  are the parameters defining the operating conditions of the pipeline. 

Taking into account the uncertainties of the operating conditions, we can imagine the 
function (4) as the function of the random variables. So, the lifetime's density function needed 
for estimating the gamma-percentile life (1) can be found using the well-known result about 
density function of the random values produced by the given function (4) of several random 
values: 

( ) ( )
( )

( )1 2 1 2, , , , N N
D t

dFf t F t g p p p dp dp dp
dt ∗

∗ ∗
∗= = … … …∫ ∫ ∫ , (5) 

where  ( )1 2, , , Ng p p p…  is the density function of the parameters 1 1, , , Np p p ; ( )D t∗  is the 

domain of the values 1 2, , , Np p p  satisfying the condition ( )1 2, , , Nt p p p t∗ ∗≤ . 
Of course, the formula (5) is more cumbersome than the formula (3), but all difficulties of 

computing by the formula (5) are in technique only and are not principal, because integration can 
be performed numerically. It is necessary to note that density function ( )g p  or 

( )1 2, , , Ng p p p…  of the parameters defining the operating conditions must be chosen on the 
basis of the expert estimations about the operational conditions of the pipelines taking into 
account the possible valued of the those parameters and using the known density functions 
corresponded to uniform, to triangle, to Weibull’s or to other distributions how it was discussed 
in the research [15]. 

3.2. Pipelines schematizing suitable for failures risks 
calculations 

The discussed above generalized approaches for risks assessment are reduced to defining the 
deterministic properties of the considered systems which in the particular case of failures risks 
calculating for pipelines are reduced to defining the life as the function of the parameter defining 
the operating conditions. We will consider further the main part of any pipelines reducing to the 
straight pipe under the internal and external pressures 1p  and 2p  as shown on the Figure 1. Of 



course, the pipelines are having not only the straight parts, but the different curvilinear parts and 
the edge parts like the flanges, as well as the intermediate supports and others. Besides, the 
straight parts of pipelines can have bending and can torqueing [16]. At the same time, 
considering all these features of the pipelines will make significantly cumbersome calculating 
the failures risks. Actually, it is sufficiently to consider only the internal and external pressures 
as the operating parameters of the straight pipe in this research as it is shown on the Figure 1, 
because it is the principal for all kind pipelines. 

 
Figure 1: The fragment of the piper (a) and their cross-sections (b) 

Taking into account the assumed schematization of the pipelines (Figure 1), we can consider the 
general presented deterministic properties (4) of the pipe predetermining their failures risks as 
the depending of the pipe's life from the internal and external pressures: 

( )1 2,t t p p∗ ∗= , (6) 
where 1p  is the internal and 2p  is the external pressure of the pipe (Figure 1). 

The discussed above generalized approaches for risks assessment requires the given density 
functions of the parameters defining the operational conditions as was shown by the relation (5) 
and their particular case (3). According with the discussed above generalized recommendations, 
we will assume that the internal and external pressures satisfy the follows inequalities: 

min max min max
1 1 1 2 2 2,p p p p p p≤ ≤ ≤ ≤ , (7) 

where min
1p  and max

1p  are the minimal and maximal possible values of the internal pressure; min
2p  

and max
2p  are the minimal and maximal possible values of the external pressure. 

The assumptions (7) are the natural, because the pipeline's operating pressures have limits, 
but defining the bounds of such limits is the really difficult problems solving by using the expert 
estimations usually. When we have no any data about the operating pressures it is possible and 
suitable to assume that all values (7) are having the equal probabilities, so that the uniform 
distributions are assumed for the pressures random values inside the intervals defining by double 
inequalities (7). 



3.3. Defining the straight pipes' life under the high-
temperature creep 

As was noted above, the high temperatures and the pressures lead to the creep consisting of the 
in reversible strains growth and cumulating the damages in the pipe's structural material during 
the time. Exactly these creeps' strains and these damages can lead to ruptures of the pipes during 
some time from the beginning of operation. So, estimating the life of the high-temperature 
pressurized pipes can be reduced to modelling of accumulation the creep strains and the damages 
in their structural material under the operational temperature and pressures. It is well-known, the 
velocities of creep strains growths and the damages accumulations under the given temperature 
are depended on the internal mechanical stresses. This requires considering the stress-strain state 
of the pipe taking into account the current creep strains to define the current velocities of the 
creep strains and the damages. 

