
Risk of Information Loss Using JWT Token
Oleksandra Bulgakova1, Viktor Mashkov2, Viacheslav Zosimov1 and Pavlo Popravkin1
1V.O.Sukhomlynsky National University of Mykolaiv, Nikolska 24, Mykolaiv, 54000, Ukraine
2Jan Evangelisty Purkynė University, Ceske mladeze, 8, Usti nad Labem, 40096, Czech Republic

Abstract
This paper presents a variant of saving the JWT token, which allows you to protect yourself from
typical attacks on the server using an access token, which significantly reduces risks and simplifies
compliance with some requirements of security standards. Shows how the web key interacts with the
server, which provides protection against server-side attacks such as XSS and CSRF. The interaction of
the JSON web key with the server and the solution of the main problems of authorization and storage
of JWT - the JSON web token are considered.

The experimental results show the advantage of the proposed method ("quiet" token) over using the
storage of the JWT token in LocalStorage, cookie when accessing the token during XSS and CSRF
attacks.

The proposed method for storing the JWT token to protect data from typical attacks on the server.
The lack of a token in local storage has the advantage of persisting data as the keys are no longer
available information.

Keywords 1
Structured information, web key, token, cookie, CSRF attack, XSS attack, risk of information loss

1. Introduction
One of the most important and complex tasks in information security is the protection of
confidential data. In the case of confidential data, a variety of solutions using encryption
technologies are usually used, but in recent years, there has been an increase in interest in
another technology - tokenization, which reduces the risks for confidential data. Applications can
store, use and make transactions using only a token and without putting real data at risk.
Although some operations require access to real data, tokenization minimizes their use. The key
advantage of tokenization is the ability to store confidential data in only one place - on the
tokenization server, where it is securely stored in encrypted form. This reduces the risk
compared to encryption, which makes sensitive data available in multiple locations [1].

CITRisk’2021: 2nd International Workshop on Computational & Information Technologies for Risk-Informed Systems, September
16–17, 2021, Kherson, Ukraine
EMAIL: sashabulgakova2@gmail.com (O.Bulgakova); viktor.maskov@ujep.cz (V.Mashkov); zosimovvv@gmail.com (V.Zosimov);
pavel.popravkin.dm@gmail.com (P.Popravkin)
ORCID: 0000-0002-6587-8573 (O.Bulgakova); 0000-0001-9817-3388 (V.Mashkov); 0000-0003-0824-4168 (V.Zosimov); 0000-
0002-6731-7016 (P.Popravkin)

© 2021 Copyright for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:viktor.maskov@ujep.cz

That is why the paper proposes a variant of saving the JWT token, which allows you to
protect yourself from typical attacks on the server using an access token, which significantly
reduces risks and simplifies compliance with some requirements of security standards.

JSON Web Token determines the particular structure of information that is sent over the
network. It is presented in two forms - serialized and deserialized. The first is used directly to
transfer data with requests and responses. The other one reads and writes information to the
token, that is, the deserialization process is performed [2]. This article has covered the
persistence of a serialized form, which typically happens in cookies or browser local storage.
Local Storage - the method is dangerous because it is exposed to attacks such as XSS [3]. Cookie
is a simple storage of a token, often threatens with a CSRF attack and does not protect against
XSS attacks [4-5].

The proposed token saving approach allows one to protect against the two most frequent
types of attacks and to organize a more reliable security algorithm. Each of these methods has
drawbacks that can be avoided by storing the token in a local variable inside the closure.

2. Types of Attacks
XSS (Cross-Site Scripting) is a vulnerability that an attacker can inject into a page through
JavaScript code. This code will be executed every time users visit the application page where
this code was added. With this code, an attacker can get the user authorization information and
enter in his account, or redirect the user to another page, clone, etc. - almost anything JavaScript
can do is made available to an attacker. Comparing XSS with SQL injection, XSS is safe for the
server, but poses a threat to the users of the infected resource. However, if an administrator
cookie gets to an attacker, you can gain access to the control panel of the site and its contents [3].

CSRF (Cross-Site Request Forgery, also XSRF). The essence of CSRF is that browsers don`t
understand how to distinguish whether an action was explicitly performed by the user (such as
clicking a button on a form or following a link) or whether the user unintentionally performed
the action. An effective and generally accepted method of protecting against CSRF-Attacks
today is a token - a random set of bytes that the server transmits to the client, and the client
returns to the server [4].

3. Saving a Token

3.1. Saving a token in a cookie
The main advantage of storing a token in a cookie is that the tokens are not available with
JavaScript. As a result, the vulnerability to XSS attacks is much lower than for local repositories
but also does not fully protect against XSS attacks.

If you use the HttpOnly flag and secure cookies, this means that JavaScript cannot be
accessed from these files. That is, even if an attacker can run his code on this page, you will not
be able to read the cookie access token.

