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Abstract. With the advent of Industry 4.0, predictive maintenance
techniques have largely spread throughout companies. However, it is still
difficult to understand how to implement a predictive maintenance strat-
egy to get satisfactory results. In this research we propose a methodology
to define a benchmark in terms of performance of machine learning algo-
rithms in the context of prognostic predictive maintenance from a clas-
sification perspective. In defining such a benchmark we use three target
datasets publicly available over which to compare different preprocessing
and feature engineering techniques and different machine learning algo-
rithms and auto learning tools. Our benchmark shows that it is possible,
by following the guidelines delineated in this paper, to select the proper
combination of preprocessing, feature engineering and algorithms/tools
to get an average F1-score of 98%. Moreover, we propose an innovative
approach based on siamese neural networks that shows comparable re-
sults with respect to the benchmark defined, thus showing that also this
kind of algorithm has to be tested to be sure to reach the best possible
results.

Keywords: Predictive Maintenance · Benchmark Definition · Siamese
Neural Network.

1 Overview

Thanks to the advent of Industry 4.0 and the enhancements in machine learn-
ing techniques, in recent years predictive maintenance (PdM) applications have
largely spread throughout companies. Since PdM is an active area of research,
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there are thousands of papers published on the topic, however among all the
possibilities of implementing a PdM system, it is still difficult to identify a spe-
cific strategy to get satisfactory results. On the shake of this, this research aims
at defining a technical benchmark to measure the performance of different fault
prognosis algorithms and auto-learning tools in the context of prognostic PdM.
More precisely, this research is driven by the business need of a partner company
that produces vertical cutting machines and aims at creating a PdM system to
predict breakage events, thus reducing related costs by avoiding them. One of
the main issues of the partner company is that they have scarse connectivity
throughout the production line, so they cannot stream data in real-time to the
final system that will be cloud-based. In this context, the final goal is to produce
a system capable of monitoring in semi-real-time through sensors some operat-
ing parameters of the machines in order to be able to predict their remaining
useful life (RUL). Generally, the RUL is a continuous variable that requires a
regression problem to predict it. However, the semi-real-time scenario poses the
issue of interacting with the machine at discrete time intervals sending a batch
of the collected data every hour. Thus, since in the real case scenario we will get
data in batch with a certain time delay, in this research we focus on the context
of PdM from the classification point of view, i.e. we aim at predicting the class
of breakage of the last observations collected. Thus, we designed a methodology
to compute a benchmark for prognostic PdM based on the main state-of-the-art
machine learning algorithms and the available auto learning tools to provide
the partner company with a precise methodology to select the best algorithm
and determine how it performs with respect to the benchmark. Moreover we
compare the results with an innovative approach based on Siamese Neural Net-
work (SNN), which is an algorithm never used in this context. Computing this
benchmark will allow the partner company to define the best PdM strategy by
following the guidelines defined in this paper and to check whether the results
they are obtaining by implementing the PdM system are competitive with the
state-of-the-art results. The rest of this paper is organized as follows. In chapter
2 a comprehensive analysis of the state of the art for PdM is presented. Then in
chapter 3 the methodology for the creation of the benchmark is defined together
with the innovative approach based on SNN. In this chapter also the dataset
used for the computation are described. In chapter 4 the results obtained are
shown with a focus on the comparison of the benchmark with the innovative
approach and, finally, in chapter 5 some conclusive remarks.

