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Abstract  
Modern medical information systems necessarily include functions for assessing the effectiveness of 
treatment provided to patients. As a rule, this problem is solved by calculating the survival functions 
for estimation of the risk of death. Traditionally, three nonparametric tests are used to analyze 
survival: the Cochran−Mantel−Hansel log-rank test, the Wilcoxon test for censored data, and the 
Tarone−Ware test. In these tests, testing statistical hypotheses about the equivalence of survival 
functions, as a rule, is reduced to calculating the critical value of the standard normal distribution. 
These tests give reliable results only if the samples are large enough and additional conditions are 
met. Consequently, for the development of effective medical information systems that perform 
survival analysis, nonparametric tests are required that use a minimum of preliminary assumptions 
and allow the use of small samples. The paper proposes a test for testing the hypothesis of the 
equivalence of the survival functions, which does not depend on the sample size and does not use 
additional preconditions, except for the condition of the continuity of the distribution functions of the 
initial data. 
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1. Introduction 
To assess the effectiveness of the treatment provided to patients and the risk of death during a 
given period, many cancer healthcare facilities design information systems that analyze data and 
assess patient survival using the Kaplan–Meier curve [1]. Three nonparametric tests are usually 
used in the survival analysis based on the Kaplan−Meier estimator: the Cochran‒Mantel‒Hansel 
log-rank test [2], the Wilcoxon test [3], and the Tarone–Ware test [4]. To test statistical 
hypotheses about the identity of the survival functions, these tests mainly calculate the values of 
the standard normal distribution. However, these tests give reliable results only if the samples are 
large enough and additional conditions are met. The most popular is the log rank test, which 
gives the maximum power under the alternatives with proportional hazards [5]. However, these 
tests give reliable results only if the samples are large enough and additional conditions are met. 
For example, the Wilcoxon test is preferable when deaths at early time points have more weights 
[6], and the Tarone‒Ware test also places more heavy weight on hazards at the early time [7]. 
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The nonparametric Kaplan-Meier estimate measures the survival time of patients, i.e. the 
interval of time between a certain date (for example, the date of surgery) and the moment of 
death or censuring. It allows the construction of survival functions based on data on the life 
expectancy of patients and estimates the risk of death during a given time period. Similarly, it 
can be used to estimate the time to equipment failure or other significant event. Thus, it can be 
used for assessment of the risk of a specific event (death, failure, etc.) based on observations 
(censored and uncensored). 

The aim of this paper is to describe an alternative nonparametric test that does not use any 
assumption excepting the most general (continuity of the distribution) and allow using small 
samples (size less than 50). This test use the p-statistics investigated in [8–11] and base on the 
A(n) Hillʼs assumption [12]. The theoretical background of the p-statistics is developed by 
Matveichuk and Petunin [8, 9] and later by Johnson and Kotz [10], and Klyushin and Petunin 
[11]. The high sensitivity and specificity of the nonparametric test for homogeneity of two 
samples based on the p-statistics is demonstrated in [11]. Here we propose new application of 
this test for comparison of two survival curves. 

2. Theoretical background 
Consider samples ( )1 2 1, ,..., nx x x x G= ∈  and ( )1 2 2, ,..., ny y y y G= ∈  from absolutely continuous 
distributions 1F   and 2F . The Hill's assumption ( )nA  [12] states that for exchangeable random 
values 1 2, ,..., nx x x G∈  following to an absolutely continuous distribution function 
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The significance level of this interval is the function of g. When g = 3 the significance level 
of ( )n

ijI  does not exceed 0.05 [11]. P-statistics, estimating the homogeneity of samples x and y, is  
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It is the relative frequency of the event ( )
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. Therefore, using (2) and (3) we 

may construct the Wilson interval I  for the p-statistics an formulate the following test: the null 
hypothesis on identity of the survival functions is accepted if the upper bound of I  is greater 
than 0.95, else it is rejected. 

For the true null hypothesis is true, the events ( )
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 form a generalized 

Bernoulli scheme [8, 9]. For the false null hypothesis they form a modified Bernoulli scheme. If 
the null hypothesis may be either true or false, they form the Matveichuk–Petunin scheme [10]. 
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significance level β of a sequence of confidence intervals ( )n
ijI  is less than 0.05 [11]. 

3. Experiments and results 
To confirm the high sensitivity and specificity of the proposed test, we considered two groups of 
patients with a nondifferential diagnosis of bladder cancer of stages T2 and T3, who in 1998–
2016 received special surgical care (radical and salvage cystectomy) at the urology department 
of the Kiev City Clinical Oncological Dispensary. For the analysis, patients were taken who had 
a complete history and an accurate survival result (uncensored). Characterization of the 
prevalence of the malignant process was carried out according to the clinical classification TNM 
7th ed. (2010). 