3.3.1. The mathematical model of the pipe's 
damaging due to creep 

The stress strain-state of the pipe (Figure 1) under the accepted assumptions can be represented 
by the radial displacements and the radial and circumferential stresses depending on the radial 
coordinate r  and the time t  only: 

( ) ( ) ( ), , , , ,r r r ru u r t r t r tθ θ= σ = σ σ = σ , (8) 
where ru  is the radial displacement; rσ  is the radial and θσ  is the circumferential stresses. 

The creep sand damages of the pipe's structural material under the stress-strain state (8) can 
be defined by the creep strains and by the Kachanov-Rabotnov damage parameter [17] for 
example, and all these must depend on the radial coordinate r  and the time t  only in this 
considered case: 

( ) ( ) ( ), , , , ,r rc c r t c c r t r tθ θ= = ω = ω , (9) 
where rc  is the radial and cθ  is the circumferential creep strains; ω  is the Kachanov-Rabotnov 
damage parameter. 

Neglecting the inertia forces of the pipe, we can have the follows differential equations with 
the boundary conditions to define the stress-strain state of the pipe need to determine the 
velocities of creep strains and the damages: 

1 1,  ,  0rr r r
r r r

u uc T c T
E E r E E r r r

θ
θ θ θ

σ −σν ∂ ν ∂σ
− σ + σ + − = α∆ − σ + σ + − = α∆ + =

∂ ∂ , (10) 

( ) ( )1 1 2 2, , ,r rr t p r t pσ = − σ = − , (11) 
where E  is the Young's module, ν  is the Poisson's ratio and α  is the thermal expansion 
coefficient of the pipe's structural material; T∆  is the difference between the pipe's operating 
temperature and the temperature of the naturally unloaded state of this pipe; 1r  is internal and 2r  
is external radii of the pipe (Figure 1). 

The boundary-value problem (10), (11) must be complemented by the equations defining the 
creep strains' and the damage parameter's velocities, and these complementary equations can be 
proposed in the follows view: 
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( ) ( ) ( ),0 0,  ,0 0,  ,0 0rc r c r rθ= = ω = , (13) 
where 1B , 1m , 2B , 2m  are the parameters defining the creep strains' and the damage parameter's 
velocities for the given temperature; is the stress intensity defining as follows 

( )2 2 21
2i r rθ θσ = σ −σ + σ + σ . (14) 

Using the mathematical model (8)–(14), we can define the life t∗  of the pipe from the follows 
condition: 

( )1 2, : , 0,  , 1r t r r r t r r∗ ∗ ∗ ∗ ∗ ∗∃ ≤ ≤ > ω = , (15) 

where r∗  the coordinate of the firstly formed macroscopic defect in the pipe's material. 
The condition (15) defining the pipe's life is the consequence of sense of the used in 

equations (12) Kachanov-Rabotnov parameter. It is necessary to note, that the condition (15) 
corresponds to the time moment of forming the macroscopic visible defect, so the pipe can resist 
to the loads sometime after the time moment defined by the condition (15). At the same time, the 
possibilities of the pipe to resist the loading after the time moment defining by the condition (15) 
are significantly limited and the condition (15) really can be used to define the pipe's life 
approximately. Thus, finding the pipe's life is reduced to solving the initial-boundary-value-
problem (10)-(13) before the condition (15) will be satisfied. To do this solving for the given 
values of the internal and external pressures in the boundary conditions (11) it will be possible to 
find the pipe's life corresponding to those pressures, so the initial-boundary-value-problem (10)-
(13) with the condition (15) actually defines indirectly the function (6). So, we cannot have the 
exact analytical view of the function (6), but we can have the grid values of this function (6) 
corresponded to the preliminary chosen values of the pressures (7). At the same time, having the 
grid values of the function (6), it is possible to do calculating by the formulas (3) or (5) to find 
the lifetime density function and to use them in further calculating for finding the gamma-
percentile life of the pipe from the condition (1). 