2 State of the Art

Predictive maintenance (PdM) [1], which is the analysis of industrial machin-
ery’s operating parameters in order to predict breakage events [2], is an active
area of research that has found the right space for application only recently
thanks to the fact that industry is currently moving towards the so called in-
dustry 4.0 [3]. Indeed, new technologies from industry 4.0, such as the Internet
of things (IoT) [7], cloud computing and sensors and advances in artificial intel-
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ligence from software [5] and hardware [8] perspectives, allow the integration of
people, machines and products, thus making possible a fast exchange of infor-
mation and the generation of even more data [4], enabling efficient and effective
PdM for companies [6]. There are several approaches to PdM. In particular,
the taxonomy of the approaches differs in three macro aspects: the architecture
of the system (OSA CBM, supported by the cloud or based on industry 4.0
technologies), the objective (minimization of costs, maximization of reliability
and availability or multi-objective) and the type of algorithms used [1]. In this
research we focus on fault prognosis and diagnosis algorithms, in the context
of industry 4.0 with the goal of maximizing the reliability and availability of
the system, which can be carried out with two macro typologies of approaches:
knowledge based and data driven. Knowledge based methods make use of expert
knowledge of the monitored systems and can be divided into 3 categories: on-
tology based, rule based and model based. Ontology based approaches allow for
the creation of knowledge bases for different systems and machinery [9]. In the
context of PdM, several ontologies have been built [10–13], however these ap-
proaches must be used together with other reasoning techniques to be effective.
Rule based approaches are based on the evaluation of data with a set of fixed
IF-THEN-ELSE rules determined by domain experts, which has the advantage
of including a-priori knowledge in the system [14–17]. These approaches are very
effective, but clearly not scalable. Model based approaches are based on the im-
plementation of mathematical models of the physical processes which have an
impact on the health of the system components [18–22]. These approaches are
applicable only when the underlying physical process can be perfectly described
by a mathematical model without adopting too stringent assumptions or con-
straints and this rarely happens [23–25]. Data driven approaches, on the other
end, are approaches that use historical data to learn a model of the system’s
behavior with machine learning techniques [26]. From the literature perspective,
the task of predicting failures can be reduced to three main types of problems:
binary classification, multi-class classification and regression. Binary classifica-
tion is used in PdM with the goal of estimating the probability that after a
certain number of machine cycles the machine will break down. Similarly for
multi-class classification, where each class represents the probability that a ma-
chine will break down in the following N cycles, with N possibly different for each
class. Regression models, on the other hand, are used to estimate the number
of life cycles remaining (RUL). Some traditional machine learning algorithms
used in this field are: Artificial Neural Network (ANN) [27–30], Decision Tree
(DT) and Random Forest (RF) [31–33], Support Vector Machine (SVM) [34,
35] and K-nearest Neighbor (KNN) [36]. However, in recent times, research has
moved towards Deep Learning algorithms that have proven to somehow outper-
form many of these more traditional models [1]. Specifically, the main algorithms
used in the context of PdM are: Convolutional Neural Network (CNN), Recur-
rent Neural Network (RNN) and Generative Adversarial Network (GAN). In
this context, CNNs have shown enormous ability to extract useful and robust
features to perform fault diagnosis [37–39]. Experiments have shown that, with
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proper hyperparameters tuning, models can achieve 99% accuracy levels. CNNs
are also often used to predict the RUL, as in [40, 41]. Also RNNs have often
been used as a fault diagnosis tool in recent times as their consolidated ability
to model time sequences has guaranteed these algorithms superior performance
compared to other types of networks [42–44]. Moreover, thanks to the ability
of Long Short Term Memory (LSTM) and Gate Recurrent Unit (GRU) cells
to handle long and time-dependent time series, many studies have been carried
out on the prediction of the RUL via these networks [45–47]. In the context of
PdM also GANs have been proposed to identify the type of machine failure [48,
49] or to predict the RUL [50] by modeling the trend of the health indicators
of a machinery. The advantage of these networks is that the health indicator
trend model becomes more accurate as more data is collected. In recent times,
also Siamese Neural Networks (SNNs) have emerged among deep learning algo-
rithms [51]. SNNs are models composed of two parallel identical sub-networks,
which process two differents input data in order to create an embedding to be
compared. The two sub-networks are trained to produce an embedding so that
the similarity measure between the embedding produced is minimized in case the
two embedded inputs are of different classes and maximized otherwise [52]. This
type of learning is known as one-shot-learning. These approaches have proven
to be extremely useful also in the context of time series analysis. An example is
found in [53], where a system is proposed to measure the similarity between time
series using SNN with two twin subnets consisting of RNNs. The application of
these algorithms in the field of PdM is still little explored today [54].

3 Benchmark definition

The goal of this research is to define a benchmark in terms of performance of the
data driven PdM algorithms for fault prediction and compare the results with
an innovative approach based on SNNs. As explained in Chapter 1, given that
in the partner company’s scenario data are send to the PdM model in batch
with a certain delay, we focus on the case of multi-class classification, where the
aim is that of determining, given a time series of variables, the breakage class.
For the definition of the benchmark, not only custom algorithms are used, but
also some auto-learning tools such as Google Cloud AutoML [55] and Google
Cloud BigQuery ML [56] (BQ-ML). In order to define this benchmark we use
three widely used public datasets and calculate the performance for each of
them, comparing different preprocessing and feature engineering approaches.
In the following we provide all the details of each step necessary to compute
the benchmark. We also define also the implementation and evaluation of the
algorithm based on SNN and the calculation of the positioning of the SNN based
approach with respect to the benchmark on public datasets.