Cookies are automatically sent in each HTTP-requests (Hypertext Transfer Protocol - HTTP)
to the server.

The problem with storing a JSON web token in a cookie is a vulnerability to CSRF attacks.
Also, depending on the specific circumstances, it may happen that the tokens in the cookie can’t
be saved.

The size of cookies is limited to 4 KB. Therefore, to use large JWTs, storing them in a cookie
will not work [6-7].

There are scenarios in the implementation of which you can`t send cookies to your API-
server (Application Programming Interface - API). It is also possible that some API requires a
token to be placed in the Authorization header. In this case, it is impossible to store tokens in
cookies.

Context-sensitive source coding is commonly used to prevent XSS vulnerabilities. In some
cases, this may be sufficient to encode special HTML characters (Hypertext Markup Language -
HTML), such as opening and closing tags. References are usually prohibited unless you start
with a whitelist, such as http:// or https://, which prevents the use of URI schemes (Uniform
Resource Identifier - URIs), such as javascript://.

It should also be noted that most modern web browsers have a built-in XSS filter, this
protection should not be considered as a warranty. It can't catch all kinds of cross-site scripting
attacks and isn't very smart, which can sometimes lead to false positives that can prevent some
pages from loading. The web browser's XSS filter should only be the “second line of defense”.

Sometimes developers remove dangerous functions and characters from the code. This
solution is fundamentally incorrect because XSS browser filters cannot recognize dangerous
useful data when the original data is forged given possible workarounds.

3.2. Saving a token in LocalStorage
The main advantage of local storage is that they are easy to use.

Working with local storage is very convenient, it uses JavaScript. If the program does not
have a backend, then relying on other people's APIs, it is not always possible to track whether
these APIs use personal data from cookies on this site.

Using LocalStorage, it is convenient to work with APIs that must find an access token in the
request header. Example:Authorization Bearer $ {access_token}.

The main disadvantage of local storage is the vulnerability to XSS attacks.
When performing an XSS attack, an attacker could run dangerous JavaScript code on your

site. This means that the attacker can access the access token stored in localStorage.
The source of the XSS attack may be third-party JavaScript code included in this site. It can

be something like React, Vue, jQuery, Google Analytics script, and so on. In modern conditions,
it is almost impossible to develop a site that does not include libraries of third-party developers.

The main methods of protection against XSS-attacks by which developers try to protect data:

1. Try simply not to store sensitive data in localStorage, including JWT or any other
credentials in this regard.

2. Use a cookie header on top of the authorization header.
3. Set cookie header protection.
4. Avoid displaying the token on the screen, in URLs (Uniform Resource Locator - URL), or

the source code.

These precautionary methods do not solve the root problem of accessing sensitive data in a
very light format. Storing data in LocalStorage will always be dangerous because it is a format
of LocalStorage.

4. Saving Token In a Local Variable
When the token is saved in a local variable inside the closure, the system becomes protected
from typical attacks - CSRF (cannot be automatically sent with cookies, because the token is
stored in memory and sent as a header on every request to the server) and XSS (because the
token is not saved in Session / LocalStorage).

Figure 1 shows a new session where you can get a new token and store it in a local variable
inside the closure.

Figure 2 an example of obtaining a token in an XSS attack is shown. The example shows that
the information is not saved in LocalStorage so an attacker can’t access the file. This also applies
to CSRF attacks.

Further, with each request, it is necessary to add a token to the header and avoid other
storages in which there is unprotected data.

Figure 1: Example of getting a token and store it in a local variable inside the closure

Figure 2: Getting data from localStorage in XSS attack

5. Access Problems and Their Solutions
When using the application, the user may encounter some problems: a quick end of the session
(the JWT expires) and the session will not be saved upon re-entry (the system does not save the
JWT token on the user's side). To solve these problems, you can give a refresh token that can be
used for the API and that can be saved between user sessions.

This token is part of the authentication process along with the JWT. The server stores the
refresh token and associates it with a specific user in its database. On the client-server, you need
to connect the application to create the update and get a new JWT before the previous JWT
token expires.

The refresh token is sent as HttpOnly and is automatically sent by the browser when using the
API.

Figure 3 shows a new login process where the refresh token will be sent along with the JWT.
User input string through the token update will take place in four stages:

1. The user logs in through the API.
2. The server generates JWT tokens and updates.
3. The server sets an HttpOnly cookie with a refresh token and returns to the user as JSON.

JWT is stored in memory.
4. Based on the expiration of the JWT, a “silent” token renewal is triggered.
Figure 4 shows a silent update that takes place in three stages:
1. The endpoint of the call is the refresh token.
2. The server reads the httpOnly cookie and returns a new JWT.
3. Sets a new refresh token cookie through the Set-Cookie header.

If the user has logged out of the current session, then when he logs into the application again,
the system will look like in Figure 5

Thus, it becomes possible to support user authorization when the token expires.