3.3.2. Numerical engineering analysis of the pipe's 
damaging due to creep 

Defining the grid value representing the function (6) needed for calculating the gamma-
percentile life representing the quantitative measure of the failures risks of the pipelines requires 
solving a lot of the initial-boundary-value problems (10)–(13) with the condition (15) for the 
different sets of the internal and external pressures' values (7), that is to solving the sets of the 
considered pipe's engineering analysis problems. It is naturally, that solving the initial-boundary-
value problem (10)-(13) can be possible only by using the numerical methods. So, the numerical 
engineering analysis of the pipe's life is fundamentally required for calculating their failures 
risks, and this is reduced to numerical solving the initial-boundary-value problem (10)-(13). 
Solving the initial-boundary-value problems of the theory of creep including their particular case 
(10)-(13) is actually the separate subject area and it is not reasonable for fundamentally 
discussing in this research, because such numerical solving is only one from the several steps 
needed for considered here calculating the failures risks of the pipelines. At the same time, some 



general notes about the numerical solving the initial-boundary-value problem (10)-(13) must be 
briefly discussed here all the same. 

To discuss generally about the numerical methods for solving the initial-value problems of 
the theory of creep it is suitable to have the generalized formulation of such problems, so that the 
considered above problem (8)–(15) will be involved in them as the particular case. To have such 
generalized formulation of the theory of creep problems for some structural element it is suitable 
to consider this structural element as the infinite set of the points of the Euclidian space Ε , so 
that all of them can be distinguished between each other by the r  coordinates' vector, which in 
the considered particular case (8)–(15) is reduced to the r  (Figure 1) radial coordinate. The 
geometry of the considered structural element can be imagined by the domain ϒ  with the 
boundary υ , so that in the considered above particular case (8)–(15) about the pipe (Figure 1) all 
whose can be defined as: 

( ) ( ) ( ) ( )1 2 1 2,r r r r r r r rϒ = < < υ = = =  . (16) 

Further, it is suitable to introduce the vector ( ) ( )1 , tu r  representing the state of the considered 

structural element as the continuum, and the vector ( ) ( )2 , tu r  representing the irreversible creep 
strains as well as the different damage parameters. In the considered particular case (10)–(13) 
these introduced vectors can be fellows: 

( ) ( ) ( ) ( )1 2,T T
r r ru θ θ= σ σ = σ σ ωu u , (17) 

where T  is the transpose operation. 
These introduced vectors ( )1u  and ( )2u  allow representing the differential equations for the 

wide kinds of the initial-boundary-value problems of the theory of creep in the follows view: 
( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )1 1 2 2 1 1 1 1, BP P+ = ∀ ∈ϒ = ∀ ∈υA u A u f r u p r , (18) 

( )
( ) ( ) ( )( ) ( ) ( ) ( )

2
2 2 1 2; , ,0 P

t
∂

= = ∀ ∈ϒ υ
∂
u f u u u r 0 r  , (19) 

where ( ) ( )1 •A , ( ) ( )2 •A  are the linear operators and ( )1f  is the vector representing the 

differential equations, but ( ) ( )1B •  and ( )1p  are the linear operator and the given vector 
representing the boundary conditions all defining the considered structural element as the 
continuum; ( )P r  is the point of the Euclidian space Ε  associated with the vector r ; 
( ) ( ) ( )( )2 2 1;f u u  is the given vector function defining the creep strains and the damage parameters 

velocities; 0  is the zero vector which has  the required size. 
The correspondence between the relations (18), (19) and (10)–(13) is evident taking into 

account relations (16), (17). We can imagine the relations (18) as the boundary-value problem 
relatively the ( )1u  vector for the given ( )2u  vector in each moment of the time. The numerical 
methods for solving the boundary-value problems like the finite differences, the Galerkin's 
methods and the finite elements methods are well-known and based on discretization the 
considered problem (18). So, applying any of noted above numerical methods for solving the 
boundary-value problem (18) will lead to so that instead the problem (18) we will have their 
discrete analogue: 

( ) ( ) ( ) ( ) ( )1 1 2 2 1
n n n n n⋅ + ⋅ =A u A u f , (20) 



where ( )1
nu  and ( )2

nu  are the vectors giving the discrete representations of the vectors ( )1u  and ( )2u  
relatively; ( )1

nA , ( )2
nA  and ( )1

nf  are some matrices and some vector giving the discrete 
representations of the boundary-value problem (18); n  is the parameter defining the 
discretization like the count of the grid nodes, or the count of the trial functions, like the grid step 
or others similar. 