The first group (stage T2) consists of 38 patients, among them 22 patients were underwent to 
radical cystectomy (17 died and 5 are alive), and 16 were underwent to the salvage cystectomy 
(7 died and 9 are alive). The second group (stage T3) consists of 51 patients, among them 33 
patients were underwent to radical cystectomy (24 died and 9 are alive), and 18 were underwent 
to the salvage cystectomy (10 died and 8 are alive). The survival curves for the first and second 
groups are demonstrated in Fig. 1 and Fig. 2. Here the mark 1 means the radical cystectomy and 
0 means the salvage cystectomy, Tables 1–4 contain the mean survival times and results of 
testing identity of the survival curves using four tests: log-rank, Wilcoxon, Tarone–Ware, and p-
statistics,  
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Figure 1: Survival curves in the first group of patients (stage T2) 

As we see, in the first group (stage T2) the survival curve of the patients who were underwent to 
radical cystectomy goes above the survival curve of the patients who were underwent to salvage 
cystectomy. Therefore, intuitively, the risk of death for the former patients is less than for the 
latter ones and the salvage cystectomy prolongs life of patients better than the radical 
cystectomy. However, this hypothesis must be rigorously tested using statistical tests. 
Traditionally, to estimate the significance of the deviation between to survival curves the log-
rank test, the Wilcoxon test, and the Tarone–Ware are used. Their p-values are the critical values 
of these tests.     
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Figure 2: Survival curves in the second group of patients (stage T3) 

In the second group (stage T3) the survival curve of the patients who were underwent to radical 
cystectomy also goes above the survival curve of the patients who were underwent to salvage 
cystectomy. We again may suppose that the risk of death for the former patients is less than for 
the latter ones. Note, that since the stage T3 is harder that T2, the survival interval became mush 
shorter. The maximum survival time in the first group is avout 4000 days (almost 11 years) but 
in second group it is about 2500 days (almost 7 years). Thus, the effectiveness of the cytectomy 
in this group is compensated by the stage of tumors. To estimate the significance of the deviation 
between to survival curves we again used the log-rank test, the Wilcoxon test, and the Tarone–
Ware and their p-values. 

In both cases we completed the traditional analysis by computing the p-statistics as an 
alternative to the three above tests. Descriptive statistics of the data are provided in Tables 1–3  

Table 1 
Mean survival time in the first group (stage T2) 
Cystectomy  Mean survival time Standard deviation Lower bound (95%) Upper bound (95%) 
Radical 1015,720 202,769 618,300 1413,141 
Salvage 1647,688 309,949 1040,198 2255,177 

Table 2 
Results of survival analysis in the first group of patients  (stage T2) at significance level 0.05  

Test 
 

Observed value Critical value p-value 

Log-rank 3.239 3.841 0,072 
Wilcoxon 2.533 3.841 0,111 



Tarone-Ware 2.893 3.841 0,089 
P-statistics 0.997 0.950 0.003 

Table 3 
Mean survival time in the first group (stage T3) 
Cystectomy  Mean survival time Standard deviation Lower bound (95%) Upper bound (95%) 
Radical 1015.720 202.769 618.300 1413.141 
Salvage 1647.688 309.949 1040.198 2255.177 

Table 4 contains the observed values, critical values and p-values of the log-rank test, the 
Wilcoxon test, the Tarone–Ware test, and the p-statistics.  

Table 4 
Results of survival analysis in the second group of patients (stage T3) at significance level 0.05  

Test 
 

Observed value Critical value p-value 

Log-rank 1.718 3.841 0.190 
Wilcoxon 2.083 3.841 0.149 
Tarone-Ware 2.046 3.841 0.153 
P-statistics 0.981 0.950 0.019 

The hypothesis of the identity of the two survival functions (0 — the salvage cystectomy and 
1 —the radical cystectomy) in the first and second groups (stages T2 and T3, respectively) was 
tested using four tests at a significance level of 0.05. In all the results, there were no statistically 
significant differences between the survival curves, since the observed values did not exceed the 
critical value and the upper confidence bound for the p-statistics exceeds 0.95. The log-rank test, 
the Wilcoxon test and the Tarone–Ware test acceps the null hypothesis is the corresponding p-
values are less than 0.05, and the test based on the p-statistics, in opposite, accepts the null 
hypothesis if its p-value is greater than 0.05. 

Noteworthy is the fact that the observed p-value (the probability of rejecting the null 
hypothesis, provided that it is true) in the p-statistics test is an order of magnitude less than in the 
three traditional nonparametric tests used in the analysis of survival. This is the evidence of high 
sensitivity and specificity of the proposed test. 