Figure 3: Update token sheme

Figure 4: Silent update sheme

Figure 5: Workflow scheme when user logged out

Table 1 presents the results of experiments that show the possibility of gaining access to the
token during XSS and CSRF attacks using the storage of the JWT token in LocalStorage, the
cookie and the proposed method (“silent” token). A simulation of 30 experiments was carried
out. “+” means that it was possible to get access, “-” access was not obtained.

Table 1
The result of using the considered methods for various attacks

 Method XSS attack (30) CSRF attack (30)
LocalStorage + (23 +; 7-) - (8 +; 22-)

cookie - (9 +; 21-) +(26 +; 4-)
“silent” token - (2 +; 28-) -(1 +; 29-)

Out of 30 test situations (Table 1), the proposed method ("quiet" token) turned out to be the most
effective: with XSS attacks only 2 out of 30, and CSRF attacks - only 1 out of 30 attempts to
obtain a token.

6. Conclusions
Cybercrime is growing every year and methods of attack are becoming more sophisticated. All
this should contribute to the development of methods and policies of protection. With the
increasing use of brute force attacks and phishing attacks to capture user data, it is becoming
clear that password authentication is no longer sufficient to counter attackers.

Token-based authentication, when used in conjunction with other authentication methods,
creates a barrier designed to stop even the most advanced hacker. Token authorization systems
are considered to be very secure and efficient, but despite the many benefits associated with
using tokens, there is always a small risk of losing confidential information.

That's why this paper discusses variant of saving the JWT token, which allows you to protect
yourself from typical attacks on the server using an access token, which significantly reduces
risks and simplifies compliance with some requirements of security standards. The risk of
information loss using JWT token of storing structured information in local storage that is sent
over the network in a serialized form, which usually happens in cookies or browser local storage.
Local storage - the method is dangerous because it is susceptible to attacks such as XSS. A
cookie is a simple token store that is often threatened by CSRF attacks and does not protect
against XSS attacks.

This article proposes a method for storing a JWT token to protect data from typical server
attacks. The lack of a token in local storage has the advantage of persisting data as the keys are
no longer available information. The proposed token saving approach allows one to protect
against the two most frequent types of attacks and to organize a more reliable security algorithm.
Each of these methods has drawbacks that can be avoided by storing the token in a local variable
inside the closure.

During the experiment, various situations were generated to gain access to the token. Out of
30 test situations, the proposed method ("quiet" token) turned out to be the most effective: with
XSS attacks only 2 out of 30, and CSRF attacks - only 1 out of 30 attempts to obtain a token.

However, you need to understand that this method does not provide a complete guarantee of
protecting the system from attacks - it excludes only some of the types of attacks described
above.

The JWT token storage method proposed in this article is experimental, and work and
research is currently underway to improve it for use in other types of attacks.

References
[1] Understanding and Selecting a Tokenization Solution, 2020. URL: https://securosis.com
[2] JSON Web Tokens, 2021. URL: https:// jwt.io
[3] Password stealing from HTTPS login page and CSRF protection bypass with reflected XSS,

2020. URL: https:// medium.com/@MichaelKoczwara/password-
stealing-from-https-login-page-and-csrf-bypass-with-reflected-xss-76f56ebc4516
Cross-Site Request Forgery Prevention Cheat Sheet, 2021.
URL: https://cheatsheetseries.owasp.org/cheatsheets/Cross-
Site_Request_Forgery_Prevention_Cheat_Sheet.html

[4] V.Zosimov, O.Khrystodorov, O.Bulgakova, Dynamically changing user interfaces: software
solutions based on automatically collected user information, Programming and Computer
Software, 2018, Vol 44 (6), pp. 492-498. doi:10.1134/S036176881806018X

[5] XSS and CSRF attack, 2020. URL: https:// geekbrit.org
[6] V.Jánoky, J.Levendovszky, P.Ekler, An analysis on the revoking mechanisms for JSON

Web Tokens, Next Generation Internet of Things (IoT) and Cloud Security Solutions, 2018,
Vol 14 (9). doi:10.1177/1550147718801535

https://jwt.io/
http://dx.doi.org/10.1134/S036176881806018X
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=J%C3%A1noky%2C+L%C3%A1szl%C3%B3+Viktor
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Levendovszky%2C+J%C3%A1nos
https://journals.sagepub.com/action/doSearch?target=default&ContribAuthorStored=Ekler%2C+P%C3%A9ter
https://journals.sagepub.com/topic/collections-dsn/dsn-1_ngiotacss/dsna
https://doi.org/10.1177%2F1550147718801535

	Abstract
	1. Introduction
	2. Types of Attacks
	3. Saving a Token
	3.1. Saving a token in a cookie
	3.2. Saving a token in LocalStorage
	4. Saving Token In a Local Variable
	5. Access Problems and Their Solutions
	6. Conclusions
	References