The particular view of the discrete representation (20) is significantly dependent from the 
used numerical method and it will not be discussed here, because choice of such numerical 
method for analysis has no principal influencing on calculating the failures risks after this 
analysis will be accomplished. But it is important for us, the possibility of resolving the relation 
(20) in the follows view: 

( ) ( )( ) ( ) ( ) ( )( )11 1 1 2 2
n n n n n

−
= ⋅ − ⋅u A f A u . (21) 

From the other side, the discrete form (20) means the possibilities of representing the initial-
value problem (19) into the corresponding discrete form: 

( )
( ) ( ) ( )( ) ( ) ( )

2
2 2 1 2; , 0n

n n n n n
d

dt
= =

u f u u u 0 , (22) 

where ( ) ( ) ( )( )2 2 1;n n nf u u  is the discrete representation of the differential equations (19); n0  is the 

zero vector with the size corresponded with the n  parameter's value. 
It is understandable, the relation (22) considering with the additional relation (21) represents 

the initial-value problem relatively the vector ( )2
nu . So, solving the initial-value problem defined 

by means the (21), (22) relations by any well-known numerical methods like the Runge-Kutta 
for example or by others will allow find the vector ( )2

nu , but using the relation (21) will allow 
find the vector ( )1

nu  too. It is necessary to note, the integrating of the initial-value problem 
defining by the relations (21), (22) by the numerical methods actually requires solving the linear 
algebraic equations systems representing in the view (21) by means production on the inverse 
matrix at least one time on each step. For example, four orders Runge-Kutta method requires 
solving this linear system (21) by four times per integrating step. It is necessary to note also, the 
discrete representations (20), (22) of the primary considered problem (18), (19) require the big 
sizes of the vectors, and it is led to the big number of the linear algebraic equations (21) needed 
to be solved on each of the numerical integrating's steps. 

3.4. Calculating the failures risks of the pipe 
The failures risks of the pipelines are quantitative measured by the gamma-percentile life (1) and 
calculating of it requires defining the density function of the pipe's life. In its turn, defining the 
pipe's life density function can be performed by the generalized formula (5) or by the particular 
formula (3) and all these require the deterministic properties representation (6) as well as the 
density function for the internal and external pressures. 

3.4.1. Approximating of deterministic properties 
As was noted above, it is impossible having the exact analytical function (6) defining the 
deterministic properties of the considered pipe needed for calculating their life's density function, 



but we can have only the grid values representing this needed function (6). To have the grid 
values representing the needed function (6) we must choose some given values of the internal 
and external pressures (7): 

( )
min max
1 1 11 , 1,2, ,ip p p i N≤ ≤ =  , (23) 

( )
min max
2 2 22 , 1,2, ,jp p p j N≤ ≤ =  , (24) 

where ( )1 ip  and ( )2 jp  are the some values of the internal and external pressures on the pipe; 1N  

and 2N  are the counts of the internal and external pressured nodal values. 
Solving the initial-boundary-value problem (10)–(13) with the additional condition (15) for 

all combinations of the internal (23) and external (24) pressures, we will have the grid values of 
the function (6) representing the pipe's life depending on the internal and external pressures: 

( ) 1 2, 1,2, , , 1,2, ,ijt i N j N∗ = =  , (25) 

where ( )ijt∗  is the pipe's life was found for both the internal pressure ( )1 ip  and the external 

pressure ( )2 jp  by the numerical solving of the initial-boundary-value problem (10)–(13) with the 
additional condition (15). 