4. Conclusions 
Mathematical basis of modern medical information systems for assessing the effectiveness of 
treatment and the risk of death during a given time period must be more rigorously justified. 
Traditional nonparametric tests used in survival analysis (the log-rank test, the Wilcoxon test, 
and the Tarone−Ware test) assume conditions that not always are met in practice. These tests 
reduce the verification of statistical hypotheses about the equivalence of survival functions to 
calculating the critical value of the standard normal distribution. This is justified only when 
samples are large enough and additional conditions are met. Thus, to develop an effective 
medical information system for survival analysis, we need in nonparametric tests with minimal 
preliminary assumptions and minimal requirements to the size of samples.  



In paper, we described a test for verification of the hypothesis of the equivalence of the 
survival functions and risk of death during a given time period, which does not depend on the 
sample size and does not use additional preconditions, except for the condition that the samples 
have not ties. 

We have provided the strong mathematical background and demonstrated high sensitivity and 
specificity of testing homogeneity of two samples of random samples from continuous 
distributions in comparison with three traditional tests. We have shown the practical application 
of this test in survival analysis of the patient with bladder cancer and demonstrated its high 
performance. This test may be used for the development of effective medical information 
systems that perform survival analysis of cancer patients. Note, that the scheme described in the 
paper is easily expanded on much wider spectrum of problems connected with the assessment of 
the risk of device failure or risk of some significant event based on the censored and uncensored 
observations. 

Future work will be directed to the improvement of computational complexity of the 
proposed test and its expanding to the various problem of the risk assessment. 

References 
[1] M.Morris, S.Landon, I.Reguilon, J.Butler, M.McKee, E.Nolte, Understanding the link 

between health systems and cancer survival: A novel methodological approach using a 
system-level conceptual model, Journal of Cancer Policy, 25, 202, 100233. doi: 
10.1111/codi.15622 

[2] J.M.Bland, D.G.Altman, The logrank test. British Medical Journal, 328, 2004, 1073. doi: 
10.1136/bmj.328.7447.1073 

[3] M.A.Proschan, L.E.Dodd, Re-randomization tests in clinical trials, Statistics in medicine, 
38, 2019, pp. 2292-2302. doi: 10.1002/sim.8093 

[4] R.E.Tarone, J.Ware, On distribution-free tests for equality of survival distributions, 
Biometrika, 64, 1977, pp. 156–160. doi: 10.1093/biomet/64.1.156 

[5] T.G.Karrison, Versatile tests for comparing survival curves based on weighted log-rank 
statistics, The Stata Journal, 16, 2016, pp. 678–690 

[6] A.Hazra, N.Gogtay, Biostatistics Series Module 9: Survival Analysis, Indian Journal of 
Dermatology, 62, 2017, pp.: 251–257. doi: 10.4103/ijd.IJD_201_17 

[7] P.G.Karadeniz, I.Ercan, Examining tests for comparing survival curves with right censored 
data, Statistics in Transition New Series, 18, 2017, pp. 311‒328. doi: 10.21307/stattrans-
2016-072 

[8] S.A.Matveichuk, Yu.I.Petunin, Generalization of Bernoulli schemes that arise in order 
statistics, I. Ukrainian Mathematical Journal, 42, 1990, pp. 459–466. doi: 
10.1007/BF01058940 

[9] S.A.Matveichuk, Yu.I Petunin, Generalization of Bernoulli schemes that arise in order 
statistics, II. Ukrainian Mathematical Journal, 43, 1991, pp. 728–734. doi: 
10.1007/BF01058940 

[10] N.Johnson, S.Kotz, Some generalizations of Bernoulli and Polya-Eggenberger contagion 
models, Statist Paper, 32, 1991, pp. 1–17. doi: 10.1007/BF02925473 

[11] D.A.Klyushin, Yu.I.Petunin, A Nonparametric Test for the Equivalence of Populations 
Based on a Measure of Proximity of Samples, Ukrainian Mathematical Journal, 55, 2003, 
pp. 181–198. doi: 10.1023/A:1025495727612 

[12] B.M.Hill, Posterior distribution of percentiles: Bayes’ theorem for sampling from a 
population, Journal of American Statistical Association, 63, 1968, pp. 677–691 

https://en.wikipedia.org/wiki/Doug_Altman
https://doi.org/10.21307/stattrans-2016-072
https://doi.org/10.21307/stattrans-2016-072

	Abstract
	1. Introduction
	2. Theoretical background
	3. Experiments and results
	4. Conclusions
	References