3.1 Datasets description

Three different public datasets have been identified for the definition of the
benchmark.



A Comparison of ML Algorithms and Tools in Prognostic PdM

Zenodo predictive maintenance dataset The dataset published by Zen-
odo [57] consists of a series of IoT sensors for predictive maintenance in the
elevator industry. The collected data can be used for predictive maintenance of
elevator doors in order to reduce unscheduled stops and optimize maintenance
interventions.The dataset contains operational data in the form of time series
sampled at a frequency of 4Hz. In particular, for each lift there are electrome-
chanical sensors, physical sensors and environmental sensors. In the following we
will refer to this dataset as OML.

NASA Turbofan Engine Degradation dataset The dataset published by
NASA’s Prognostic CoE [58] concerns the degradation of aeration engines and
is constructed using C-MPASS. The dataset is simulated under different com-
binations of operating conditions and for different types of faults and contains
several variables that describe the characteristics of the evolution of the fault.
In the following we will refer to this dataset as Aircraft.

XJTU-SY Bearing Datasets The XJTU-SY dataset [59] was published by
the Institute of Design Science and Basic Components at Xi’an Jiaotong Uni-
versity, China for the predictive maintenance of rotating elements. The dataset
contains multivariate time series of 15 rolling bearings from start to failure,
acquired by conducting several accelerated degradation experiments. In the fol-
lowing we will refer to this dataset as XJTU-SY.

3.2 Preprocessing and Feature engineering

In order to define a precise benchmark, we decided not only to compare dif-
ferent machine learning algorithms but also different preprocessing techniques
and different feature engineering approaches. In this case, three distinct feature
engineering modes have been defined that share a common preprocessing phase.

Preprocessing Firstly data is normalized and the features that have zero vari-
ance are eliminated. The target variable is then defined as RUL, i.e. number of
cycles missing from the fault. Since the benchmark to be determined refers to a
multi-class classification problem we need to convert the RUL from a continu-
ous variable to a discrete variable. Thus, we define a methodology to divide the
dataset into 3 classes: one containing the cases of RUL between 0 and N, one
containing the cases of RUL between N and M with M>N and one with the cases
of RUL greater than M. In this way the three classes represent a case of failure
in the short term (RUL<N), a case of failure in the medium term (N<RUL<M)
and a case of good functioning (RUL>M). The method of selecting the parame-
ters N and M depends both on the use case, i.e. on how long the cycles last and
in how many cycles on average a failure case occurs, and on the performance of
the models, i.e. on the accuracy of the models in the short, medium and long
term. Starting from a given N (the minimum number of cycles that ensure the
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operator room to maneuver), a series of machine learning models is trained for
larger values of N. For each model trained, the performance are calculated and
the performance trend is studied as N varies. The idea is to select N as large as
possible (to ensure that the prediction occurs in time, guaranteeing the operator
room to maneuver) but with the aim of maintaining good performance. A limit
deviation of 5% from the maximum performance value is therefore considered.
Once parameter N has been selected, M is selected in the same way.

Feature Cycle (FC) The first feature engineering approach consists in using
the preprocessed dataset and in creating for each feature and for each pair of
features the corresponding second degree feature crosses (for example, given the
features x and y, a dataset containing x, y is considered, xy, x2y2). This is a
standard feature engineering technique that has to be tested in order to find
the best solution possible. Once the features are generated, since some datasets
contain many sensors and the size of the features may explode, the features are
reduced through Principal Component Analysis (PCA) , in order to represent the
features through an embedding vector. The vector is constructed by taking only
the k principal components that describe at least 95% of the variance present in
the data.

Feature Rolling (FR) A second method of feature engineering consists in
using the preprocessed dataset enriched with the calculation of the second degree
feature crosses as described above, then adding a level of temporal aggregation
to also take into account the overall trend of the series. In this case, for each
detection xi the sequence of the t values preceding xi, (xi−t, ..., xi) is taken and it
is replaced with the average of the values of the sequence of length t. This allows
to engineer historical information and include them in the features, letting some
algorithms (which otherwise would not be able to consider historical information)
take these historical correlation into account. To determine the optimal value of
t, an approach based on the analysis of the performance of the models generated
by considering different values of t is adopted. In this case we start from a
minimum value of t = 2 and proceed by increasing t by 1. For each increment,
a classifier is trained and the performance are measured. The choice of t must
be made taking into consideration the peak point of the performance trend, but
always considering that too large t implies the need to have a certain number of
measurements before being able to make the prediction, therefore we take into
account the average life cycle of a machine and select t as the minimum value
between the peak point and 1

3 of the maximum number of life cycles. Also in
this case follows the reduction of the dimensionality based on PCA and on the
principle of 95% of the variance explained.