The grid values (23)–(25) allow having the approximation of the function (6) including on the 
analytical view. It is naturally that the suitable view of the analytical approximation of the 
function (6) is predefined by the properties inherent for the initial-boundary-value problem (10)-
(13). To have such suitable view of the function (6) approximation we will consider the last 
equation (12) with the last initial condition (13) and additional condition (15) separately from 
other equations (10)-(13) for the given unchanging value of the stress intensity. Such 
consideration will allow having the follows: 

( )
2

2 , 0 0
1

m
id B

dt
σω  = ω = −ω 

. (26) 

The condition (15) corresponded to the simplified initial-value problem (26) will have the view: 
( ) 1t∗ω = . (27) 

It is possible to divide the variables in the simplified differential equation (26): 
( ) 2 2

21 m m
id B dt−ω ω = σ . (28) 

Integrating the relation (28) taking into account the initial condition (26) leads to the result: 
( ) ( )2 2

1
2 21 1 1m m

iB m t+− −ω = + σ . (29) 
Condition (27) and the relation (29) allow finding the life depending from the stress intensity: 

( )
2

2 2 1

m
it

B m

−
∗ σ
=

+ . (30) 

Relation (30) represent the deterministic property that increasing the stress intensity will lead to 
decreasing the pipe's life, due to the restriction 2 0m > . From the other side, the stress intensity 
in the pipe is defined by the internal and external pressures, so for the constant external pressure 
for example we can reasonably assume that: 

1
mt Bp∗ −= , (31) 

where B  and m  are the constant parameters for each given external pressure 2p   



It is necessary to note that the B  and m  constants must be differ from the constant 2B  and 

2m  because they represent the integrated deterministic property of the pipeline's life taking into 
account the changing on the damage velocity due to the creep strains accumulation during the 
time as defined by the initial-boundary-value problem (10)–(13). At the same time the view (31) 
is really reasonable due to the property (30) of existing in the initial-boundary-value problem 
(10)–(13). So, we will use the relation (31) as the foundation for approximation of the function 
(6) using the grid values (23)-(25), but we will imagine influencing of the external pressure by 
the dependence of the approximation's parameters: 

( ) ( )2
2 1

m pt B p p−∗ = . (32) 

To define the functions ( )2B p  and ( )2m p  involved in approximation (32) we will use the least 
square method. To do this, it is suitable to represent the approximation (32) in the follows view: 

( ) ( )2 2 1lg lg lgt B p m p p∗ = − . (33) 
The discrepancies of the relation (33) on the grid values (23)–(25) can be defined in the view: 

( )( ) ( )( ) ( ) ( )( )1 2

22 2 1
1

lg lg lg , 1,2, ,
N

j j j i ij
i

S B p m p p t j N∗

=

= − − =∑  . (34) 

The least square method for the discrepancies (34) can be represented by the conditions: 

( )( ) ( )( ) 2

2 2

0, 0, 1,2, ,
lg

j j

j j

S S
j N

B p m p

∂ ∂
= = =

∂ ∂
 . (35) 

Substituting relation (34) into conditions (35) will lead to the linear algebraic equations systems 
which will allow defining the values ( )( )2lg jB p  and ( )( )2 jm p , 21,2, ,j N=  : 

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) ( ) ( )

1 1

1 1 1

1 2 1 2
1 1

2
1 2 1 2 1

1 1 1

lg lg lg ,

lg lg lg lg lg ,

N N

j i j ij
i i

N N N

i j i j i ij
i i i

N B p p m p t

p B p p m p p t

∗

= =

∗

= = =


− =


 − =

∑ ∑

∑ ∑ ∑
 (36) 

where 21,2, ,j N=  . 
Instead the exact analytical representations of the functions ( )2B p  and ( )2m p  it will be 

possible having the nodal values of these functions ( )( )2lg jB p  and ( )( )2 jm p , 21,2, ,j N=  , 

which will allow having the corresponding interpolations. 

3.4.2. Calculating the pipe's life density function 
The density function of the pipe's life needs to calculate the gamma-percentile life (1) 
representing the quantitative measure of the failure risks for this pipe. Calculating the density 
function of the pipe's life can be performed by the generalized formula (5), and it needs having 
the internal and external pressures density function. Taking into account the assumption that the 
internal and external pressures (7) are having the uniform densities distributions, we will have 
the follows density function: 



( )
( ) ( ) ( ) ( )

( ) ( )( )

1 1max min max min min max min max
2 2 1 1 1 2 1 1 1 2 2 2

1 2 min max min max
1 2 1 1 1 2 2 2

, ,
,

0 , .

p p p p p p p p p p p p
g p p

p p p p p p p p

− − − − ∀ ∈ ≤ ≤ ≤ ≤= 
∀ ∈¬ ≤ ≤ ≤ ≤





 

(37
) 

Due to the relation (37), the generalized formula (5) can be reduced to the follows: 

( ) ( ) ( ) ( ) ( )
max max
1 2

min min
1 2

1 1max min max min
2 2 1 1 1 2 1 2, , ,

p p

p p

dFf t F t p p p p D p p t dp dp
dt

− −∗ ∗ ∗
∗= = − − ∫ ∫ , (38) 

( ) ( ) ( )

( ) ( )

2

2

1 2 2 1
1 2

1 2 2 1

1   , , : ,
, ,

0    , , : .

m p

m p

p p t B p p t
D p p t

p p t B p p t

−∗ ∗
∗

−∗ ∗

 ∀ ⋅ ≤= 
∀ ⋅ >

 (39) 

Computing by the formulas (38), (39) is really cumbersome, but it has no any principal 
difficulties and can be performed by using the different kind of the mathematical software like 
the Scilab free open source software or similar to them other free open source or commercial 
software. In any case, the relations (38), (39) give as the opportunities for defining the density 
function of the pipe's life which will allow calculating the gamma-percentile life (1) for 
estimating the failures risks for researched pipe. 

4. Results of calculating the pipeline's failure risks and their 
discussions 

Application of the based on the generalized approaches [15] the developed and discussed above 
approach for calculating the high-temperature pressurized pipeline's failures risks will be 
considered further. 

4.1. Calculating data and pipe's life results 
As the example, we will consider the high-temperature pressurized pipe which is similar to the 
used in the steam boiler's superheaters. The sizes of the considered pipe are (Figure 1): 

1 218 mm,    20 mmr r= = . (40) 
We will consider the austenitic stainless steel 18Cr-8Ni type as the structural material of the 
pipe; the characteristics of such material at the 500 C°  can be chosen are follows: 

5 61,62 10 MPa,    0,3,    18,4 10  1 KE −= ⋅ ν = α = ⋅ , (41) 
1 213 35

1 1 2 22,023,  8,859 10 MPa hour , 12,344,  3,799 10 MPa hourm mm B m B− −− −= = ⋅ = = ⋅ . (42) 
The operating temperature of the pipe is chosen so that: 

500°CT∆ = . (43) 
We will assume that the possible values of the internal and external pressures (7) during the 

pipe's operating cannot be less or more on 10% from theirs expected values, so that: 
min max min max
1 1 1 1 2 2 2 20,9 , 1,1 , 0,9 , 1,1p p p p p p p p= = = = , (44) 

where 1p  and 2p  are the expected values of the internal and external pressures. 
The expected values of the internal and external pressures will be assumes as follows: 

1 230 MPa,    10 MPap p= = . (45) 



The assumed data (40)–(45) allow solving the initial-boundary-value problem (10)–(13) with 
the additional condition (15) representing the mathematical model of the high-temperature 
pressurized pipe. The well-known Galerkin's classical method was used for numerical solving 
the creep theory initial-boundary-value problem (10)–(13) which is useful especially for one 
dimension spatial domains. We will not discuss here the application of the Galerkin's method 
because it will be very cumbersome and this is irrelevant for the considered problem about the 
failures risks since any other method can be used for solving the initial-boundary-value problem 
(10)–(13). The results of numerical solving the creep theory initial-boundary-value problem 
(10)–(13) by the Galerkin's method is represented in the Table 1 and on the Figure 1 in which we 
can see the grid values (23)–(25) of the function (6) representing generally the deterministic 
properties of the considered pipe needed for its failures risks calculating. We can see that 
increasing the internal pressure leads to decreasing the life, but increasing the external pressure 
leads to increasing the life of the pipe. Such property is due to the internal pressure is bigger than 
the external pressure, so increasing the external pressure "helps" the pipe to hold the internal 
pressure. 