Feature Rolling Enriched (FRE) The third and last approach of feature
engineering starts from the pre-processed database enriched with second degree
feature crosses over which FR is performed as described above but, for each batch
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the features are enriched by calculating statistical indices as the mean value, the
median, the minimum, the maximum, the skew, the standard deviation and the
kurtosis index. This allows to enrich the dataset with statistically significant
features that could help in modeling particular relations between variables. Also
in this case follows the reduction of the dimensionality based on PCA and on
the principle of 95% of the variance explained.

3.3 Algorithms and auto-learning tools

Once the datasets have been prepared, different machine learning algorithms are
trained for each of the datasets described above which, according to the state of
the art, are widely used. Specifically, the algorithms chosen for the creation of
the benchmark are: Logistic Regression (LR) as baseline algorithm, RF, ANN
and KNN since they are the main used algorithms in this context according to
the state of the art (from which we excluded SVM due to their scalability issues
with large datasets) and LSTM classifier which, among the DL techniques, is
the most consolidated in sequence learning problems [1]. The aforementioned
models are trained using Google Cloud Vertex AI [60], in order to keep track of
models and versions and taking advantage of the hyper parameter optimization
provided by Google. This optimizer called hypertune is based on Google Vizier
and is a black box optimization service released in 2017 [61], based on Bayesan
optimization. In addition to training the models described above, we train other
models using the auto-learning tools provided by Google. Specifically: Google
Cloud AutoML Tables, Google Cloud BQ-ML LR. For these tools of the Google
suite it is not necessary to perform tuning of the hyperparameters because these
are carried out automatically. For both the algorithms and the auto-learning
tools the F1 score is calculated. The training of the algorithms is conducted in a
systematic way. Each algorithm or tool is trained using the three different types
of datasets.

3.4 Benchmark computation

Once all the algorithms and tools have been trained, the benchmark is computed
by averaging the maximum performance obtained in terms of F1 score for each
algorithm and for each feature engineering technique applied. More formally,
given a set of datasets D : {d1, ..., dD}, algorithms A : {a1, ..., aA} and feature
engineering techniques F : {f1, ..., fF } and considered F1da,f as the F1-score

associated to the ath algorithm, the f th feature engineering and the dth dataset,
the benchmark is computed as∑D

d=1 max
{a∈A,f∈F}

F1da,f

|D|
(1)

Thus, this benchmark represents an average result which can be pursued by
applying the correct feature engineering technique and the correct algorithm to
a specific dataset.
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Guidelines for benchmark computation and evaluation To summarize,
given a set of dataset D, to compute the benchmark the following steps need to
be performed for each dataset:

– Define the minimum number of cycles N to let the operator intervene.
– Preprocess the data and define the optimal value of N and M with the

methodology defined in paragraph 3.2-Preprocessing.
– Over the preprocessed data run the feature engineering technique defined

as FC, FR and FRE, defining the optimal parameter t for the FR feature
engineering technique with the methodology described in 3.2-Feature Rolling
(FC).

– Divide the data in train and test with an 80/20 split and train the LR,
RF, ANN and KNN algorithms with the training data using Google Cloud
vertex AI leveraging the HyperTune algorithm to run cross validation and
hyperparameters tuning and Google auto-learning tools that automatically
perform all the optimizations.

– Test each algorithm trained with the test data and measure the F1-score.
– Compute the benchmark as described in paragraph 3.4 by considering the

best F1-score for each algorithm trained and feature engineering technique
applied.

The benchmark thus obtained represents an average affordable result. Moreover,
by following the same steps over a real dataset, it is possible also to identify the
best algorithm for the specific case and compare the performance over that
dataset with respect to a predefined benchmark.

3.5 SNN based algorithm

In addition to the state-of-the-art algorithms we decided to study the perfor-
mance of an innovative approach based on SNN [51]. In particular, we design
an SNN composed of two twin layers of LSTM neural networks. The objective
of this network is to take as input distinct time series associated with machine
operation that correspond to series that do not end in a fault and series that end
in a fault, sampled at different distances from the fault event itself. Each series
will have a class set according to the parameters N and M selected as described
in section 3.2. The assignment criterion is determined by the distance of the last
value of the series from the failure event in terms of cycles. On the basis of this
input, the network is trained by considering distinct pairs of time series, some of
the same class and some of different classes. The LSTM-based embedding layers
allow to build an embedding of these series taking into account temporal depen-
dencies. The network is trained to understand how to create these embedding so
that the selected distance metric considers more similar series of the same class
and more dissimilar series of different classes. The model is trained using Google
Cloud Vertex AI and leveraging hypertune for learning rate, epochs and batch
size. In order to make predictions, this kind of model, for each input series, must
build the embedding and compare it with the embeddings of a certain number of
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previously collected series for which the class is known. The prediction class for
the input series is selected based on the majority voting of the classes assigned
by distance from each previously collected series. It is evident, however, that
the choice of the comparison series has an impact on the performance of the
classifier. Thus, we design a methodology to select the best comparison series.
Given a dataset of K classes C : {C1, C2, ..., CK} and N instances X1, ..., XN

such that each instance is a tensor of F features and T subsequent time instants
(namely a multivariate time series) so that each component of the instance Xn

is represented by xfn,t with t ∈ {1, . . . , T} and f ∈ {1, . . . , F}

Xn =


x1n,1 · · · x1n,T
x2n,1 · · · x2n,T

...
. . .

...
xFn,1 · · · xFn,T

 ,∀n ∈ {1, . . . , N} (2)

For each feature f and for each time instant t, the centroid µk of the class k
with the components µf

k,t are computed as

µk =

µ1
1 · · · µ1

T
...

. . .
...

µF
1 · · · µF

T

 , µf
k,t =

1

|Ck|
∑

Xj∈Ck

xfj,t,∀k ∈ {1, . . . ,K} (3)

Starting from the centroids of each class, we propose to use an approach
based on KNN to get the S multivariate time series closest to each centroid and
use these as comparison samples to detect the final class by majority voting.
In this way we assure to use as a comparison sample just the series that are
more descriptive of each class. The size of S will be determined on the basis
of performance, starting from a minimum value of 1, which correspond to an
n-way one shot learning, and increasing incrementally. The drivers for the choice
of S will be both the performance of the models and the prediction times: since
the system must be industrialized it will be necessary that these times remain
relatively low, approximately in the order of seconds. Furthermore, since this is
a classification model, the same metrics used to evaluate the other models that
contribute to the definition of the benchmark are used to evaluate and compare
the performance of this innovative approach with the benchmark.

4 Experimental results

In the following the experimental results obtained are shown. In particular, firstly
the results obtained in running the methodology for N, M and t selection, as
explained in Paragraph 3.2. Then, the actual results of the different models and
tools trained to compute a benchmark and a comparison between the benchmark
and the SNN algorithm are presented.
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4.1 Preprocessing and Feature engineering

The first step for the definition of the benchmark is that related to the pre-
processing and feature engineering step. It is, indeed, important to define the
parameters N, M and t as described in section 3.2-Preprocessing, in order to get
the best results by keeping the model useful from a business perspective (i.e., the
parameters N and M do not have to be too small, otherwise the operator does
not have time to stop the machine and avoid breakage event and, similarly, the
t parameter does not have to be too large, otherwise it is necessary to have a lot
of values in the past to be able to perform a prediction). In order to determine
the parameters N and M we train several RF classifiers firstly for subsequent
values of N and then, once N has been defined, of M, keeping N fixed. In Fig-
ure 1 the results for different values of N and M for the Aircraft dataset are
shown. Clearly, the selection of N and M varies according to the dataset used.
As an example, for the XJTU-SY dataset and the OML dataset, the breakage
events happen after thousands of cycles, thus N and M are of the order of 50 to
100 thousands, while for the Aircraft dataset the breakage events happen after
hundreds of cycles, thus N and M are of the order of 10 to 100 cycles. After look-
ing at the results, and considering a limit deviation of 5% from the maximum
performance value to keep N and M as large as possible, the selected parameters
are defined in Table 1.

Fig. 1. N-M selection

Table 1. Best N, M and t for each dataset

Dataset Best N Best M Best t

Aircraft 25 20 20

XJTU-SY 10000 10000 80

OML 100000 80000 3

Analogous considerations hold for the selection of t. A RF classifier has been
trained for subsequent values of t, starting from t=2. Also in this case, the
frequency of the breakage events impact the selection of t. In Figure 2 it is
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shown the trend of the scores register for the Aircraft dataset varying t. In
Table 1 we can see the best selected t considering a limit deviation of 5% from
the maximum performance value to keep t as small as possible. The selected
parameters are those used to train the different models and tools.