Table 1 
The grid values of the high-temperature pressurized pipe's life 

Internal 
pressure 
(MPa) 

The pipe's life (hours) for the given external pressure (MPa) 
9,0 9,5 10,0 10,5 11,0 

27 9,22∙105 1,35∙106 1,98∙106 2,95∙106 4,45∙106 
28 4,57∙105 6,57∙105 9,51∙105 1,39∙106 2,05∙106 
29 2,31∙105 3,29∙105 4,70∙105 6,77∙105 9,80∙105 
30 1,18∙105 1,67∙105 2,38∙105 3,39∙105 4,85∙105 
31 5,81∙104 8,45∙104 1,21∙105 1,72∙105 2,45∙105 
32 2,68∙104 4,03∙104 6,00∙104 8,71∙104 1,25∙105 
33 1,29∙104 1,86∙104 2,77∙104 4,17∙104 6,18∙104 

 
Figure 2: The pipe's life depending on the internal and external pressures 

It is necessary to note, the obtained results (Figure 2) show that relatively small changes in the 
internal and external pressures can lead to significant changing of the pipe's life. Exactly such 



property will contribute to the failures during the pipe's operating due to natural existing of some 
changes the operating pressures. 

4.2. Approximating the deterministic properties of the pipe 
Having the grid values (Table 1) of the function (6) defining the deterministic properties of the 
high-temperature pressurized pipe required for calculating its failures risks, we can calculate the 
grid values of the functions ( )2B p  and ( )2m p  needed for the approximation (32) of these 
function (6) by using the least squares method (34)–(36). The obtained results for the grid values 
of the functions ( )2B p  and ( )2m p  needed for the approximation (32) of the pipe's life are 
presented in the Table 2 and on the Figure 3. We can see (Table 2 and Figure 3) in this particular 
case that the ( )2m p  exponent of the approximation (32) actually is practically not depended on 
the 2p  external pressure, but the coefficient ( )2B p  of the approximation (32) has noticeable 
increasing with increasing the 2p  external pressure. 

It is necessary to note that using the approximation (32) is possible only due to their 
correspondence with the mathematical model (12) of accumulating the damages which are 
defined by the Kachanov-Rabotnov's parameter and it had shown by the relations (26)–(30). At 
the same time, for modelling the damages of the pipe due to creep it is possible to use other 
governing equations differ from the considered above equations (12). It naturally, those other 
governing equations can require other approximations of the pipe's life different from the used 
here approximation (32). However, it seems that the relation (31) is the more fundamental, so it 
seems it can be used for approximating the pipe's life even for the different kinds of the 
governing equations modelling the pipe's damages due to creep.  

Table 2 
The grid values of the parameters used in approximation of the pipe's life 

External pressure ( )2 jp  (MPa) Approximation parameters 

( )( ) ( )2 MPa hourm
jB p ⋅  ( )( )2 jm p  

9,0 2,20395∙1036 21,19818477 
9,5 2,35350∙1036 21,10819570 

10,0 2,62393∙1036 21,03011873 
10,5 3,83460∙1036 21,03127510 
11,0 9,06623∙1036 21,17383657 

 



 
Figure 3: The grid values (markers) and the linear interpolation (lines) of the coefficient (a) and 
of the exponent (b) of the approximation of the pipe's life 

Thus, having the results (Table 2 and Figure 3), it is possible to define the pipe's life for the 
given values of the internal and external pressures (7). 

4.3. Results about the pipe's failures risks and theirs 
discussing 

As was assumed above, the random values of the internal and external pressures during the 
pipe's operating are limited by the inequalities (7) and are had the uniform density function (37) 
inside the intervals corresponded to these inequalities (7). he density function (37) of the internal 
and external pressures for the used calculating data (44), (45) and the gamma-percentile life of 
the high-temperature pressurized pipe calculated using that density function by the formulas 
(38), (39) are shown on the Figure 4. 

From the calculated particular results we can see (Figure 4) that the gamma-percentile life is 
the really generalized parameter which allows giving the most correct estimation about the 
failures risks of the high-temperature pressurized pipes as was assumed primary. Really, the 
gamma-percentile life of the pipe is very sensitive to the value of required probability of 
operating without the failures. So, if we can have the smaller probability of the pipe's operating 
without the failures then we can permit the more life for such pipe. At the same time, if the big 
probability of the pipe's operating without the failures is required then we must limit the life of 
this pipe, although it is exist the probability that this pipe will work further without failures some 
maybe even long time. This is very important for defining the lifetime of the high-temperature 
pressurized pipelines which are the critical structural elements like the steam boiler superheaters, 
the nuclear fuel claddings and similar elements which must provide the high probability of 
operating without any failures during the given time. So, the gamma-percentile life is the failures 
risks quantitative measure which really gives the most fully and correct characteristic of the 
failures risks for the high-temperature pressurized pipes during their operating.  



 
Figure 4: The density function of the internal and external pressures (a) and the gamma-
percentile life (b) of the high-temperature pressurized pipe 

The main cause of the obtained results (Figure 4) is in the sensitivity of the pipe's life to the 
internal and external pressure (Figure 2) about those was discussed above. So, the small 
reliability of the pipe can be established by the existing of their significant sensitivity of the life 
to the operating pressures even without defining the gamma-percentile life. This is very useful 
for designing the pipelines: the more reliable design is having the smaller sensitivity of the life to 
the operational pressures. 

5. Conclusion 
In this research the methods for calculating the failures risks of the high-temperature pressurized 
pipelines are developed, so that these developed methods are the particulars of the generalized 
approaches for the risk assessment in the stationary deterministic systems. Due to this research 
the follows results are developed. 

It is proposed the schematization representing the main typical part of the high-temperature 
pressurized pipelines required for calculating their operational failures risks according with the 
generalized approaches. This schematization reduces to considering the straight pipes represent 
the necessary parts of the pipelines. It is proposed considering these straight pipes under the 
internal and external pressures under the given operating temperature because the main function 
of the pipe is necessarily in dividing the mediums with different pressures. Although, such 
schematization neglects some factors like bending and torque of the pipes, but it is not so 
cumbersome and it allows having the primary estimations about the pipe's failures risks need 
under the design stage while considering bending and torque can be for the more detailed 
researches. It is shown that the failures risks of the pipe can be fully defined by the gamma-
percentile life, and to define it is necessary to have the dependence of the pipe's life on the 
operating internal and external pressures which represents the deterministic properties of the 
pipe. 

It is proposed the mathematical model representing the deterministic properties of the main 
typical part of the high-temperature pressurized pipelines required for calculating their 
operational failures risks according with the generalized approaches. In this mathematical model 
it is took into account accumulating the irreversible strains and damages in the pipe's structural 
material during operating due to high-temperature creep, and this mathematical model is 



represented as the theory of creep initial-boundary-value problem. Such mathematical modelling 
the high-temperature pressurized pipe allow defining the life for the given sizes, material 
properties, and the operational loading needed for calculating their gamma-percentile life 
representing the failures risks. Numerical solving the theory of creep initial-boundary-value 
problems is briefly discussed. It is shown that such problems can be reduced to the initial-value 
(Cauchy) problem, building of which requires solving the linear algebraic equations systems. It 
is shown that choosing the methods for numerical solving the theory of creep initial-boundary-
value problem is not principal for calculating the failures of the risks and any suitable numerical 
methods can be used to do this. It is proposed the general approximation of the high-temperature 
pressurized pipe's life depending on the internal and external operating pressures. 

It is considered the particular example of the high-temperature pressurized straight pipel 
made from the stainless austenitic steel, and using the generalized approaches the gamma-
percentile life giving the failures risks quantitative estimations is computed. It is shown that the 
gamma-percentile life is the failures risks quantitative measure which really gives the most fully 
and correct characteristic of the failures risks for the high-temperature pressurized pipes during 
their operating, because the gamma-percentile life of the pipe is very sensitive to the value of 
required probability of operating without the failures. 
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