Fig. 2. t selection

4.2 General results: benchmark definition

To train and test each model and tools we applied an 80-20 split of training and
test data, performing a stratified sampling. All the models have been trained on
Google Cloud Vertex AI, exploiting the hyperparameters optimization module.
As far as the auto learning tools are concerned, they automatically perform the
hyperparameters optimization. In order to compare the results and evaluate the
performance of each algorithm, we used the F1 score. In Table 2 a comparison of
the results obtained is shown. By analyzing the results we can see that generally
the performance over the OML dataset are better than the other and the ones
over the XJTU-SY dataset are worse. On average, the RF algorithm reaches the
best performance over all datasets (with all the feature engineering techniques
applied), with an 85.5% of F1 score. Moreover, we can state that the FRE
feature engineering technique, in most cases extremely improves the results of
the algorithms. This can be seen especially in the case of Aircraft and XJTU-
SY, where the performance over the other feature engineering techniques are
definitely worse, but also in the case of OML, even though the performance are
good also in the other cases. Finally, by considering the best results for each
dataset over all the feature engineering techniques and over all the algorithms
tested, on average we can state that it is possible to reach a 98% of F1-score, with
a 1.7% of standard deviation. This is the benchmark computed as in Equation
1, which describes the target result that one can achieves by properly selecting
the algorithm and the feature engineering technique for his own specific dataset.

4.3 SNN results

In order to define the performance of the SNN algorithm, firstly we need to define
the optimal number S of comparison series. To define the optimal number S, we
follow the methodology proposed in Paragraph 3.5. We compute different F1
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Table 2. Final results in terms of F1-score

Dataset Feat. Eng. ANN KNN LSTM LR RF AutoML BQ-ML SNN
FC 0.6 0.58 0.6 0.6 0.59 0.6 0.56 0.66
FR 0.6 0.93 0.56 0.59 0.91 0.74 0.51 0.66Aircraft
FRE 0.89 0.9 0.59 0.57 0.96 0.89 0.53 0.99
FC 0.48 0.46 0.46 0.4 0.45 0.49 0.33 0.4
FR 0.26 0.84 0.54 0.48 0.83 0.69 0.44 0.53XJTU-SY
FRE 0.86 0.87 0.93 0.57 0.99 0.42 0.31 0.89
FC 0.97 0.99 0.97 0.88 0.99 0.99 0.81 0.8
FR 0.91 0.99 0.96 0.9 0.99 0.99 0.95 0.82OML
FRE 0.99 0.99 0.99 0.98 0.99 0.99 0.83 0.98

score based on a varying number of comparison series from 1 to 15. We compare
the results over each feature engineering and select the smallest S corresponding
to the best result. The best results obtained are S = 4 for FC, S = 5 for FR
and S = 5 for FRE. Given the benchmark defined previously, we can compare
the results of the SNN based algorithms. In Table 2 the results, in terms of F1
score are shown. To compute the predictions, we get the top S series closest
to the centroid, defined as in Equation 3. To get the top S series we use the
approach based on KNN described in Paragraph 3.5. As we can see, also in this
case, the best results are obtained with the FRE feature engineering technique.
Very good results are obtained for the Aircraft and the OML dataset, while
acceptable results are obtained for the XJTU-SY dataset. Computing the average
of the best results also for this algorithm, we have an average F1-score of 95.3%.
This is slightly under the benchmark previously defined, however results are
comparable, meaning that also this kind of algorithm can be adopted in the
context of PdM.

5 Conclusion and future works

In this research we present a methodology for the definition of a benchmark in
terms of performance in the context of prognostic predictive maintenance from
the classification perspective. In defining the benchmark we consider different
preprocessing and feature engineering techniques and different machine learning
algorithms and auto-learning tools and we compute the benchmark over different
public datasets. We also define some approaches to automate parameters selec-
tion that contribute to reach the best performance. In conclusion, we show that,
despite the input dataset, it is possible to select the proper feature engineering
technique and the proper machine learning algorithm or tool to reach an average
F1-score of 98%. Moreover we test an innovative approach based on SNN and
we show that it is competitive with the benchmark computed. To enhance the
research, it could be interesting to expand the definition of the benchmark also
to real datasets, to understand whether the results obtained with public dataset
(some of which are synthetic) can be compared with the results obtained with
real dataset.
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